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Abstract: Sequence alignment is one of the most important
activities in bioinformatics. With the ever increasing vol-
ume of data in bioinformatics databases, the time for com-
paring a query sequence with the available databases is al-
ways increasing. Many algorithms have been proposed to
perform and accelerate sequence alignment activities. This
paper introduces a taxonomy of the various sequence align-
ment algorithms found in the literature, with particular em-
phasis on the Smith-Waterman (S-W) algorithm. The paper
also provides a classification of the available hardware ac-
celeration methods used to speed up the S-W algorithm.
Keywords: Bioinformatics, Sequence Alignment, Dynamic
Programming, Smith-Waterman Algorithm, Hardware Ac-
celeration.

1 Introduction

Biology is in the middle of a major paradigm shift driven
by computing technology. Two decades before the formal
inauguration of the Human Genome Project (HGP), a new
hybrid field (partly molecular biology and partly computer
science) began to emerge. The new field was called compu-
tational molecular biology or bioinformatics, which may be
defined as a discipline that generates computational tools,
databases, and methods to support genomic and post ge-
nomic research [1].

The bioinformatics community is doing research in
many subfields, such as gene structure prediction, phylo-
genetic trees, protein docking (2D, 3D) etc, but the most
promising one is sequence similarity analysis or sequence
alignment. In most common terms sequence alignment may
be defined as an arrangement of two or more DNA or Pro-
tein sequences to highlight the regions of their similarity.
This in turn indicates the genetic relatedness between the
organisms.

This paper aims at providing an overview of various
global and local sequence alignment methods in general,
with particular emphasis on the Smith-Waterman (S-W) al-
gorithm and it’s hardware acceleration. S-W is the most
sensitive, but computationally the most expensive sequence
alignment algorithm. Thus it provides exact matches be-
tween sequences, at the cost of long processing run time

and is thus considered as the top candidate for hardware ac-
celeration.

The paper is organized as follows: Section 2 explains
various methods and algorithms for sequence alignment,
their complexities and comparisons. Section 3 reviews the
work related to hardware acceleration of the S-W algorithm
and Section 4 summarizes the paper in the form of a brief
conclusion.

2 Sequence Alignment Methods
Traditionally, the methods of pairwise sequence alignment
are classified as either global or local. Global methods at-
tempt to match as many characters as possible, from end to
end, whereas local methods aim to identify short stretches
of similarity between two sequences [2]. Figure 1 gives var-
ious global and local sequence alignment methods. In the
following subsections we are going to describe these meth-
ods briefly.

2.1 Global Methods

The most basic method of comparing two sequences is a
visual approach known as a dotplot [3]. The sequences to
be compared are arranged along the margins of a matrix.
At every point in the matrix where the two sequences are
identical a dot is placed (i.e. at the intersection of every row
and column that have the same letter in both sequences).
A diagonal stretch of dots will indicate regions where the
two sequences are similar. Done in this fashion a dot plot
as shown in Table 1 will be obtained (for clarity, dots are
marked in the table as xs). The time and space complexity
of the dotplot is O(M N), where M and N are the lengths
of the two sequences to be compared.

Table 1: The dotplot matrix.

a ¢ct g g
a|x
C X
t X
g X X
g X X

In 1970, Needleman and Wunsch (N-W) proposed an
alignment method [4] that can be obtained computationally
by applying a straightforward Dynamic Programming (DP)



algorithm to find the optimal global alignment of two se-
quences A and B. The algorithm is based on finding the
elements of a matrix H according to:

Hi_1j-1+Si;
Hi_’j = max Hifl,j —d (1)
Hi,j—l —d

where S;_; is the similarity score of comparing A4; to B; and
d is the penalty for a mismatch. The matrix is initialized
with HO,O =0.

Sequence Alignment
Methods

Figure 1: Various methods for sequence alignment.

The time complexity of initialization step is simply
O(M + N). The next step is filling in the matrix with all
the scores, H; ;. For each cell of the matrix, three neigh-
boring cells (left, above, and diagonally upper-left) must be
compared. Three separate scores are calculated based on
all three neighbors, and the maximum score is assigned to
the cell, which is a constant time operation [5]. Thus, to
fill the entire matrix, the time complexity is the number of
entries, or O(M N). Finally during the traceback we can
move a maximum of /N rows and M columns, and thus the
complexity of this is O(M + N). Thus, the overall time
complexity of this algorithm is O(M + N) + O(MN) +
O(M + N) = O(MN). Since this algorithm fills a sin-
gle matrix of size M N, the total space complexity of this
algorithm is O(M N).

