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Abstract. A polymorphic implementation of the DES algorithm is presented.
The polymorphic approach allows for a very fast integration of the DES hardware
in existing software implementations, significantly reducing the time to marked
and the development costs associated with hardware integration. The tradeoff be-
tween implementing the DES SBOXs in LUT or in BRAMs is the focus of the
study presented in this paper. The FPGA implementation results suggest LUT
reduction in the order of 100 slices (approximately 37%) for the full DES core,
at the expense of 4 embedded memory blocks (BRAM). Even with this delay
increase, the usage of BRAMs allows for an improvement of the Throughput
per Slice ratio of 20%. The proposed computational structure has been imple-
mented on a Xilinx VIRTEX II Pro (XC2VP30) prototyping device, requiring
approximately 2% of the device resources. Experimental results, at an operating
frequency of 100 MHz, suggest for the proposed polymorphic implementation a
throughput of 400 Mbit/s for DES and 133 for 3DES. When compared with the
software implementation of the DES algorithm, a speed up of 200 times can be
archived for the kernel computation.

1 Introduction

In present days, most of the communication systems requires secure data transfer in
order to maintain the privacy of the transmitted message; this message can be a simple
email or a billion euro transaction between banks. In order to maintain the security of
the communication channels, several encryption standards and algorithms exist, such
as public key ciphers, symmetric ciphers and hash functions. For ciphering the bulk
of data, symmetrical ciphering algorithms are used. Even though new emerging algo-
rithms for symmetrical encryption have been appearing, the Data Encryption Standard
(DES) [1] is still widely used, especially in banking application and monetary transac-
tions, due to backward compatibility and legacy issues. In 1998 [2] the DES algorithm
and its 54 bit key, have been deemed unsafe and replace by 3DES, which basically con-
sists in performing the DES computation three times with three different keys, having
a 112 bits equivalent key. With the increase of embedded application requiring DES
(and 3DES), like RFID and bank cards, efficient hardware implementations of DES are
demanded. In this paper a polymorphic implementation of the DES algorithm is pro-
posed. This approach allows the hardware implemented DES core to be invoked in the
same manner as has the equivalent software function, making its usage transparent to
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the software developer. This allows for a lower development cost and a much faster time
to market. This paper also studies the advantages and disadvantages of using embedded
memories for the implementation of the DES S-BOXs.

The FPGA implementation results suggest that a significant LUT reduction in the
order of 100 slices (approximately 37%) for the full DES core, at the expense of 4 em-
bedded memory blocks (BRAM). Even with this delay increase, the usage of BRAMs
allows for an improvement of the Throughput per Slice ratio of 20%.

Experimental results for the polymorphic implementation, obtained from a proto-
type developed using a Xilinx VIRTEX II pro 30 prototyping FPGA, suggest:

– Speedups up to 200 times compared to the pure software implementations;
– Minimal software integration costs;
– Throughput of 400 Mbit/s for DES and 133 Mbits for 3DES, with 2% device usage.

The paper is organized as follows: Section 2 presents an overview on the DES al-
gorithm. The implemented hardware structure is presented in section 3. Section 4 de-
scribes the proposed polymorphic DES organization and its usage in existing applica-
tions. Section 5 presents the obtained experimental results and compares them to related
DES state-of-the-art. Section 6 concludes this paper with some final remarks.

2 DES Computation

Nowadays, the field of cryptography is growing up very intensively and many others
algorithms are presented to meet the requirements of modern electronic systems. Since
the time when the DES algorithm was introduce (in 1976), there are many devices
and systems in which this algorithm is the bases into their security level. The high
performance solutions are based on ASIC technologies and the reconfigurable ones are
based on FPGA technologies. In both of the cases for each new solution is necessary to
keep the compatibility with devices which are already available on the market. In our
paper, an implementation of DES algorithm as a part of dynamic reconfigurable system
based on FPGA technology is presented.

In DES, 64 bit data blocks are encrypted using a 54 bit Key (obtained from an input
key with 64 bits). The intermediate ciphered values are processed as two 32-bit words
(Li and Ri), which are manipulated in 16 identical rounds as depicted in Figure 1.
This manipulation consists of substitution, permutation, and bitwise XOR operation,
over the 64-bit data block. The DES algorithm also has an Initial bit Permutation (IP)
at the beginning of a block ciphering. To conclude the ciphering of a block, a final
permutation is performed, which corresponds to the inverse of the initial permutation
(IP−1). The main computation is performed in 16 round designated by Feistel network,
named after cryptographer Horst Feistel. In each round a different sub-key is used,
generated form the main key expansion. The round computation or Feistel network is
depicted in Figure 2.

