
VECTORIZED AES CORE FOR HIGH-THROUGHPUT SECURE ENVIRONMENTS

Miquel Pericàs, Mateo Valero
Computer Sciences

Barcelona Supercomputing Center
{miquel.pericas,mateo.valero}@bsc.es

Ricardo Chaves
Instituto Superior Técnico

IST/INESC-ID
ricardo.chaves@inesc-id.pt

Georgi N. Gaydadjiev, Stamatis Vassiliadis
Computer Engineering Laboratory

Technical University of Delft
{g.n.gaydadjiev,s.vassiliadis}@tudelft.nl

ABSTRACT
Parallelism has long been known to increase the throughput of applications that process independent data. It has been

used in a broad range of designs, from functional units to large parallel supercomputers. With the advent of multicore tech-
nology designers and programmers are increasingly forced to think in parallel. It is clear that parallelism will be key to the
implementation of efficient computing systems in the future. In this paper we present the evaluation of an encryption core
capable of handling multiple data streams. The design is oriented towards future scenarios for internet, where throughput
capacity requirements together with privacy and integrity will be critical for both personal and corporate users. To power
such scenarios we present a technique that increases the efficiency of memory bandwidth utilization of cryptographic cores.
We propose to feed cryptographic engines with multiple streams to better exploit the available bandwidth. We describe some
specific cases in which such a cryptographic engine can be successfully implemented. We also show how multiple interfaces
– such as vector or hardware scheduling – can be used to control such engines. To validate our claim, we have developed
an AES core capable of encrypting two streams in parallel using either ECB or CBC modes. Our AES core implementation
consumes trivial amount of resources when Virtex-II Pro FPGA device is targeted.

1. INTRODUCTION

Advances in semiconductor technology have enabled industry to manufacture cores with hundreds of millions of transistors.
Industry is exploiting this feature to implement chip-level parallelism in the form of multi-core on chip architectures. While
2-8 multicore chips are now common in the market it is expected that this trend will continue with even larger amounts of
cores. Programmers and designers will find themselves forced into thinking concurrently in order to efficiently exploit such
platforms.

Parallelism is not a new concept and has been studied in the past. Since the earliest machines this technique has been used
to improve throughput. Parallelism can be found on all levels, from the smallest circuits to the largest parallel supercomputers.
From the programmer point of view, there are several ways in which to express parallel programs. One class of models are the
concurrent programming models. They map directly onto multicore architectures, but have the disadvantage that they leave
the parallelization to the programmer, a task which has been shown to be often quite complex. A different way to exploit
parallelism is by using SIMD programming techniques. Vector processors, for example, operate on entire vectors instead
of scalar types. This programming model is effective and simple, as it retains the sequential property of single-threaded
programs. However, it requires data parallelism in the form of strict organizations in memory.

In this paper we investigate how parallelization can be used to achieve high data transfer performance in future high-
throughput networks. Personal users and companies are placing growing demands of security on devices they use for their
daily work. Four conditions are in demand: privacy, authentication, replay protection and message integrity. For this rea-
son, implementations of Virtual Private Networks (VPN) rely more and more on technologies such as IPsec to secure the
communication links.

A technology such as IPsec can work in two modes. In transport mode, the endpoint computers perform the security
processing. In tunnel mode, packet traffic is secured by a single node for the entire computer network. In case of large

91

networks, high performance encryption devices are required. Such is the case with mobile Virtual Private Network (VPN)
networks. In a mobile VPN a device such as a handheld can have secure access to a corporate LAN to securely perform
such tasks as reading email or using remote terminal sessions. It is expected that this type of networks will grow very fast in
popularity in the near future.

One of the most important encryption algorithms supported by many different standards is the so-called Advanced En-
cryption Standard (AES). This encryption algorithm encrypts/decrypts a block of 128-256 bits of data in 10-14 consecutive
stages using 128-256 bit keys. To simplify our study, but without loss of generality, we will be focusing only on AES-128
using a block size of 128 bits. In this variant the algorithm performs 10 stages to encrypt/decrypt one data block.