2.2 Local Methods

In 1981, Smith and Waterman described a method, com-
monly known as the Smith-Waterman (S-W) algorithm [6],
for finding common regions of local similarity. When ob-
taining the local S-W alignment, H; ; for N-W algorithm is
modified as follows:

0
o Hi 11+ 5,
H; ; = max Hoy ) —d 2
Hij1—d

The initialization and matrix fill steps for N-W and S-
W algorithms have the same time complexity. The differ-
ence lies in the traceback step. With N-W, the traceback
starts at the last cell in the matrix and traces the maxi-
mal score path back to the first cell. With S-W, trace-
back starts at the cell with the highest score in the ma-

trix. For doing this, the algorithm requires to find the max-
imum cell, and this must be done by traversing the en-
tire matrix, making the time complexity for the traceback
O(M N).Thus the total time complexity of the S-W algo-
rithm is O(M + N) + O(MN) + O(MN) = O(MN).
The space complexity is also unchanged from the N-W al-
gorithm. This is due to the fact that the same matrix is used
and the same amount of space is needed for the traceback.

As an example, the S-W algorithm, is used to compute
the optimal local alignment of two sequences (i.e., A=ag
gtacand B=cagcgttg). Assume that

Si, :{ +2 if(A; = By)

—1 else

and d=2.

Table 2 illustrates the calculation of the dynamic pro-
gramming matrix H and the path of tracing back (shown in
bold digits). The best score found in the matrix is 6, and the
corresponding optimal local alignment is

A a g - gt
B: a g ¢ gt

Table 2: The DP matrix and the tracing back path.

clajg|lc|g|t|t]|g
0(0{0]0|0O]|0]O]|0O]O
a|0]0|2]0[{0]|0|0]0O]O
glojolo]4]2]2[0[0]2
g/0({0[0[2(3[4]2|0]2
t{0[0[O0O[O|1|2]6|4]2
al0[{012]0|0|0]|4|5]|3
c|0]210]1|2]0]|2|3]|4

Apart from the S-W algorithm, there are other local
search methods such as FASTA (Fast Alignment Search
Tools - All) and BLAST (Basic Local Alignment Search
Tool). Based on heuristics, they are faster, although much
less sensitive than the the S-W algorithm.

FASTA was developed in 1985 by Lipman and Pearson
[7]. Unlike the N-W and S-W algorithms, FASTA approxi-
mates the optimal alignment by searching and matching k-
tuples (i.e. subsequences of length k). The algorithm as-
sumes that related proteins will have regions of identity,
and by searching with k-tuples, the FASTA algorithm al-
lows small regions of local identity to be found quickly. For
proteins, these k-tuples tend to be of length two.

BLAST [8] is similar to the FASTA algorithm, however,
it uses words (w) instead of k-tuples. The computational
complexity of both FASTA and BLAST comes out to be
O(MN). The space complexity for FASTA is O(MN),
whereas for BLAST, it is slightly higher than all other al-
gorithms and it comes out to be O(20* + M N) (where w
is the word size). Table 3 gives a comparison of various
sequence alignment algorithms.



Table 3: Comparison of various sequence alignment algorithms.

Algorithm Local/Global Search Method Time Complexity | Space Complexity
Dotplot Global Basic O(MN) O(MN)
Needleman-Wunsch Global Dynamic Programming O(MN) O(MN)
Smith-Waterman Local Dynamic Programming O(MN) O(MN)
FASTA Local Heuristic O(MN) O(MN)
BLAST Local Heuristic O(MN) O(20" + MN)

Since S-W algorithm is considered as the top candidate
for hardware acceleration, people are working on acceler-
ating it by using various hardware implementation tech-
niques. Section 3, gives a brief review of this work.

3 Review of the hardware accelera-
tion of the S-W algorithm

In computing, hardware acceleration is the use of special-
ized hardware to perform some function faster than is pos-
sible in software running on the general purpose CPU. The
hardware that performs the acceleration, when in a separate
unit from the CPU, is referred to as a hardware accelerator.

