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Abstract. An important question is whether emerging and future ap-
plications exhibit sufficient parallelism, in particular thread-level paral-
lelism (TLP), to exploit the large numbers of cores future CMPs are ex-
pected to contain. As a case study we investigate the parallel scalability of
the H.264 decoding process. Previously proposed parallelization strate-
gies such as slice-level, frame-level, and intra-frame macroblock (MB)
level parallelism, are not sufficiently scalable. We therefore propose a
novel strategy, called 3D-Wave, which is mainly based on the observa-
tion that inter-frame dependencies have a limited spatial range. Because
of this, certain MBs of consecutive frames can be decoded in parallel.
The 3D-Wave strategy allows 4000 to 9000 MBs to be processed in par-
allel, depending on the input sequence. We also perform a case study to
assess the practical value and possibilities of the 3D-Wave strategy. The
results show that our strategy provides sufficient parallelism to efficiently
exploit the capabilities of future manycore CMPs.

1 Introduction

We are witnessing a paradigm shift in computer architecture towards chip multi-
processors (CMPs). In the past performance has improved mainly due to higher
clock frequencies and architectural approaches to exploit instruction-level par-
allelism (ILP). It seems, however, that these sources of performance gains are
exhausted. As a result, industry, including IBM, Sun, Intel, and AMD, turned
to CMPs.

It is expected that the number of cores on a CMP will double every three
year [1], resulting in an estimate of 150 high performance cores on a die in 2017.
For power efficiency reasons CMPs might as well consist of many simple and
small cores which might count up to thousand and more [2]. A central question
is whether applications scale to such large number of cores. If applications are
not extensively parallelizable, cores will be left unused and performance suffers.
Furthermore, CMPs provide three levels of parallelism, i.e., data-level paral-
lelism (DLP), instruction-level parallelism (ILP), and thread-level parallelism
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(TLP). How do they need to be balanced to match the parallelism available in
applications?

In this paper we answer these questions for video coding/decoding workloads
by analyzing their parallel scalability. Multimedia applications remain important
workloads in the future and video codecs are expected to be important bench-
marks for all kind of systems, ranging from low power mobile devices to high
performance systems. Specifically, we consider an H.264 decoder, analyze the
parallelism available, and propose a new parallelization strategy that provides
sufficient parallelism to fully utilize the many cores that will be available.

This paper is organized as follows. In Section 2 a brief overview of the H.264
standard is provided. Next, in Section 3 we describe the benchmark we use
throughout this paper. In Section 4 possible parallelization strategies are dis-
cussed. In Section 5 we propose the 3D-Wave parallelization strategy and show
that it can exploit huge amounts of parallelism. Section 6 describes a case study
to assess the practical value of the proposed strategy. Section 7 concludes the
paper.

2 Overview of the H.264 Standard

Currently, the best video coding standard, in terms of compression and quality
is H.264 [3]. It has a compression improvement of over two times compared
to previous standards such as MPEG-4 ASP, H.262/MPEG-2, etc. The H.264
standard [4] was designed to serve a broad range of application domains ranging
from low to high bitrates, from low to high resolutions, and a variety of networks
and systems, e.g., internet streams, mobile streams, disc storage, and broadcast.

Uncompressed
video

Compressed
video Entropy

IDCT
Deblocking

filter
Inverse 

quantization

buffer
Frame

MC
prediction

prediction
Intra

decoding

Fig. 1. Block diagram of the decoding process.

Figure 1 depicts the block diagram of the decoding process of H.264. The
main kernels are Prediction (intra prediction or motion estimation), Discrete
Cosine Transform (DCT), Quantization, Deblocking filter, and Entropy Coding.
These kernels operate on macroblocks (MBs), which are blocks of 16×16 pixels,
although the standard allows some kernels to operate on smaller blocks, down
to 4× 4. H.264 uses the YCbCr color space with a 4:2:0 subsampling scheme.
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A movie picture is called a frame and can consist of several slices or slice
groups. A slice is a partition of a frame such that all comprised MBs are in scan
order (from left to right, from top to bottom). The Flexible Macroblock Ordering
(FMO) feature allows slice groups to be defined, consisting of an arbitrary set
of MBs. Each slice group can be partitioned into slices in the same way a frame
can. Slices are self contained and can be decoded independently.