There are several ways in which a stream of data can be encrypted. These are referred to as the Block Cypher modes of
operation. Most of these modes require an Initialization Vector, which is a fixed block of data used to trigger the encryption
mode. The simplest mode is the Electronic CodeBook mode (ECB). In this mode the data stream is partitioned into blocks
of equal length and all the resulting blocks are encrypted independently. The obvious benefit of this scheme is high data
parallelism. All blocks that make up the stream can be encrypted simultaneously. A big disadvantage of this scheme are the
well known security concerns. More precisely, ECB does not provide good confidentiality as it does not hide data patterns
well. To come up with a more robust solution several other modes have been introduced. The most common of these is
probably the Cypher Block Chaining mode (CBC). In this mode, when a block is going to be encrypted, it has first to be
exclusively OR’ed with the encryption result of the previous block. The first block itself is XOR’ed with the Initialization
Vector. The main drawback of this scheme is that the encryption process is serialized. This results in a reduced efficiency
concerning the available bandwidth. In this mode, the AES encryption engine can only output a block of data every 10 cycles
(assuming that a single stage takes one cycle). This means that only 10% of the output capacity can be used. Note, however,
that the network bandwidth itself is independent from the engine capacity and may preclude the use of the full capacity.

In cases where the available network bandwidth is larger than the single-stream CBC output, we may want to search for
ways to exploit the additional bandwidth. In the domain of VPN tunnels, where a gateway is in charge of encrypting large
quantities of data, we can profit from the fact that multiple (independent) channels are simultaneously active to improve the
throughput of the encryption.

In this paper we propose to design AES cores capable of encrypting multiple streams at once. Using multiple streams
enables parallelism and allows to better exploit the available network bandwidth. This is analogous to using vector processors
to better exploit memory hierarchy in super-computers. Further, we propose to use these cores to provide high performance
file transfer between computers in the case where multiple files are being transferred. In this scenario, a user using the scp
protocol to transfer several files, will experience a large speed-up using our AES core together with a small modification of the
scp application. Finally, we perform a pencil and paper evaluation of how the proposed core can be fitted into current system
architectures.

This paper makes the following contributions:

• We observe that encrypting several streams in parallel is a way to accelerate the otherwise sequential CBC encryption.

• We implement a cryptographical unit capable of encrypting two streams in parallel using AES.

• We analyze several applications of this scheme. In particular, we discuss how this scheme can accelerate VPN networks
and secure transfers of large files.

• We study two important issues relating to the implementation of the multiple-stream encryption scheme: the program-
ming model and the system architecture.

This paper is organized as follows. Section 2 presents an overview of previous work performed by our groups and cites the
motivation for the present work. The design of the multiple-stream encryption unit is presented in section 3 while section 4
evaluates the design. Section 5 discusses several issues related to this design: sections 5.1 and 5.2 analyze possible applications
of this work; section 5.3 analyzes the programming model and section 5.4 analyzes the system architecture. Finally, section 6
concludes this discussion.

2. MOTIVATION AND PREVIOUS WORK

This work builds upon previous work performed by the HPC group of the Computer Architecture Department at UPC, Spain,
and the Computer Engineering Laboratory at TU Delft, the Netherlands. Both groups have a long trajectory on vector archi-
tecture research in the past.

Miquel Pericàs et al.

92

The work in Barcelona started with the proposal of a vector memory architecture capable of accessing vector elements
out–of–order [1]. This technique allows vector elements to be accessed avoiding conflicts in the memory modules. The
technique was later extended to multiprocessor systems [2], allowing to reduce the complexity of the network interconnect.
The concept has been completed with the mechanism known as Command Vector Memory [3]. This mechanism provides
a degree of intelligence to the memory system, allowing the memory controller to handle complete vector data sets from a
single command. This allows the cost and power of the network to be reduced while increasing overall throughput. All these
concepts have been joined in a proposal to accelerate numerical applications [4]. Vector concepts have also been used to
design high–speed packet switching networks! [5].

The HPC group in Barcelona has also worked on the proposal and evaluation of advanced vector processors. The following
architectures have been proposed: Out–of–order vector architectures [6], Decoupled Vector Architectures [7], Multithreaded
Vector Architectures [8] and combinations of them [9]. As an optimization, new cache memory schemes as well as im-
provements for the register file have been proposed [10]. The Cray SX-1 supercomputer internally uses a decoupled vector
architecture design, conceptually similar to [7]. The out–of–order vector architecture proposed in [6] was implemented by
Compaq in their Tarantula proposal [11]. Finally, modern architectures such as the Cell processor [12] make use of both
vector instructions and multithreading. Alth! ough the implementation varies considerably such a combination had already
been studied in [8].