When run on a PC, S-W algorithm spends as much as
98.6 % of its time on calculating element of the H; ; matrix
[11]. Theoretically, an accelerated system could calculate
many elements of the H; ; matrix in parallel. Following are
a few advantages of the S-W algorithm.

1. With so much time spent on repeating the same calcu-
lation, it is very well suited for parallelization.

2. It offers a high degree of instruction efficiency, i.e. the
sequences of characters can be represented by as little
as two to five bits.

3. All of the computations can be implemented using 24-
bit integers.

A conventional 64-bit processor would devote all its pro-
cessing power to these simple equations, so we have to look
for alternative implementation options [11]. Work has been
done for either accelerating the whole algorithm or the com-
putationally expensive parts of it by implementing it on var-
ious available platforms. Figure 2 gives a classification of
this work based on the methods of implementation. In the
following subsections, we are going to discuss the hardware
acceleration of S-W algorithm according to the classifica-
tion given in Figure 2.

Hardware Acceleration
of The S-W Algorithm
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Figure 2: Hardware Acceleration of the S-W algorithm.
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Figure 3: Smith-Waterman Algorithm’s Flow Chart.

3.1 Theoretical basis

Figure 3 explains the three basic steps in the S-W algorithm
(i.e. Initialization, Matrix Fill and Trace back) in the form
of a flow chart.

Parallelization of the matrix fill stage in order to reduce
the O(M N') complexity is complicated by data dependen-
cies whereby each cell C;; depends on the values of three
neighboring cells C;;—1, Cj—1,, and C;_1 ;—1, with each
of those cells in turn depending on the values of three neigh-
boring cells, which effectively means that this dependency
extends to every other cell in the region C' < j, < 4. This
implies that it is possible to simultaneously compute C} 3,
(5,2 and C} 1, since these cells fall outside each others data
dependency regions. In simple terms, assuming a square
matrix (i.e. NxN, with both query sequences being of
length N) and only considering the upper left half of the
matrix, the cells that may be computed in parallel are given



by Cp—yt1, forl <y < zand z < N, which gives that
x is the largest row value of the current set of computable
cells. From this it may be concluded that the maximum
number of cells that may be computed in parallel is N. This
model is mirrored for the lower right half of the matrix.
Expanding this model for non-square matrices introduces
some non-linearities, but the parallelization implications re-
main the same. Given that it takes z = N cycles to compute
the upper left half of the matrix, the lower right half would
consume N — 1 cycles, since it would be redundant to re-
compute the cells where x = N. Therefore, a parallelized
S-W algorithm would require 2N — 1 operations, or gener-
alizing for non-equal query sequences of length M and N,
parallel S-W algorithm requires M + N — 1 operations, i.e.
an O(N) implementation is possible. Table 4 gives a sam-
ple similarity matrix for two sequences A = gattaca and B
= gactc. The cells in the anti diagonals are computed in par-
allel. Since there are 11 anti diagonals (ignoring the 1st row
and 1st column, which are meant for initialization only), so
a total of 11 cycles are required for this computation, and a
maximum of 5 cells may be computed in parallel.

Table 4: A sample similarity matrix.

glajt|tlalc|a
0ojojojojo0j0|0]|O
g|0]1]0]0]O0O]0O]|O]|O
a|0]|0]2|0]0]|1]|0]|1
c|O0O|O|O|T|O|O|O]O
t{0j0j0|1]2]0]|0]O0
c|0]0l0O|O]O|1]1]0
3.2 FPGAs

Field Programmable Gate Arrays (FPGAs) are re-
configurable data processing devices on which an algorithm
is directly mapped to basic processing logic elements, e.g.
NAND gates. To take advantage of using a FPGA, one
has to implement massively-parallel algorithms on this re-
configurable device. Thus they are well suited for cer-
tain classes of bioinformatics algorithms, such as sequence
alignment algorithms like the S-W.

3.2.1 FPGA Custom Instructions

In [9], the authors studied the improvement of computa-
tional processing time of the S-W algorithm using custom
instructions on an FPGA board. This was done by first writ-
ing the S-W algorithm in pure software and then replacing
the portion which was the most computationally intensive
with an FPGA custom instruction. Finally, they compared
the processing runtime between the pure software and the
hardware acceleration versions to calculate the percentage
of runtime improvement. The results showed that the hard-
ware accelerated algorithm improved the processing run-
time by an average of 287%. Thus using FPGA Custom
Instructions is a promising direction for further research in
improving genomic sequence searching.