The Feistel network is composed be the 3 main operation in symmetrical ciphering,
namely key addition, confusion, and diffusion [3]. The first half of the round block is
expanded from 32 to 48 bits and added to the 48-bits of the current sub-key. While the
data expansion can be hardwired in the computation logic, the key addition requires
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Fig. 1: DES computation.

XOR gates for the computation. The Key addition operation is followed by the con-
fusion operation, performed by SBOXs. In this operation the value resulting from the
addition is grouped in 8 blocks of 6 bits each. Each 6 bits are replaced by a different set
of 8 groups of 4 bits, resulting in 32 different bits. The diffusion operation is performed
by a final permutation. After the 16 rounds have been computed, a final permutation
(IP−1) is performed over the 64 bit data block.

The DES computational structure has the advantage that the decryption computa-
tion is identical to the encryption computation, only requiring the reversal of the key
schedule.

3 Proposed DES structure

As depicted in Figures 1 and 2 the core computation of DES can be summed up to XOR
operations, the SBOXs, permutations and word expansions. Since the permutations and
expansions can be performed by routing, only the XORs, SBOXs, and some glue logic
require computational logic. In order to create a compact DES computational core, a
fully folded design has been implemented. In each clock cycle one round of the DES 16
rounds are computed, thus 16 clock cycles are required to compute a 64-bit data block.
The used structure is presented in Figure 3. In this folded design some additional logic
is required for multiplexing and additional round control.
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Given that, this DES core is to be used on a FPGA device, two major computa-
tional structures can chosen for the implementation of the SBOXs. The first and most
commonly used is the implementation of the SBOX using the FPGA Look Up Tables
(LUT). In this approach distributed memory blocks are created for each of the 32 bits of
the word resulting from the SBOXs. Since most of the used Xilinx FPGAs have 4 input
LUTs, the 6 bit SBOX requires at least 2 LUTs for each output bit. From this, it can be
estimated that at least 64 LUT are required having a critical path of at least 2 LUTs, as
depicted in Figure 4.
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Taking into account that current FPGAs have embedded memory blocks (BRAMs),
an alternative implementation of the SBOXs can be used. These BRAMs can be used as
ROM blocks, to implement a full SBOX table. Since these BRAMs have output ports
with at leat 4 bits, one BRAM can be used to replace at leat 2×4 = 8 LUTs. Moreover,
modern FPGAs have embedded dual port BRAMs with more that (2×26 =) 128 words,
thus, two SBOXs can be computed in each BRAM, as depicted in Figure 5. With this,
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Fig. 5: BRAM based SBOXs.

only 4 BRAMs need to be used, instead of at least 64 LUTs. Due to the fact that existing
BRAMs have registered output ports the round register must be located at the end of
the SBOXs, limiting the options of the designer where to place the round registers.

In the DES algorithm the encryption and decryption of data differs only in the order
in which the key expansion is performed. The key expansion consists of fixed permu-
tations and rotate operations. While the permutation operations can be performed by
routing, the rotation requires dedicated hardware. The rotation can be of 1 or 2 posi-
tions and, depending on the operation (encryption or decryption), to the left or to the
right. The implemented structure is depicted in Figure 6.

In order to simplify the computational structure and the key expansion, only the
DES algorithm is performed in hardware. To compute the 3DES algorithm, the DES
hardware is called 3 times with the 3 different keys, thus performing the 3DES calcula-
tion.
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4 Polymorphic Implementation

In order to efficiently use the DES core with a low development cost to the programmer,
the MOLEN [4,5] computational paradigm is used. The MOLEN paradigm is based on
the coprocessor architectural paradigm, allowing the usage of reconfigurable custom
designed hardware units. In this computational approach, the non critical part of the
software code is executed on a General Purpose Processor (GPP), while the main DES
algorithm, is executed on the Custom Computing Unit (CCU). The DES core is seen by
the programmer in the same manner as a software implemented function. The decision
where the function is executed is made at compile time. At microarchitectural level the
arbiter, depicted in Figure 7, redirects each instruction either to the GPP (a PowerPC in
our case) or to the cryptographic units.

In a software function, the parameter passing is done through the stack. In the Molen
processor, when a hardware function is invoked the parameters are passed through a
dedicated register bank, designated by eXchange REGisters (XREG).

Given that the dedicated computational units are also connected to the main data
memory, only initialization parameters are passed to the DES computational unit via
the XREG. These parameter are the private key, memory pointers to the data to be
ciphered, and the operation modes, e.g. encrypt or decrypt. The data to be processed is
directly retrieved and send to the main data memory, via a shared memory mechanism.

