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ABSTRACT

An important step in Heterogeneous System Development is
Hardware/Software Partitioning. This process involves ex-
ploring a huge design space. By using profiling to select
hot-spots and estimate area and delay we can prune the de-
sign space considerably. We present a Quantitative Model
that makes early predictions to prune the design space and
support the partitioning process. The model is based on
Software Complexity Metrics, which capture important as-
pects of functions as control intensity, data intensity, and
code size. To remedy interdependence among software met-
rics, we performed a Principal Component Analysis. The
hardware characteristics were determined by automatically
generating VHDL from C using the DWARV C-to-VHDL
compiler. Linear regression on these data generated our
model. The model error differs per hardware characteristic.
We show that for flip-flops the mean error is 69%. In con-
clusion, our quantitative model makes fast and sufficiently
accurate area predictions in support of early Hardware/Soft-
ware Partitioning.

1. INTRODUCTION

In the last few decades computing systems have become
increasingly heterogeneous. Apart from general purpose
processors these systems contain such elements as ASICs,
DSPs, and FPGAs. Although, these systems offer several
advantages over conventional computing systems - e.g. pro-
viding application specific hardware, reconfigurability, and
a wider selection of COTS components - they lack the de-
sign tools to support the development process.

Delft Workbench, a tool platform in support of integrated
hardware/software co-design targeted at these systems, aims
to fill this gap starting from profiling and partitioning to
synthesis and compilation. Some major difficulties of hard-
ware/software co-design in the early stages of development
are the absence of hardware characteristics and the size of
the design space. Therefore, Delft Workbench uses code
profiling to predict hardware characteristics and identify
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Fig. 1. Work flow of code profiling in Delft Workbench

hot-spots, as depicted in Fig. 1. Using the profiling infor-
mation we can prune the design space and guide the parti-
tioning process. Estimates for hardware resource consump-
tion, for example, can be used to omit functions that are too
large to fit on an FPGA, or too small to exploit any degree
of parallelism.

In the past, high level estimation was often based
on synthesis-like schemes as allocation and binding, and
scheduling (e.g.[1]). The main drawback of this approach
was the high computational complexity of these algorithms.
Furthermore, C–level specifications do not easily lend them-
selves to synthesis algorithms, although some schemes tar-
geted C-derivatives like SA-C[2].

In contrast, we introduce here a High Level Estimation
scheme to support Hardware/Software Partitioning based on
a quantitative model, as presented in Fig. 1. The basic idea
is to build a model through linear regression on software
complexity metrics (SCM), that predicts characteristics as
area and delay. Using SCMs allows fast predictions even
during the early stages of development. For a preparatory
study of such a model, we refer the reader to [3].



The paper is organized as follows. In Section 2, we briefly
discuss relevant research. Then, in Section 3, we present the
criteria of our model, followed by the experimental setup
in Section 4. In Section 5, we present the results of the
statistical analysis. Finally, we present our conclusions in
Section 6.

2. RELATED RESEARCH

Early prediction approaches have been presented before. In
[4] we find a constant time incremental estimation approach
targeted at iterative hardware/software partitioning, where at
each partitioning step the estimates are updated. More sim-
ilar to our approach, [2] estimates area by using linear re-
gression models per DFG node. Different DFG nodes are
characterized by different linear models. However, these
approaches do not operate on C-level specifications as our
model does.

3. CRITERIA OF EVALUATION

As mentioned earlier, we envision a model based on SCMs.
These metrics capture certain aspects of computer programs
and functions as program size or control intensity. Already,
SCMs are used in software development processes to predict
e.g. development time or the number of errors. Therefore,
one advantages of using SCMs is that several independent
variables may already be available. Additionally, when met-
rics are not available, most metrics are inherently simple and
can be determined in a relatively short time.

In the context of our work we used 24 SCMs, as listed
in Table 1. The metrics in the table come from their corre-
sponding publications, where mentioned. Some have been
modified, some are introduced for the first time.