I B B P B B P

Fig. 2. A typical slice/frame sequence and its dependencies.

H.264 defines three main types of slices/frames: I, P, and B-slices. An I-slice
uses intra prediction and is independent of other slices. In intra prediction a
MB is predicted based on adjacent blocks. A P-slice uses motion estimation
and intra prediction and depends on one or more previous slices, either I, P
or B. Motion estimation is used to exploit temporal correlation between slices.
Finally, B-slices use bidirectional motion estimation and depend on slices from
past and future [5]. Figure 2 shows a typical slice order and the dependencies,
assuming each frame consist of one slice only. The standard also defines SI and
SP slices that are slightly different from the ones mentioned before and which
target mobile and internet streaming applications. For more details on the H.264
standard the interested reader is referred to [6, 4].

3 Benchmark

Throughout this paper we use the HD-VideoBench [7], which provides movie
test sequences, an encoder (x264), and a decoder (FFmpeg). The benchmark
contains the following test sequences:

– rush hour: rush-hour in Munich city; static background, slowly moving
objects.

– riverbed: riverbed seen through waving water; abrupt and stochastic changes.
– pedestrian: shot of a pedestrian area in city center; static background, fast

moving objects.
– blue sky: top of two trees against blue sky; static objects, sliding camera.

All movies are available in three formats: 720×576 (SD), 1280×720 (HD), 1920×1088
(FHD). Each movie has a frame rate of 25 frames per second and has a length
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of 100 frames. For some experiments longer sequences were required, which were
created by replicating the sequences. Unless specified otherwise, for SD and HD
we used sequences of 300 frames while for FHD we used sequences of 400 frames.

The benchmark provides the test sequences in raw format. Encoding was
done with the x264 encoder using the following options: 2 B-frames between
I and P frames, maximally 16 reference frames, weighted prediction, hexagonal
motion estimation algorithm with maximum search range 24, one slice per frame,
and adaptive block size transform.

4 Parallelizing H.264

The coding efficiency gains of advanced video codecs like H.264, come at the price
of increased computational requirements. The demands for computing power
increases also with the shift towards high definition resolutions. As a result,
current high performance uniprocessor architectures are not capable of providing
the required performance for real-time processing [8, 9]. Thus, it is necessary to
exploit parallelism. The H.264 codec can be parallelized either by a task-level or
data-level decomposition.

In a task-level decomposition the functional partitions of the algorithm are
assigned to different processors. For example, Inverse Quantization (IQ) and the
IDCT can be done in parallel with the Motion Compensation (MC) stage. The
main drawbacks of task-level decomposition are load balancing and scalability.
Balancing the load is difficult because the time to execute each task is not
known a priori and depends on the data being processed. Scalability is a problem
because it is limited to the number of tasks, which typically is small.

In a data-level decomposition the work (data) is divided into smaller parts and
each assigned to a different processor. Each processor runs the same program
but on different (multiple) data elements (SPMD). In H.264 data decomposi-
tion can be applied at different levels of the data structure: Group-of-Pictures
(GOP) level, frame-level, slice-level, macroblock-level, and block-level. The most
important of these will be explained next.

Frame-Level Parallelism As shown in Figure 2 in a sequence of I-B-B-P
frames some frames are used as reference for other frames (like I and P frames)
but some frames (B frames) are not used as references. That means that B
frames can be processed in parallel [10]. In this case, a control processor can
assign independent frames to different processors. Frame-level parallelism has
good load balancing but scalability problems. This is due to the fact that usually
there are no more than two or three B frames between P frames. This limits the
amount of TLP to a few threads. However, the main disadvantage of frame-level
parallelism is that, unlike previous video standards, in H.264 B frames can be
used as reference. In such a case, there is no or little parallelism available.

Slice-Level Parallelism In H.264 and in most current hybrid video coding
standards each picture is partitioned into one or more slices. As slices are com-
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pletely independent from each other they can be processed in parallel without
dependency or ordering constraints [10–12]. However, as the number of slices is
determined by the encoder, there is a scalability and load balancing problem if
there is no control of what the encoder does. More important, increasing the
number of slices per frame increases the bitrate for the same quality level. Going
from 1 to 64 slices per frame increases the bitrate up to 34%.