In order to illustrate the data flow, the encryption operation for a 64 bit data block
is described. When the DES cipher function is called, a few software instructions are
executed, namely instructions that move the function parameters from the GPP internal
registers to the XREG, followed by an execute instruction. When an execute instruction
is detected by the arbiter, the later starts addressing the microcode memory, giving
control of the data memory to the DES core, and signals it to start the computation via
the start signal depicted in Figure 7.

Once the DES core receives the start signal, it starts retrieving the values from
the XREG. The first value read is the operation mode, which indicates which operation
will be performed. Continuously, the start and end memory addresses for the data to
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cipher are retrieved from the XREG. While the first data block is read from the memory,
the key is read from the XREG and stored in the DES internal registers. After this
initialization phase, the DES core enters a loop where, while the data is being ciphered,
the next 64-bit data block is read from the memory. In the end of each loop, the ciphered
data is written back into the data memory. When the current memory address coincides
with the data end address, the computation loop is broken and the stop signal is sent to
the arbiter. Upon receiving this stop signal, the arbiter returns the memory control to
the GPP.

To indicate which function performs the DES encryption computed in hardware, a
pragma annotation is used in the C code, as depicted in Figure 8.

#pragma DES
DES (key, &data[0], &data[end], mode){
\∗ implemented in HW ∗\

}

Fig. 8: Usage of the pragma notation.

This pragma annotation is recognized by the compiler which automatically gener-
ates the required instructions sequence [4]. This pragma addition and recompilation are
the only operation required to use the hardware implemented DES, instead of the soft-
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ware implemented version. With this mechanism, any application using DES or 3DES
can be accelerated by the DES core, with a reduced time market and a very low devel-
opment cost.

5 Performance Analysis

Table 1: Stand-alone DES performances

Our-BRAM Our-LUT Wee [6] Rouv [7] Our-BRAM Our-LUT CAST [8] Our-BRAM Our-LUT

Device V1000E V1000E V2-4 V2-5 V2-5 V2-5 V2P2-7 V2P30-7 V2P30-7
Freq. (MHz) 81 138 179 274 152 202 261 218 287
Slices 174 277 382 189 175 278 255 175 278
BRAMs 4 0 0 0 4 0 0 4 0
Thrput (Mb/s) 354 551 716 974 609 808 1044 872 1148
Latency 16 16 16 18 16 16 16 16 16
TP/S 2.03 1.99 1.87 5.15 3.48 2.91 4.09 4.98 4.13

To evaluate the advantages and disadvantages of using BRAMs on DES computa-
tional structures and the polymorphic DES implementation, a Xilinx VIRTEX II Pro 30
prototyping FPGA device has been used. The FPGAs embedded PowerPC is used as the
core GPP [4].The PowerPC is running at 300 MHz, with a main data memory running
at 100 MHz. The DES co-processor runs at the same frequency as the data memory,
100 MHz.

In Table 1, the two implemented DES computational structures, with and without
BRAMs, are compared. In this table related DES stand-alone art is also presented. Note
that these figures are for the DES kernel computation only.

From the implementation results of Our DES core with and without BRAMs on the
VIRTEX-2 and VIRTEX-2 Pro FPGA technologies it can be concluded that a significant
reduction on the required slices (37%), at the expense of 4 BRAMs, can be achieved.
However, as a consequence, the critical path increases about 32%. This delay increase
is due to the fact that a BRAM has a critical path equivalent to about 3 Look Up Tables
(LUT), and the critical path of a LUT implemented SBOX is of 2 LUTs. Nonetheless,
an improvement of 20% to the Throughput per Slice (TP/S) efficiency metric can be
achieved. In these technologies and for the BRAM based structures, the slice occupation
(2%) is the same as the BRAM usage (2%), thus an adequate utilization of the available
resources in the device is achieved. In older technologies, where BRAMs are not so
fast, like the VIRTEX-E, the penalty on the delay is higher. In this case, practically no
improvement to the TP/S is achieved (only 2%).

When compared with related art, that use the unmodified DES algorithm structure,
the proposed core has an equivalent Throughput per Slice as the commercial core from
CAST, when compared with the proposed LUT based DES structure. The TP/S metric
improves to 22% when compared with the BRAM based DES structure. When com-
pared with [6] a TP/S metric improvement of 86% and 57% is achieved for the proposed
structure with and without BRAMs, respectively.
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In [7], the authors propose a modification to the DES computational algorithm,
which allows for the efficient use of a pipeline computation, resulting in a very efficient
computational structure. This improvement comes at the expense of a higher latency
and a potentially lower resistance to side-channel attacks, since the same key is added
at two locations, instead of one [9,10]. This algorithmic alteration also makes the usage
of side-channel defences more difficult [11, 12]. Nevertheless, when no side-channel
concerns exist, this structure is quite advantageous.