• Cumulative Nesting Depth - Because the maximum
nesting depth characterizes only a part of a function,
we introduce the Cumulative and Average Nesting
Depth.The former is the sum of all nesting depths over
all basic blocks:

CUMNEST =

i=nbX
i=0

depth(bi) (1)

where nb is the number of basic blocks and bi is basic
block i.

• Average Nesting Depth - This metric averages the
nesting depth of each basic block in the function:

AVGNEST = CUMNEST/nb (2)

• (Modified) Basili-Hutchens Complexity - This met-
ric is based on structured and unstructured code, where
the latter gets a larger penalty. Because in our expecta-
tion loops imply more hardware than if-statements, we
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Fig. 2. Summary of PCA with Scree-plot and Variance,
showing 12 PCs.

defined if-statements to be structured and loops to be
unstructured control constructs.

• Loop Complexity - This new metric captures the fact
that nested loops often loop over the same code and
would therefore represent less increase in hardware as
consecutive loops. The following recursive definition
of the Loop Complexity is therefore multiplicative for
nesting and additive for sequencing of loops:

1)LOOPCOM(F (∅)) =1 (3)

2)LOOPCOM(F1; · · · ; Fn) =

nX
i=1

LOOPCOM(Fi)

3)LOOPCOM(F (F1, · · · , Fn)) =1.1LOOPCOM(F1; · · · ; Fn)

where 1) represents a loop that doesn’t contain another
loop, 2) represents consecutive loops, and 3) represents
nested loops.

Together, these metrics capture a wide range of code char-
acteristics. In Section 5, we will see that some of them cor-
relate with hardware. However, SCMs also correlate with
each other. This phenomenon is called interdependence or
multicollinearity. For example, the Average Path Length,
Maximum Path Length, and Statements all measure pro-
gram length. Because linear regression requires indepen-
dent variables, we transformed the set of metrics by applying
Principal Component Analysis (PCA). In Fig. 2, we see the
summary of this analysis. There are several ways to choose
the number of relevant principal components (PC). For this
paper we chose the number of PCs that represent 95% of the
variance in the dataset.

In principle, the scope of our model is to predict area and
delay on the MOLEN platform [15]. Because this is a re-
configurable platform, delay also comprises reconfiguration
delays. Nevertheless, in this paper we will restrict to results
for our area prediction model. Delay was omitted for the
time being, because there was not enough time to simulate
126 kernels.

The MOLEN platform as we used it, contains a Xilinx
Virtex-II Pro. Therefore, we will use the following area
characteristics, which are basic elements in Xilinx FPGAs.



Metric PC 1: Length PC 2: Control PC 3: Nesting PC 4: Diversity PC 5: Data PC 6: Volume PC 7: Loops PC 8: Paths