The design philosophy of vector processors is well suited for the acceleration of multimedia applications. Professor
Valero’s HPC group has proposed some architectures with this goal in mind. The first one was an MMX–like architecture [13].
Afterwards, a multi–threaded architecture was presented for the execution of applications such as MPEG-4 [14]. Moving
one step further, this group presented an architecture that included 3-D memory instructions [15]. Also oriented towards
multimedia applications, but following a completely different path, the concept of fuzzy processing was introduced [16]. This
technique makes use of the natural redundancy of the algorithms to increase performance and reduce power consumption.

Finally, the HPC group in Barcelona has proposed to apply dynamic vectorization techniques, which are then added to
superscalar processors to augment the performance of integer applications [17].

In Delft, Cheresiz et al. studied the complex streamed instruction (CSI) set [18], where a single instruction can process
vector data streams of arbitrary length and stride and which combines complex memory accesses (with implicit prefetching),
program control for vector sectioning, and complex computations on multiple data in a single operation. This technique
eliminates overhead instructions and allows to improve performance.

Computer Engineering was among the first to recognize the importance of handling both sparse and dense matrix format
in an uniform way [19]. Several new formats for sparse matrix representation, dedicated vector functional units and novel
multiplication algorithms were proposed [20, 21, 22]. In addition, novel techniques to handle normal and transposed sparse
matrix by vector multiplication [23], hierarchial sparse matrix storage formats [24] and a special benchmark suite [25] were
also introduced.

The MOLEN polymorphic architecture [26] and programming paradigm [27] were proposed by Computer Engineering in
Delft to expose hardware resources to the software system designers and allow them to modify and extend the processor func-
tionality at will. This architecture was successfully applied to problems as high-performance dense matrix multiplication [28]
and dedicated high-efficiency memory hierarchies [29, 30, 31].

Both groups combined the above research directions in the context of the HiPEAC network of excellence and performed
the work reported in this paper. The outcome is a cryptographic engine that exploits multiple streams using the vector engine
paradigm. The core of the cryptographic unit [32] is based on work by Chaves et al. developed in the context of the MOLEN
polymorphic processor [33].

3. MULTIPLE-STREAM AES CORE

To validate our assumptions we implemented an AES core capable of processing two streams concurrently. The AES-
MultiStream core (AES-MS) was implemented using the MOLEN prototype framework [34] and as such considers a 64-bit
wide IO bus running at 100MHz. Although the width of the IO BUS has been set at 64 bits, this is not a constraint and can
be adjusted to accommodate more or less data streams. The global design of the AES core with two streams can be seen in
Figure 1. It consists of two independent AES cores controlled by a Control Unit. The unit activates the AES cores when
needed and manages the multiplexors that control BUS access.

Each core implements an independent AES folded structure [32]. On the 64-bit/100MHz bus, a single AES core takes two
cycles to read 128 bits of input data and two more cycles to output 128 bits of encrypted data. The processing amounts to 10
cycles. Thus, once the core is running it moves 256 bits every 10 cycles.

VECTORIZED AES CORE FOR HIGH-THROUGHPUT SECURE ENVIRONMENTS

93

Fig. 1. Architecture of AES core handling two streams

Given that in 4 out of the 10 computational AES cycles the IO Bus is used to read or write the data blocks, multiple stream
version has been implemented using two streams. This results in a bus occupation of 8 out of 10 cycles (80%). No more
streams can be added without changing the AES pipeline depth. The folded AES cores themselves have no information on the
number of active streams; this information is handled by a small external control unit that drives the AES cores and activates
the necessary multiplexors to access the external memory system.

Assuming that the AES core and the IO bus run at the same frequency, it is possible to accommodate a higher or lower
number of streams depending on the IO bus width. If the bus is 128 bits wide, a 128-bit data packet can be read in a single
cycle and written in another one. Given that an encryption takes 10 cycles, this would allow to encrypt up to 5 streams in
parallel. Generically, the number of streams that can be accommodated, as a function of the bus width is expressed by:

MaxNStreams = �5 · BusWidth

128bits
�. (1)