Taking into account that, the computational block used to perform the SBOXs oper-
ation is exactly the same in both papers; the same tradeoff between LUTs and BRAMs
can still be applied to the design proposed in [7]. As a result, the 64 slices [7] required
for the SBOXs can be replaced by 4 BRAMs, further improving the Throughput per
Slice efficiency metric, as suggested by the results in Table 1. In the proposed usage of
the DES core, as a polymorphic processor, the operating frequency is constituted by the
memory not by the core itself. This means that the higher latency and pipeline depth
makes the proposed structure [7] less advantageous.

For the experimental results a VIRTEX-2 Pro FPGA on a Xilinx University Pro-
gram (XUPV2P) board. The comparative results for a pure software implementation
and for the polymorphic usage are presented in Table 2. This table also presents the

Table 2: DES polymorphic performances

Hardware Software Kernel
Bits ThrPut ThrPut SpeedUp
64 89 Mbit/s 0.92 Mbit/s 97
128 145 Mbit/s 1.25 Mbit/s 116
4k 381 Mbit/s 1.92 Mbit/s 198
64k 399 Mbit/s 1.95 Mbit/s 205

speedup achieved for the kernel computation of the DES algorithm. In these results, a
difference in the ciphering throughput can be seen, for different block sizes. This is due
to the initialization cost of the of DES CCU, which includes the loading of the key and
the transfer of the data addresses from the XREG to the DES core. This initialization
overhead becomes less significant as the amount of data to be ciphered increases, be-
coming negligible for data blocks above 4 kbits. A speedup of 200x can be attained,
achieving a ciphering throughput of 399 Mbit/s, working at the memory frequency of
100 Mbit/s.

Table 3 presents the figures for the proposed polymorphic DES core and for related
art, using DES hardware acceleration. It can be seen that the proposed DES processor
is able to outperform the related art in terms of throughput by 30% with less than 40%
FPGA usage. This results in a Throughput per Slice improvement of 117%. Another
advantage of this polymorphic computational approach is the capability to easily inte-
grate existing software application in this embedded system, since existing applications
just have to be recompiled, in order to used the dedicated DES hardware, as depicted in
Figure 8.
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Table 3: DES processors

Chodo [13] Our-LUT Our-BRAM
Device V1000 V1000E V2P30-7
Freq. (MHz) 57 100 100
FPGA usage 5% 3% 2%
DES (Mbit/s) 306 399 399
3DES (Mbit/s) 102 133 133

6 Conclusions

In this paper, a hybrid hardware/software implementation of the DES algorithm was
presented, using a polymorphic computational paradigm. The tradeoffs of using BRAMs
to implement the DES SBOXs are also studied in this paper. Implementation results
suggest that the Throughput per Slice metric can be improved by 20% with the use of
BRAMs. The use of the BRAM implies a decrease on the maximum frequency, com-
pensated by a significant reduction on amount of required slices. Implementation results
suggest that for the complete DES core, the employed polymorphic paradigm and the
tightly coupled organization between the General Purpose Processor (GPP) and the
dedicated DES core, allow for a short development cycle and substantial performance
improvement. Given that the DES core can directly access the main data memory and
the usage of the exchange register to transfer the initialization parameters, the hardware
implemented DES algorithm can be invoked in the same manner as the software im-
plemented function. The parameter passing via the exchange register is performed by
the compiler, thus making the usage of the DES core transparent for the programmer.
Experimental results of the proposed processor on a VIRTEX II Pro FPGA, indicate
that for data blocks of larger that 4 kbits a speedup of 200x for the DES algorithm can
be attained, achieving a throughput of 400 Mbit/s for DES and 133 Mbit/s for 3DES.
This performance improvement is achieved with a significantly low cost in terms of
reconfigurable area, approximately 2% of the used device (328 slices and 4 BRAMS),
and with a minimal development cost, since the integration of the dedicated hardware
is performed by the compiler. In conclusion, with this polymorphic implementation of
the DES algorithm, existing software application that demand high ciphering rates can
be embedded with DES hardware implementations with a low development cost and
without large reconfigurable resources.

Evaluation prototype

An evaluation prototype for the XUP prototyping board of the hybrid DES processor is
available for download at http://ce.et.tudelft.nl/MOLEN/applications/DES
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