Macroblock-Level Parallelism To exploit parallelism between MBs it is nec-
essary to take the dependencies between them into account. In H.264, motion
vector prediction, intra prediction, and the deblocking filter use data from neigh-
boring MBs defining a complex set of dependencies (shown as arrows in Figure 3).
Processing MBs in a diagonal wavefront manner satisfies all the dependencies
and at the same time allows to exploit parallelism between MBs. We refer to
this parallelization technique as 2D-Wave, to distinguish it from the 3D-Wave
proposed in this paper.

Figure 3 depicts an example of the 2D-Wave for a 5×5 MBs image (80×80
pixels). At time slot T7 three independent MBs can be processed: MB (4,1), MB
(2,2) and MB (0,3). The number of independent MBs in each frame depends on
the resolution. For a low resolution like QCIF there are only 6 independent MBs
during 4 time slots. For High Definition (1920x1088) there are 60 independent
MBs during 9 time slots. Figure 4 depicts the available MB parallelism over
time for an FHD resolution frame, assuming that the time to decode a MB is
constant.

MBs processed

MBs to be processed

MBs in flight

T3 T4 T5

T3

T5

T7

T4 T5 T6 T7

T6 T7 T8 T9
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T1

MB (1,0)
T2

Fig. 3. 2D-Wave approach for exploiting MB parallelism. The arrows indicate depen-
dencies.

MB-level parallelism has many advantages over other schemes for paralleliza-
tion of H.264. First, this scheme can have a good scalability. As shown before the
number of independent MBs increases with the resolution of the image. Second,
it is possible to achieve a good load balancing if a dynamic scheduling system is
used. Additionally, because in MB-level parallelization all the processors/threads
run the same program the same set of software optimizations (for exploiting ILP
and SIMD) can be applied to all processing elements.
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Fig. 4. MB parallelism for a single FHD frame using the 2D-Wave approach.

However, MB-level parallelism has some disadvantages. The first one is that
the entropy decoding can not be parallelized using data decomposition, due to
the fact that the lowest level of data that can be parsed from the bitstream are
slices. Only after entropy decoding has been performed the parallel processing of
MBs can start. This disadvantage can be overcome by using special purpose in-
structions or hardware accelerators for the entropy decoding process. The second
disadvantage is that the number of independent MBs does not remain constant
during the decoding of a frame (see Figure 4). Therefore, it is not possible to
sustain a certain processing rate during the decoding of a frame. Using the par-
allelization strategy we propose in Section 5, this problem is overcome.

MB-level parallelism has been proposed in previous work. Van der Tol et
al. [13] have proposed the exploitation of MB-level parallelism and suggested
the combination with frame-level parallelism. Chen et al. [10] have evaluated
a similar approach. In the above mentioned works the exploitation of frame-
level parallelism is limited to two consecutive frames and the identification of
independent MBs is done statically by taking into account the limits of the
motion vectors.

5 3D-Wave Strategy

None of the single approaches described in the previous section scales to future
many-core architectures containing 100 cores or more. In this work, we propose a
parallelization strategy that combines MB-level with frame-level parallelism and
which, in contrast to any other work, reveals the large amount of parallelism
required to effectively use future many-core CMPs.

In the decoding process the dependency between frames is in the Motion
Compensation (MC) module only. Motion Compensation can be regarded as
copying an area, called the reference area, from the reference frame, and then
to add this predicted area to the residual MB to reconstruct the MB in the
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current frame. The reference area is pointed to by a Motion Vector (MV). This
motion vector in theory can be very long, but in practice the motion estima-
tion algorithm defines a maximum search range of dozens of pixels, because a
larger search range is very computationally demanding and provides only a small
benefit [14].

When the reference area has been decoded it can be used by the referencing
frame. Thus it is not necessary to wait until a frame is completely decoded before
decoding the next frame. The decoding process of the next frame can dynamically
be started after the reference areas of the reference frames are decoded. Figure 5
illustrates this way of parallel decoding of frames, called 3D-Wave strategy.

Fig. 5. 3D-Wave strategy: frames can be decoded in parallel because inter frame de-
pendencies have limited spatial range.