AICC[5] 0.011 −0.008 -0.194 -0.821 −0.017 0.001 0.021 0.129
Avg. Nesting Depth −0.043 −0.025 0.633 −0.009 0.009 −0.006 −0.047 0.061
Avg. Path Length 0.370 0.014 −0.005 −0.016 −0.010 −0.012 −0.020 −0.067
Basili-Hutchens[6] 0.364 −0.058 0.015 0.007 −0.019 −0.001 0.049 0.033
Cum. Nesting Depth 0.008 -0.373 −0.017 −0.013 0.202 0.005 0.029 0.224
Cyclomatic(McCabe)[7] 0.031 -0.411 0.028 −0.001 −0.030 0.013 0.015 -0.128
Gong and Schmidt[8] 0.029 -0.410 0.040 −0.001 −0.030 0.013 0.016 -0.121
Loads 0.001 0.007 0.008 0.005 −0.010 0.569 0.013 −0.024
Loop Complexity −0.024 −0.064 −0.034 −0.005 −0.011 −0.017 0.957 0.020
Max. Nesting Depth −0.042 −0.042 0.605 −0.014 −0.001 −0.001 0.035 −0.004
Max. Path Length 0.370 0.026 −0.045 −0.012 −0.007 −0.001 −0.010 −0.015
NPATH[9] −0.046 -0.131 −0.077 −0.024 0.009 −0.020 −0.017 -0.900
Oviedo def-use pairs[10] 0.212 0.278 0.028 0.050 0.368 0.094 0.122 -0.182
Piwowarski[11] 0.023 -0.378 0.128 0.028 −0.022 0.020 0.139 0.032
Prather’s mu[12] 0.345 −0.018 0.213 0.049 0.015 −0.001 −0.014 −0.009
Scope Number[13] 0.372 −0.020 −0.020 −0.002 −0.017 −0.006 −0.006 0.015
Statements 0.352 −0.049 −0.042 −0.010 0.027 0.005 −0.026 0.056
Stores 0.372 0.023 −0.028 −0.005 0.002 0.002 0.014 −0.001
Tai def-use pairs[14] 0.010 -0.517 -0.170 0.007 0.046 −0.013 -0.193 0.106
Variable Declarations -0.129 −0.006 −0.071 0.007 0.697 0.017 0.009 −0.006
Operands 0.025 −0.003 −0.011 −0.001 0.021 0.534 −0.005 0.009
Operators −0.046 −0.037 −0.002 −0.009 −0.029 0.613 −0.015 0.025
Unique Operands 0.025 −0.057 0.063 −0.029 0.573 −0.060 −0.055 0.052
Unique Operators 0.012 0.031 0.284 -0.564 0.032 0.006 −0.020 -0.172

Eigenvalue 10.145 6.479 1.854 1.494 1.036 0.969 0.640 0.344
Variance 0.423 0.270 0.077 0.062 0.043 0.040 0.027 0.014
Cum. Variance 0.423 0.693 0.770 0.832 0.875 0.916 0.942 0.957

Table 1. Results of Principal Components Analysis with VARIMAX Rotation of the 24 Software Metrics considered.

Domain Kernels Bit-Based Streaming Account-
Keepinga

Control-Intensive

Compression 2 x x x
Cryptography 56 x x xb

DSP 5 x x xb

ECC 6 x x x
Mathematics 19
Multimedia 32 xb x x
General 15 xb x

Total 135

aNon-constant space complexity.
bOnly some instances in that domain express this characteristic.

Table 2. Overview of the collection of functions.

• Flip-Flops - These are D-type Flip-Flops.

• Look-Up Tables (LUTs) - These are 4-input LUTs.

• Slices - A basic element consisting of 2 LUTs, 2 D-
Type Flip-Flops, and some extra elements like multi-
plexers and carry chains.

• Multipliers - These are 18bit multipliers

Furthermore, we added the number of states as a criterion
for Finite State Machine (FSM) size. The hardware mea-
sures were obtained from automatically generated VHDL.
The used VHDL compiler and synthesizer with their respec-
tive optimization options affects the behavior and quality of
the model. Currently, the model is based on a specific set
of tools. However, in the future we envision an automatic
model generator for other tool sets.

4. EXPERIMENTAL SETUP

To test our hypothesis that SCMs correlate with hardware
characteristics and build a model that can predict those char-
acteristics, we have followed the following procedures.

First, a set of 135 C-functions was collected domains, as
summarized in Table 2. By using source code from exist-
ing applications from many different areas in computing, we
aim to build a model that is generally applicable.

For the purpose of gathering SCMs from this set of func-
tions we built a metrication tool based on the Elsa/Elkhound
compiler front-end from UC Berkeley, which then gener-
ated the dataset of metrics from the gathered functions. On
a 2.4GHz AMD Athlon64 this process took 7.5 seconds in
total. Then a PCA was performed, which yielded the eight
components in Table 1. The data were then transformed into
PC scores for use in the linear regression analysis.