4. PERFORMANCE AND RESULTS

The complete design of the two-stream AES unit was implemented in VHDL targeting the Virtex-II Pro xc2vp30-7fg676
device. Synthesis and Place & Route were both performed using Xilinx ISE 8.1. The AES core for single stream [32] spans
12 BlockRAMs and 1083 logic slices. The two-streams AES core spans 24 BlockRAMs and 2162 logic slices. The two-
streams version puts two single-stream AES cores side-by-side and adds multiplexors that arbitrate the memory access. Some
logic is shared and in the end the number of logic slices approximately doubles. Place & Route results show that the design
can run at 100MHz which is the target frequency of the current MOLEN prototype. The two-streams AES-MS core consumes
17% of available BlockRAMs, 15% of all logic slices, and 38% of external IOBs while reaching a throughput of 2.56 Gbps.
Table 1 shows a summary of the results and compares them against [32]. Note that the numbers provided for the original

Table 1. 2-stream vs single-stream AES performance comparison
Architecture AES – 1 stream [32] AES – 2 streams

Cipher Enc./Dec. Enc./Dec.
Device XC2VP30 XC2VP30

Number of Slices 1083 2162
Number of BRAM 12 24

Operating Frequency 100 MHz 100 MHz
Latency (cycles) 10 10

Throughput (Mbps) 1280 2560

Throughput/Slice (Mbps/s) 1.1819 1.1841

implementation of the AES core differ from those provided in [32]. This is due to different parameters that have been used

Miquel Pericàs et al.

94

in the synthesis environment. In addition, AES-MS has not yet been optimized for frequency so we report only data for the
100MHz implementation developed on top of the MOLEN prototype.

It should be noticed that the initialization of the AES core, which includes the transmission of the key and the initialization
vector, has a cost in the performance. If only one data block is ciphered, the cost of initializing the AES core is higher than
the cost of processing the data itself. When the data packet is sufficiently big, the initialization cost becomes negligible. The
ciphering throughput varies from 60 Mbps for a single data block packet (128 bits) to 1.28 Gbps for a 16 kbyte packet. This
mean that, when only one AES core is used and several streams have to be encrypted, smaller packets are processed by the
single-stream AES core, in order to maintain a low processing latency. When the multiple-stream AES core is used, bigger
data packet can be created, improving the ciphering throughput.

5. DISCUSSION

In this section we discuss various issues related to AES-MS. So far we have implemented a core capable of exploiting multiple
streams. We now want to analyze such issues as:

• Who can profit from this implementation? (Sections 5.1 and 5.2)

• How could the new functionality be accessed? (Section 5.3)

• Which interconnect/system architecture should be chosen for a realization of this scheme? (Section 5.4)

5.1. Virtual Private Networks

Figure 2 (a) shows the typical architecture for a virtual private network (VPN) using unreliable connections, e.g. Internet.
Such an architecture is used to securely connect multiple networks. Locally, the networks can be considered secure since the
lines belong to the companies/institutions. However, on the public infrastructure no such assumptions can be made. Privacy
and authentication support are required. To this end, encrypted tunnels are established. The tunnels are authenticated when
a session is established. Once established, the session is kept mostly unmodified and the same keys are used to encrypt all
packets.

(a) (b)

Fig. 2. Sample Architecture for a static VPN (a) and for a mobile VPN (b). In both cases the gateways may need to support
high encryption throughput.

Figure 2 (b) shows the same scenario in the case of a mobile VPN. In a mobile VPN the connection is not network-

to-network but client-to-network. Every client needs to have security software installed (e.g. its own IPsec stack). The
corporate side, however, looks fairly similar to the static VPN case. From the point of view of the gateway, a mobile VPN will
generate many more tunnels, each of which moving a smaller quantity of data. Also, in a mobile VPN there is much higher
connect/disconnect activity.

VECTORIZED AES CORE FOR HIGH-THROUGHPUT SECURE ENVIRONMENTS

95

In both cases the VPN gateways may require enormous encryption throughput. Using AES-MS on both sides may enable
these requirements. Implementation details may vary a little for both cases of VPN. In static VPNs the keys are mostly static.
This means that a single trusted key could be used to encrypt multiple communications inside a single gateway→gateway
channel. ¿From the point of view of a multiple-stream encryption core this has the benefit that the key need not be replicated.
But this would imply that more ports are needed into the key register. Adding simple circuitry, it is possible to read the
register only once and route the key segments to the corresponding encryption engine without increasing the number of ports.
For an architecture in which the encryptions proceed synchronously this technique is trivial; however, in our case, multiple
encryptions are performed in parallel but in different iterations, a different strategy is needed in order to maintain the read only

once property. There are two ways to proceed. One option is to store each segment of the key in a different register. Every
engine reads the corresponding key segment from the corresponding register every cycle. Alternatively, we can reduce the
number of reads by having the segments read once and then routed to the engine through an appropriate number of latches.