To evaluate the 3D-Wave strategy, the FFmpeg H.264 decoder was modified
to analyse the dependencies of each MB and assign it a timestamp as follows.
The timestamp of a MB is simply the maximum of the timestamps of all MBs
upon which it depends (in the same frame as well as in the reference frames)
plus one. Because the frames are processed in decoding order4, and within a
frame the MBs are processed from left to right and from top to bottom, the MB
dependencies are observed and it is assured that the MBs on which a MB B
depends have been assigned their correct timestamps by the time the timestamp
of MB B is calculated. As before, we assume that it takes one time slot to decode
a MB.

5.1 Maximum Available Parallelism

To start, the available MB parallelism is analyzed. This experiment does not
consider any practical or implementation issues, but simply explores the limits
to the parallelism available in the application. We use the modified FFmpeg as
described before and for each time slot we analyze, first, the number of MBs
that can be processed in parallel during that time slot. Second, we keep track
of the number of frames in flight. Finally, we keep track of the motion vector
lengths.
4 The decoding order of frames is not equal to display order. The sequence I-B-B-P

as in Figure 2 is decoded as I-P-B-B sequence.
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Table 1. Maximum MB parallelism, and frames in flight for SD, HD, and FHD reso-
lution. Also the average motion vectors (in square pixels) are stated.

SD HD FHD
MBs frames avg mv MBs frames avg mv MBs frames avg mv

rush hour 1202 93 1,3 2831 139 1,8 6133 218 2,2

riverbed 1944 150 2 4579 228 2,2 9169 304 2,6

pedestrian 1227 104 9,2 2807 151 11 4851 242 9,9

blue sky 1298 97 4,4 2873 140 5,1 7327 253 5,6
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Fig. 6. Number of parallel MBs (a) and frames in flight (b) for FHD resolution using
a 400 frames sequence.

Table 1 summarizes the results and shows that the 3D-Wave approach ex-
hibits a huge amount of MB parallelism. For FHD resolution the parallelism
ranges from 4851 to 9169 MBs. Figure 6(a) depicts the MB parallelism time
curve for FHD, while Figure 6(b) depicts the number of frames in flight. For the
other resolutions the time curves have a similar shape. The MB parallelism time
curve shows a ramp up, a plateau, and a ramp down. For example, for rush hour
the plateau starts at time slot 300 and last until time slot 650. Riverbed exhibits
so much MB parallelism that is has a small plateau. Due to the stochastic na-
ture of the movie, the encoder mostly uses intra-coding, resulting in very few
dependencies between frames. Pedestrian exhibits the least parallelism. The fast
moving objects in the movie result in many large motion vectors. Especially ob-
jects moving from right to left on the screen causes large offsets between MBs
in consecutive frames.

Limited Resources The analysis above reveals that the 3D-Wave strategy
provides significant amounts of MB parallelism. To exploit this type of paral-
lelism on a CMP the decoding of MBs needs to be assigned to the available
cores, i.e., MBs map to cores directly. However, even in future many-cores the
hardware resources (cores, memory, and NoC bandwidth) will be limited. We
now investigate the impact of resource limitations on the 3D-Wave strategy.



9

We model limited resources as follows. A limited number of cores is modelled
by limiting the number of MBs in flight. Memory requirements of the 3D-Wave
strategy is mainly related to the number of frames in flight. Thus limited mem-
ory is modelled by restricting the number of frames that can be in flight concur-
rently. Limited NoC bandwidth is captured by both modelled restrictions. Both
restrictions decrease the throughput, which is directly related to the inter-core
communication.

The experiment was performed for all four movies of the benchmark and
for all three resolutions. The results are similar, thus only the results for the
blue sky movie at FHD resolution is presented.
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Fig. 7. Available MB parallelism (a) and number of frames in flight (b) for FHD
blue sky, for several limits of the number of MBs in flight.

First, the impact of limiting the number of MBs in flight is analyzed. Fig-
ure 7(a) depicts the available MB parallelism for several limits on the number
of MBs in flight. As expected, for smaller limits, the height of the plateau is
lower and the ramp up and ramp down are shorter. More important is that for
smaller limits, the plateau becomes very flat. This translates to a high utilization
rate of the available cores. Furthermore, the figure shows that the decoding time
is approximately linear in the limit on MBs in flight. Figure 7(b) depicts the
number of frames in flight as a function of time when the number of MBs in
flight is limited. Not surprisingly, because limiting the number of MBs in flight
limits the number of frames that can be in flight, the shape of the curves are
similar to those of the available MB parallelism, although with a small periodic
fluctuation.