We then used the DWARV [16] C-to-VHDL compiler to
translate all 135 kernels to VHDL. The VHDL code was
then synthesized using the Xilinx ISE Synthesizer. Six ker-
nels did not compile and two more kernels were not syn-
thesizable. Thus we collected 127 observations for linear
regression. Finally, we performed a linear regression analy-
sis using the area metrics as dependent variables and the PC
scores as independent variables.

5. EXPERIMENTAL RESULTS

In this section we present the different area models based on
SCMs and evaluate their performance. For this purpose, we
will first present several graphs that illustrate the predictive
capabilities of the models and then we will assess the quality
of the models using traditional performance indicators.

In Fig. 3, we find a clear relation between the predicted
and the actual number of slices. There are however two out-
liers in the top-left corner of the plot. One out-lier makes
heavy use of expression lists, which our metrication tool
does not account for at the moment. The other one makes
heavy use of constant expressions, which makes Halstead’s
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metrics unrepresentative. Another observation we make is
that some application domains occupy specific areas in the
graph. Especially, the Cryptography functions dominate the
upper right part of the graph. A possible implication of this
behavior is that different application domains may need dif-
ferent models.
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In Fig. 4, we also observe a clear relation between the
predicted and actual number of flip-flops. The out-lier from
the ECC domain on the left side is a routine that performs
the butterflies in a Viterbi codec. It is not clear why the
model mispredicts this particular point.

As can be observed in Fig. 5, the behavior of the model
for LUTs is quite similar to the one for slices. Apparently,
slice usage is dictated by the number of used LUTs, instead
of flip-flops. The outliers correspond to those of the model
for slices.

From Fig. 6 we deduce our current linear model does not
predict the number of multipliers in any way. One of the rea-
sons is that the number of multiplications in the code was
not yet included as an SCM. Another reason is that many
zeroes occur in the data for this dependent variable. There-
fore, a traditional linear model might not be a good choice.
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Instead, we may need to employ a General Linear Model
approach in the future.
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For the number of states we see again a similar picture,
depicted in Fig. 7. There are two outliers - i.e. cryptogra-
phy functions - in the top-left corner, that are mispredicted
because of their very large loop-bodies. In the bottom-left
corner we observe the exact same out-lier as in the flip-flop



Variable R2! RMSE%fit RMSE%PRESS p-value

Slices 0.717 85.0% 88.93% < 2.2e-16
Flip-Flops 0.920 47.2% 69.2% < 2.2e-16
LUT!s 0.628 101.8% 108.4% < 2.2e-16
Multipliers 0.047 287.5% 296.5% 0.6732
Period 0.095 29.8% 30.1% 0.1458
States 0.795 70.2% 101.7% < 2.2e-16

Table 3. Performance indicators for the several dependent
variables in the linear model for DWARV!.

model.
In Table 3, we find indicators of the quality of our mod-

els. The table shows the ratio of variance explained by
the models (R2), the expected error in the original dataset
(RMSEfit) and on new data (RMSEPRESS), and the
chance that the model does not explain anything (p-value).
Apart from the multipliers-model the models appear to per-
form reasonably well. The Flip-Flop model is the best of
these models.

The reported error margins between 69.2% and 108.4%
are less accurate than other schemes like in [2] (10%) and
[4] (7%). On the other hand our model operates at C-level
and is very fast (7.5s for 135 kernels). Furthermore, the
prediction plots show that error occurs mostly at the small
kernels.

6. CONCLUSIONS

We have seen that a linear model based on SCMs can es-
timate the number of slices, flip-flops, look-up tables, and
states within reasonable bounds in the early stages of devel-
opment. Furthermore, such a model can make predictions
in a relatively short time, as required in a hardware/software
partitioning context. Although there is a considerable error
involved, the model is precise enough to prune the design by
removing functions that are too large to fit on an FPGA or
too small to exploit any degree of parallelism.

In the future, we will incorporate more metrics in our
model and use more advanced modelling techniques like
Generalized Linear Regression. Furthermore, specific mod-
els for different platforms and optimizations could be con-
sidered.
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