These techniques are easily implemented in ASIC technology; however, when using FPGAs there are additional con-
straints. For our AES-MS implementation on the Virtex2P this optimization was not readily available due to fact that the
base implementation [32] is already optimized to store the full key register in a single BlockRAM using both available ports.
However, it may be possible to implement this technique using multiple BlockRAMs of 128 bits. This would then allow to
store the complete key schedule and to access the portions independently. Consequently, this particular implementation also
consumes many more BlockRAMs, a feature which is highly undesirable.

In the case of a mobile VPN the technique of sharing the key register is unlikely to result in any benefits. In this envi-
ronment every client is associated to a different tunnel and each tunnel has its own key, so the gateway cannot share them.
Nevertheless, making use of multiple streams is still effective as the aggregate bandwidth of all streams may be very large and
serializing the encryption of the packets could otherwise result in network communication degradation.

5.2. Secure File Transfers

When citing VPN we commented that having multiple streams is a key condition to enable our vectorized AES implemen-
tation. We now present a particular, but still common, scenario in which having an AES-MS core can greatly benefit the
user.

Transferring files between computers is one of the most common tasks happening on the internet. In general, bulk file
transfers can take a long time as they may consist of very large files such as backups or movies that are being sent to some
remote server. To avoid serialization in this scenario we propose to implement a specialized transfer protocol that opens several
tunnels and encrypts many files simultaneously. If only one file is being transferred, but the transmission overhead is large,
the file can be subdivided in chunks and sent as multiple files through different channels. This could be done, for example, on
modified versions of the scp or sftp protocols. Figure 3 shows how this would look in the case of a parallel transfer of a
file subdivided into chunks.

Fig. 3. Parallel file transfer using multiple channels by subdivision of a file into multiple chunks

5.3. Vector Programming Models

So far we have mentioned the application of our technique to gateways in VPN environments but have not commented about
the architecture of the gateway itself. There are various levels in which the multiple-stream technique can be implemented.
In a pure network device an implementation can be almost hardware-only. In this case the gateway just requires a peripheral

Miquel Pericàs et al.

96

board with the encryption engine, but this comes at the cost of versatility. The gateway can also be implemented in a higher
level using a special programming interface to the device.

Vector architectures provide a special ISA interface in which vector registers can be manipulated as regular registers.
The addition of vector loads and stores allows the memory controller more versatility in the scheduling of memory access
instructions. This allows for a more efficient exploitation of the memory bandwidth. Our multiple-stream interface follows an
equivalent goal. From the programmers point of view, the AES-MS engine may be programmed as a vector device. Sending
multiple unrelated files through input/output channels in a single system call is known as Vector I/O or scatter/gather. In
Figure 4 we show how multiple streams could be encrypted using scatter/gather. The key element of scatter/gather is a data
structure that holds a vector of data buffers and a corresponding vector with the sizes of each data buffer. The system then
reads this data structure and schedules the I/O accesses to the different data buffers in order to maximize system performance.
In the example, a AES-MS core with two streams is about to process two input data buffers: inA and inB. The system reads
the two buffers and interleaves them in blocks of 128 bits. Once this interleaving is done the joint stream can be fed to the
AES-MS core for processing. After encryption, the procedure is inverted to store the encrypted data in the corresponding
output buffers.

Fig. 4. A simplified Scatter-Gather Interface to Multiple-Stream AES

5.4. System Architecture

Finally, we present an evaluation of different system environments in which the AES core may be implemented together
with performance estimations. The following cases of IO communication will be considered: the current MOLEN prototype,
HyperTransport eXpansion (HTX), PCI-X, and PCI-Express (PCIe).

As mentioned earlier, the AES core has been developed and tested within the MOLEN environment. In this platform,
the two-stream AES core runs at 100MHz and can encrypt and decrypt at a rate of 2.56Gbps. Considering input and output
this amounts to a total traffic of 5.12Gbps, which corresponds to 80% of the total memory bandwidth in this scenario. In
the following study we will assume an AES-MS core running at 100MHz, even though the buses themselves are operated at
different frequencies. We assume some sort of hardware performs the interfacing without loss of capacity.