3.2.2 Run-Time Reconfiguration

One way to further exploit the reconfigurable resources of
FPGAs and increase their functional density is to recon-
figure them during system operation. This process is re-
ferred to as Run-Time Reconfiguration (RTR). RTR is an
approach to system implementation that divides an applica-
tion or algorithm into time-exclusive operations that are im-
plemented as separate configurations. In [10], an approach
to realize high speed sequence alignment using run-time re-
configuration is proposed. With this approach, it is demon-
strated that high performance can be achieved using off-the-
shelf FPGA boards. The performance is almost comparable
with dedicated hardware systems. The time for comparing a
query sequence of 2048 elements with a database sequence
of 64 million elements by the S-W algorithm is about 34
sec, which is about 330 times faster than a desktop com-
puter with a 1GHz Pentium-III.

In [11], the performance of the S-W algorithm has been
increased substantially by using run time reconfiguration.
The percentage of time spent on calculating the elements of
H; ; matrix was cut by nearly a third and the absolute time
spent on the algorithm was dropped from 6,461 seconds to
a little over 100 seconds, approximately 64 times faster than
the equivalent software-only implementation.

3.2.3 Systolic Arrays

An arrangement of processors in an array (often rectangu-
lar) where data flows synchronously across the array be-
tween neighbors, usually with different data flowing in dif-
ferent directions. Each processor at each step takes in data
from one or more neighbors (e.g. North and West), pro-
cesses it and, in the next step, outputs results in the opposite
direction (South and East). An example of a systolic array
might be matrix multiplication. One matrix is fed in a row
at a time from the top of the array and is passed down the
array, the other matrix is fed in a column at a time from
the left hand side of the array and passes from left to right.
Dummy values are then passed in until each processor has
seen one whole row and one whole column. At this point,
the result of the multiplication is stored in the array and can
now output a row or a column at a time, flowing down or
across the array. Figure 4 is a simple example of a systolic
array. In this configuration there are two vector array inputs,
M and N. The processing cells have a value, U;; , that is
usually a result due to a defined algorithm within the cells.

In [12] the authors have proposed to feed the systolic
array with multiple data at a time. That implies writing sev-
eral nucleotides in a single bus write- cycle. The results
from Table 5 show that their Virtex2 implementation is the
fastest in terms of CUPS (Cell Updates Per Second).

In [13] a concept to accelerate the S-W algorithm on the
bases linear systolic array is demonstrated. The reason for
choosing this architecture is outlined by demonstrating the
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Figure 4: Systolic Array.

efficiency and simplicity in combination with the algorithm.
Nevertheless, there are two key methodologies to speedup
this massively parallel system. By turning the processing
from bit-parallel to bit-serial the actual improvement is en-
abled. This change is performance neutral but in combina-
tion with the drafted early maximum detection a consider-
able speedup is possible. Another effect of this improve-
ment is a data dependant execution time of the processing
elements. Here the second acceleration prevents idle times
to exploit the hardware and speeds up the computation. This
can be accomplished by a globally asynchronous timing
representing a self-timed linear systolic array. In [13] the
authors have provided no performance estimation due to the
initial stage of their work, that’s why it can’t be compared
with other related work.

In [14] an improved systolic processing element cell for
implementing the S-W algorithm on a Xilinx Virtex FPGA
is presented. The implementation was successfully verified
using on Pilchard (a reconfigurable computing platform),
which provides a 133 MHz, 64-bit wide memory mapped
bus to the FPGA.

Table 5 gives a performance comparison between [12]
and [14], where the performance is measured in billion cell
updates per second (BCUPS). It is obvious from Table 5,
that the Virtex 2 implementation in [12] outperforms other
implementations in terms of BCUPS. But it must be noted
that maximum clock speed was assumed and that this is im-
practical for the majority of communication buses. The ac-
tual advantages of the proposal in [12] may arise when the
systems compared work under the same conditions: same
clock frequency and same sequence length.