Next, we analyze the impact of restricting the number of frames concurrently
in flight. The MB parallelism curves are depicted in Figure 8(a) and shows large
fluctuations, possibly resulting in under utilization of the available cores. These
fluctuations are caused by the coarse grain of the limitation. At the end of
decoding a frame, a small amount of parallelism is available. The decoding of
a next frame, however, has to wait until the frame currently being processed
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Fig. 8. Available MB parallelism (a) and number of actual frames in flight (b) for FHD
blue sky for several limits of the number of frames in flight.

is finished. Figure 8(b) shows the actual frames in flight for several limits. The
plateaus in the curves translate to full memory utilization.

From this experiment we conclude that for systems with limited number of
cores the 3D-Wave approach is able to achieve near optimal performance by
(almost) fully utilizing the available computational power. On the contrary, for
systems where memory is the bottleneck, additional performance losses might
occur because of temporal underutilization of the available cores. In the next
section we perform a case study, indicating that memory will likely not be a
bottleneck.

6 Case Study: Mobile Video

So far we mainly focused on high resolution and explored the potential available
MB parallelism. The 3D-Wave strategy allows an enormous amount of paral-
lelism, possibly more than what a high performance CMP in the near future
could provide. Therefore, in this section we perform a case study to assess the
practical value and possibilities of the 3D-Wave strategy.

For this case study we assume a mobile device such as the iPhone, but in
the year 2015. We take a resolution of 480×320 just as the screen of the current
iPhone as it is reasonable to expect that the size of mobile devices will not
significantly grow. CMPs are power efficient, and thus we expect mobile devices
to adopt them soon and project a 100-core CMP in 2015. Using Moore’s law for
memory we estimate that 1,28GB of main memory is available. If only half of it
is available for video decoding, then still almost 1400 frames of video fit in main
memory. It seems that memory is not going to be a bottleneck.

Figure 9(a) presents the MB parallelism for these assumptions as well as for
unlimited number of cores. The picture shows that even for this small resolution,
all 100 cores are utilized nearly all time. The curves for unrestricted resources
show that there is much more parallelism available than the hardware of this
case study offers. This provides opportunities for scheduling algorithms to reduce
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communication overhead. Figure 9(b) depicts the number of frames in flight. The
average is approximately 12 frames with peaks of up to 16 except for riverbed
which has a peak in the beginning of 23.

From this case study we conclude that even a low resolution movie exhibits
sufficient parallelism to fully utilize 100 cores efficiently. Furthermore, for mobile
devices, memory will likely not be a bottleneck.
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Fig. 9. Number of parallel MBs (a) and frames in flight (b) for the mobile video case
study. Also depicted in (a) is the available MB parallelism for the same resolution but
with unrestricted resources.

7 Conclusions

In this paper we have investigated if future applications exhibit sufficient par-
allelism to exploit the large number of cores expected in future CMPs. As a
case study, we have analyzed the parallel scalability of the H.264 video decoding
process, currently the best coding standard.

Previously proposed parallelization strategies such as slice-level, frame-level,
and intra-frame macroblock (MB) level parallelism, are not sufficiently scalable.
Therefore, we have proposed a novel parallelization strategy, called 3D-Wave,
which combines MB parallelism with frame-level parallelism. Inter-frame depen-
dencies typically have limited spatial range, and thus decoding of frames can
be overlapped. Decoding a MB can be started as soon as the MBs upon which
it depends have been decoded. Analysis showed that by using this strategy the
total number of parallel MBs ranges from 4000 to 9000.

We have also performed a case study to assess the practical value and pos-
sibilities of the 3D-Wave strategy. In general, the results show that our strat-
egy provides sufficient parallelism to efficiently exploit the capabilities of future
manycore CMPs. Although we have focussed on H.264, other video codecs and
multimedia applications in general exhibit similar features and we expect that
they can also exploit the capabilities of many-core CMPs.
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