Recently, a protocol that has emerged with good support for reconfigurable devices as coprocessors is the point-to-point

HyperTransport protocol [35, 36]. HyperTransport defines an extension protocol for coprocessors called the HyperTransport
eXpansion (HTX). In the current incarnation, this standard defines a protocol that is 16 bits wide and runs at 800MHz. The
bandwidth provided by a single link in single-data rate (SDR) is thus 12.8Gbps. Using two links at double-data rate (DDR)
yields the maximum aggregate bandwidth of 51.8 Gbps. The single link SDR bandwidth is exactly twice that which is available
in the current MOLEN prototype. Without changing the frequency of the AES core (100MHz) one could double the amount
of streams (4 streams, 10.24Gbps). The remaining 2.56 Gbps are exactly the bandwidth required for one additional stream
so it is possible to add a 5th stream and thus run a 5-stream AES-MS core attached to a HTX interface. Using the two HTX
links with DDR would enable to accommodate up to 20 streams. Note that in this analysis we are assuming that the AES core
works at a fixed 100 MHz. Thus we must calculate the number of streams based on available bandwidth rather than using the
formula presented in section 3.

VECTORIZED AES CORE FOR HIGH-THROUGHPUT SECURE ENVIRONMENTS

97

Table 2. Maximum Number of Streams using 100MHz AES-MS cores
Interconnect Type Max Bandwidth Max Number of Streams

MOLEN Prototype 6.4 Gbps 2
HTX @ 1 Link (SDR) 12.8 Gbps 5

HTX @ 2 Links (DDR) 51.2 Gbps 20
PCI-X 133 (v1.0) 8.48 Gbps 3
PCI-X 533 (v2.0) 34.4 Gbps 13

PCIe 1.0 64 Gbps 25
PCIe 2.0 128 Gbps 50

PCI-X [37] is a popular multidrop bus interconnect standard. PCI-X 1.0 features a maximum bandwidth of 8.48 Gbps at
speed grade PCI-X 133, which would allow up to three streams using the AES-MS engine. A newer revision of this standard,
called PCI-X 2.0, has a maximum speed grade of PCI-X 533 resulting in a bandwidth of 34.4 Gbps. This can accommodate
up to 13 streams in parallel.

PCI Express (PCIe) [38] is yet another bus designed to subsitute the ancient PCI bus. Like HTX, it is a point-to-point
bus, but designed to manage a wider range of devices. As a downside, it operates with slightly larger latencies. At 64 Gbps
capacity (using 16 links) PCIe 1.0 would allow to interleave up to 25 streams. PCIe 2.0 runs twice as fast and would be able
to accommodate up to 50 streams at maximum throughput.

All these numbers may seem quite high. However, if the network capacity is not as large, the AES-MS output capacity
will be underutilized. In addition, as has already been pointed at at the end of section 4, if keys are not static and the amount of
data is not sufficiently large, high throughputs cannot be reached as the encryption processes will be limited by the encryption
core initialization phase. The previous results are summarized in Table 2. Note that in this table, Max Bandwidth refers to the
maximum bandwidth of the interconnect, not the maximum bandwidth of the multiple stream encryption unit. Although we
have not mentioned access latencies for these technologies we assume that in stationary mode the effects of these latencies are
negligible.

6. CONCLUSIONS

In this paper we have described an AES unit capable of processing multiple data streams. Like Vector Engines, our AES
unit uses vectors of data to efficiently exploit the external IO bandwidth. The proposed technique can be used to improve
throughput in important scenarios such as Virtual Private Networks (VPN) or secure file transfer where large quantities of
data are being transferred. We have presented characteristics of the design and proposed a possible programming interface
together with possible system architectures for using the core as a coprocessor. The use of the Molen paradigm and the systems
reconfigurability, allows to extrapolate these results to other encryption cores. Also, the flexible and modular structure of the
used multi-stream AES core allows for an easy integration of additional processing streams, if a higher bandwidth IO bus is
use. The bandwidth is being limited by the IO bus and its conservative frequency value, used in the implemented prototype.