3.3 SIMD Solutions

SIMD is an acronym for Single-Instruction stream,
Multiple-Data stream. 1t is a type of multiprocessor archi-
tecture in which multiple sets of operands may be fetched
to multiple processing units and may be operated upon si-
multaneously within a single instruction cycle. Several ap-
proaches based on the concept of SIMD will be discussed

in the following subsections.

Table 5: Performance Comparison between [12] and [14].

System Processing Elements | Performance CLK

per chip (BCUPS) (MHz)
[12]XC2V6000-5 4000 3200 200
[12]XCV1000E-6 1600 908 142
[14]XCV1000-6 4032 742 184
[14]XCV1000E-6 4032 814 202

3.3.1 Micro Grained Array Processor (MGAP)

In [15] an implementation of the S-W Algorithm is de-
scribed on a general purpose fine-grained architecture, the
MGAP. The authors of [15] show that their implementa-
tion is about 5 times faster than the rapid implementation
of a genetic sequence comparator using field programmable
logic arrays [16]. Showing thereby, that massively parallel
processor arrays, like the MGAP, possess the capability to
solve computationally intensive problems in Molecular Bi-
ology efficiently and inexpensively. The algorithm given in
[15] takes M + N steps to align two sequences. Therefore
if there are K sequences to be aligned, the entire computa-
tion would require only M + N + K steps. The sequential
algorithm would have taken O (M N K) steps to compute K
alignments.

3.3.2 Kestrel Parallel Processor

The Kestrel parallel processor is a single-board coprocessor
with a 512-element linear array of 8-bit, SIMD processing
elements [17]. The system was designed and built at the
University of California at Santa Cruz, where work on the
Human Genome Project and other bioinformatics applica-
tions motivated development of a sequence analysis engine
that could efficiently analyze databases containing billions
of characters from DNA, RNA, or proteins. As a case study,
the authors of [17], implemented the S-W algorithm on the
kestral parallel processor for different query sizes. The re-
sults of their implementations are shown in Table 6

3.3.3 Graphics Processing Units

Graphics Processing Units (GPUs) are single-chip proces-
sors, used primarily for computing 3D functions. This in-
cludes things such as lighting effects, object transforma-
tions, and 3D motion. The GPU is a good match for bioin-
formatics applications (e.g. S-W algorithm for sequence
alignment), as it is an inexpensive, high-performance SIMD
architecture.

In [18], it has been demonstrated that the streaming ar-
chitecture of GPUs can be efficiently used for biological se-
quence database scanning. To derive an efficient mapping
onto this type of architecture, the authors have reformulated
the S-W algorithm in terms of computer graphics primitives
and claim that the evaluation of their implementation on a
high-end graphics card shows a speedup of almost sixteen
compared to a Pentium IV 3.0GHz. They also claim that



Table 6: Comparison of the work reviewed in Section 3.

Reference | Cited in Section | Implemented on Compared with Speed up | Query size
[9] 3.2.1 FPGA Software only 287x —
[10] 322 FPGA 1 GHz P-1II 330x —
[11] 322 FPGA Software only 64x —
[15] 3.3.1 MGAP SPLASH 5x —
[17] 332 Kestrel 500MHz Ultra SPARC-II 17x 100
[17] 332 Kestrel 500MHz Ultra SPARC-II 49x 250
[17] 332 Kestrel 500MHz Ultra SPARC-II 99x 500
[18] 333 GPU P-1V 3.0 GHz 16x —

this is the first reported implementation of the S-W algo-
rithm on graphics hardware.

Table 6 gives a comparison of the work reviewed in Sec-
tion 3. It is evident from Table 6, that no standard compari-
son approach is adapted. That is why, we can only look into
each implementation on individual basis to see how much
improvement is achieved in comparison with the reference
provided for each implementation.

4 Conclusion

In this paper, we provided a taxonomy of various sequence
alignment algorithms found in the literature. The S-W al-
gorithm proved to be the most accurate in performing se-
quence alignment, however it requires an exceptionally long
time to complete (for long sequences), making it the most
appropriate alternative for hardware acceleration. The paper
also presented a classification of different hardware accel-
eration methods for the S-W algorithm, and gave a com-
parison between their respective speedups relative to some
baseline performance. The paper shows that there is a need
to identify a common measure to compare different acceler-
ation methods in the literature.
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