Acknowledgments
This work was supported by the HiPEAC European Network of Excellence under contract IST-004408 and by the Ministerio
de Educación y Ciencia of Spain under contract TIN–2004–07739–C02–01

7. REFERENCES

[1] M. Valero, T. Lang, J. M. Llaberia, M. Peiron, and J. J. Navarro, “Increasing the Number of Strides for Conflict-Free
Vector Access,” in Proc. of the 19th Intl. Symp. on Computer Architecture, May 1992.

[2] M. Peiron, M. Valero, E. Ayguade, and T. Lang, “Vector Multiprocessors with Arbitrated Memory Access,” in Proc. of

the 22nd Intl. Symp. on Computer Architecture, June 1995, pp. 243–252.

Miquel Pericàs et al.

98

[3] J. Corbal, R. Espasa, and M. Valero, “Command-Vector Memory Systems,” in Proc. of the 7th Intl. Conf. on Parallel

Architectures and Compilation Techniques, November 1998.

[4] F. Quintana, J. Corbal, R. Espasa, and M. Valero, “Adding a Vector Unit to a Superscalar Processor,” in Proc. of the 13th

Intl. Conf. on Supercomputing, June 1999, pp. 1–10.

[5] J. Garcia, J. Corbal, L. Cerda, and M. Valero, “Design and implementation of high-performance memory systems for
future packet buffers,” in Proc. of the 36th Annual IEEE/ACM Intl. Symp. on Microarchitecture, December 2003, pp.
372–384.

[6] R. Espasa, M. Valero, and J. E. Smith, “Out-of-order vector architectures,” in Proc. of the 30th Annual Intl. Symp. on

Microarchitecture, December 1997, pp. 160–170.

[7] R. Espasa and M. Valero, “Decoupled vector architectures,” in Proc. of the 2nd Intl. Symp. on High Performance Com-

puter Architecture, February 1996, pp. 281–290.

[8] ——, “Multithreading Vector Architectures,” in Proc. of the 3rd Intl. Symp. on High Performance Computer Architecture,
February 1997, pp. 237–248.

[9] ——, “Exploiting Instruction and Data-Level Parallelism,” IEEE Micro, vol. 17, no. 5, pp. 20–27, September/October
1997.

[10] ——, “A Victim Cache for Vector Registers,” in Proc. of the 11th Intl. Conf. on Supercomputing, July 1997.

[11] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez, T. Juan, G. Lowney, M. Mattina, and
A. Seznec, “Tarantula: a Vector Extension to the Alpha Architecture,” in Proc. of the 29th Annual Intl. Symp. on Com-

puter Architecture, June 2002, pp. 281–292.

[12] D. Pham., T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Harvey, P. M. Harvey, H. P. Hofstee,
C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M. Riley, D. L. Stasiak,
M. Suzuoki, O. Takahashi, J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa, “Overview of the architecture, circuit
design, and physical implementation of a first-generation cell processor,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp.
179–196, January 2006.

[13] J. Corbal, M. Valero, and R. Espasa, “Exploiting a new level of DLP in multimedia applications,” in Proc. of the 32nd

Annual Intl. Symp. on Microarchitecture, December 1999, pp. 72–79.

[14] J. Corbal, R. Espasa, and M. Valero, “DLP + TLP Processors for the Next Generation of Media Workloads,” in Proc. of

the 7th Intl. Conf. on High-Performance Computer Architectures, January 2001.

[15] ——, “Three-dimensional memory vectorization for high bandwidth media memory systems,” in Proc. of the 35th An-

nual Intl. Symp. on Microarchitecture, December 2002, pp. 149–160.

[16] C. Alvarez, J. Corbal, and M. Valero, “Initial Results on Fuzzy Floating Point Computation for Multimedia Processors,”
IEEE TCCA Letters, January 2002.

[17] A. M. Pajuelo, A. Gonzalez, and M. Valero, “Speculative Dynamic Vectorization,” in Proc. of the 29th Intl. Symp. on

Computer Architecture, May 2002.

[18] D. Cheresiz, B. Juurlink, S. Vassiliadis, and H. A. G. Wijshoff, “The CSI multimedia architecture,” IEEE Trans. VLSI

Syst., vol. 13, no. 1, pp. 1–13, January 2005.

[19] S. Vassiliadis, S. D. Cotofana, and P. Stathis, “Vector isa extension for sprase matrix multiplication,” in Proceedings of

EuroPar’99 Parallel Processing, September 1999, pp. 708–715.

[20] ——, “Block based compression storage expected performance,” in Proc. 14th Int. Conf. on High Performance Comput-

ing Systems and Applications (HPC 2000), June 2000, pp. 389–406.

[21] ——, “Bbcs based sparse matrix-vector multiplication: initial evaluation,” in Proc. 16th IMACS World Congress on

Scientific Computation, Applied Mathematics and Simulation, August 2000, pp. 1–6.

VECTORIZED AES CORE FOR HIGH-THROUGHPUT SECURE ENVIRONMENTS

99

[22] P. Stathis, S. D. Cotofana, and S. Vassiliadis, “Sparse matrix vector multiplication evaluation using the bbcs scheme,” in
Proc. of 8th Panhellenic Conference on Informatics, November 2001, pp. 40–49.

[23] S. D. Cotofana, P. Stathis, and S. Vassiliadis, “Direct and transposed sparse matrix-vector multiplication,” in Proceedings

of the 2002 Euromicro conference on Massively-parallel computing systems, MPCS-2002, April 2002, pp. 1–9.

[24] P. Stathis, S. Vassiliadis, and S. D. Cotofana, “A hierarchical sparse matrix storage format for vector processors,” in
Proceedings of IPDPS 2003, April 2003, p. 61a.

[25] ——, “D-sab: A sparse matrix benchmark suite,” in Proceedings of 7th International Conference on Parallel Computing

Technologies (PaCT 2003), September 2003, pp. 549–554.

[26] S. Vassiliadis, S. Wong, and S. D. Cotofana, “The molen ρμ-coded processor,” in in 11th International Conference on

Field-Programmable Logic and Applications (FPL), Springer-Verlag Lecture Notes in Computer Science (LNCS) Vol.

2147, August 2001, pp. 275–285.

[27] S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, and E. M. Panainte, “The molen programming paradigm,” in Proceedings

of the Third International Workshop on Systems, Architectures, Modeling, and Simulation, July 2003, pp. 1–10.

[28] Y. Dou, S. Vassiliadis, G. Kuzmanov, and G. N. Gaydadjiev, “64-bit floating-point fpga matrix multiplication,” in
ACM/SIGDA Thirteenth International Symposium on Field Programmable Gate Arrays (FPGA 2005), February 2005,
pp. 86–95.

[29] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “Visual data rectangular memory,” in Proceedings of the 10th

International Euro-Par Conference (Euro-Par 2004), September 2004, pp. 760–767.

[30] G. N. Gaydadjiev and S. Vassiliadis, “Flux caches: What are they and are they useful?” in Proceedings of the 5th

International Workshop on Computer Systems: Architectures, Modelling, and Simulation (SAMOS 2005), July 2005, pp.
93–102.

[31] ——, “Sad prefetching for mpeg4 using flux caches,” in Proceedings of the 6th International Workshop on Computer

Systems: Architectures, Modelling, and Simulation (SAMOS 2006), July 2006, pp. 248–258.

[32] R. Chaves, G. Kuzmanov, S. Vassiliadis, and L. Souza, “Reconfigurable Memory Based AES Co-Processor,” in Proc. of

the 13th Reconfigurable Architectures Workshop (IPDPS), January 2006.

[33] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E. M. Panainte, “The MOLEN Polymorphic
Processor,” IEEE Trans. Comput., vol. 53, no. 11, pp. 1363–1375, November 2004.

[34] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “The molen processor prototype,” in Proceedings of the IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM 2004), April 2004, pp. 296–299.

[35] “HTX Electrical and Operational Profile,” The HyperTransport Consortium,” Online Materials. [Online]. Available:
http://www.hypertransport.org/tech/tech htx eop.cfm?m=9

[36] “HyperTransport HTX: Extending Hypertransport Interconnect Leadership,” The HyperTransport Consortium,”
Presentation, 2007. [Online]. Available: http://www.hypertransport.org/docs/pres/HTX & Torrenza 01-28-07.pdf

[37] “PCI-X 2.0 Overview,” PCI SIG,” Presentation. [Online]. Available: http://www.pcisig.com/specifications/pcix 20/
pci x 2dot0 presentation.pdf

[38] “PCI-SIG - PCI Express Base 2.0 Specification,” PCI SIG,” Online Materials. [Online]. Available: http:
//www.pcisig.com/specifications/pciexpress/base2/

Miquel Pericàs et al.

100

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

