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ABSTRACT
In this paper, we present the DWARV C-to-VHDL genera-
tion toolset. The toolset provides support for broad range of
application domains. It exploits the operation parallelism,
available in the algorithms. Our designs are generated with
a view of actual hardware/software co-execution on a real
hardware platform. The carried experiments on the MOLEN
polymorphic processor prototype suggest overall applica-
tion speedups between 1.4x and 6.8x, corresponding to 13%
to 94% of the theoretically achievable maximums, consti-
tuted by Amdahl’s law.

1. INTRODUCTION

The DelftWorkBench1 aims to provide a semi-automatic plat-
form for hardware/software co-design in the context of Cus-
tom Computing Machines [1]. It targets the MOLEN poly-
morphic machine organization [2], [3] and provides support
for the MOLEN programming paradigm [4]. The automated
VHDL generation within DelftWorkBench is performed by
the DWARV toolset, presented in this paper. The input of
the toolset is pragma annotated C code without any syntax
extensions. A number of restrictions on the C-language cur-
rently apply but will be relaxed in the future. However, those
restrictions, do not limit the application domains. Rather al-
gorithms with different characteristics from various appli-
cation domains are automatically generated. DWARV ex-
ploits the available operation parallelism in the algorithms.
Contrary to related works, the toolset is designed and devel-
oped with a view of actual hardware/software co-execution
on a real hardware platform. Hence, the generated designs
respect the physically available memory bandwidth and in-
terface specification of the MOLEN polymorphic processor
prototype. This allows fast and easy verification and evalu-
ation of the designs on a real hardware prototype platform.

In its current state, with only a limited number of avail-
able optimizations, DWARV is capable of providing the fol-
lowing functionality:

DelftWorkBench is sponsored by the hArtes (IST-035143), the MOR-
PHEUS (IST-027342), and RCOSY (DES-6392) projects

1http://ce.et.tudelft.nl/DWB

• No limitations of the application domains. Algorithms
with different characteristics are automatically trans-
lated and executed.

• Kernel-wise speedups of 9.7 times over the software
execution.

• Substantial overall application speedup of up to 6 times
over software execution is observed.

• High performance efficiency. The achieved speedup
amounts from 13% to 94% of the theoretically possi-
ble maximum speedup, constituted by Amdahl’s law [5].

• Actual execution on a real hardware prototype plat-
form.

The experiments in this paper are carried out on the MOLEN
polymorphic processor prototype2. The corresponding exe-
cutables for the GPP are generated by the MOLEN com-
piler [6].

The rest of the paper is organized as follows. Section 2
presents the current structure and functionality of DWARV.
Section 3 presents empirical evaluation of the tool set on a
real hardware prototype platform. Section 4 discusses some
related C-to-VHDL projects. Section 5 outlines further re-
search directions and concludes the paper.

2. THE DWARV GENERATOR

As depicted in Fig 1, the DWARV toolset consists of two
modules, the Data Flow Graph (DFG) Builder and the VHDL
Generator. The input of the toolset is pragma annotated C
code. The annotation specifies the code segments to be im-
plemented in the hardware. The goal of DWARV was to pro-
vide straightforward generation of VHDL designs consider-
ing actual software / hardware co-execution on the MOLEN
polymorphic processor. In its current state, a number of re-
strictions hold for the code that will be mapped on the hard-
ware. Currently, only one dimensional memory addressing
is supported. Structures, unions, and floating point types are
not supported yet. The iteration and selection statements are
limited to for and if statements, respectively. Additionally,
control jumps and function calls are not allowed. Although

2http://ce.et.tudelft.nl/MOLEN/Prototype



syntactically restricted, this C subset does not impose severe
limitations on the supported functionality. The unsupported
constructs can be substituted preserving the statement se-
mantic (e.g., while loop can be substituted with for loop).
In contrast to other hardware compilers, support for algo-
rithms from different application domains is provided. A
final requirement is that the DWARV compiler relies on a
pragma annotation to identify the functions that need to be
translated into VHDL.

Builder
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Description*.c

*.dfg

VHDL
Generator

*.vhd

Library
IP

Fig. 1. DWARV Toolset

The input code first is processed by the DFG Builder.
This tool is currently implemented as a pass within the SUIF2
compiler framework3. The purpose of this module is to per-
form high-level hardware-independent optimizations on the
code and to transform it into an intermediate representa-
tion (IR), suitable for hardware mapping. Currently, the set
of implemented optimizations includes simplified scalar re-
placement, static single assignment, common sub-expression
elimination, and dead code elimination. The output IR is
a hierarchical data-flow graph (HDFG). This is a directed
acyclic graph with two types of nodes: simple and com-
pound. The simple nodes represent arithmetic and logic op-
erations, registers, and memory transfers. The compound
nodes represent the loops in the input code and contain sub-
HDFG of the loop body. The edges of the graph represent
the data dependencies and the precedence order between the
operations. Such representation exposes the available op-
eration parallelism and allows for its exploitation at later
stages of the generation. The HDFG is further process by the
VHDL Generator. This tool is currently implemented as a
stand-alone console application. Its purpose is to perform
low-level hardware-dependent optimizations and to gener-
ate the final VHDL code. Currently, the tool only performs
As Soon As Possible (ASAP) scheduling on the input graph.
This scheduling, however, aims to fully exploit the available
operation parallelism, respecting the given memory band-
width and access latency. Each operation node is assigned
a latency expressed in terms of CCU execution cycles. Cur-
rently, finer estimation of the latencies of the different opera-

3http://suif.stanford.edu/suif/suif2/

tions is not performed. Rather, all of them are assumed to be
executed in one CCU cycle. Nevertheless, operations, that
are ultimately translated to wires shifting (shift by constant
or bitwise-and by constant) are assume to take zero cycles.
The load and store nodes are assigned the corresponding
memory access times for read and write operations. These
times as well as the available memory bandwidth are pro-
vided to the VHDL generator as additional input. The output
designs are FSM-based with the MOLEN CCU interface [7].
This allows actual execution of the generated designs on a
real hardware prototype platform.

An example of the performed translation process is pre-
sented in Fig 2. The input C code (Fig 2a) is transformed
into the HDFG, shown in Fig 2b. The shaded area in the fig-
ure is a compound loop node with the loop body sub-DFG.
The edges denote the data dependencies between the oper-
ations. The precedence edges are not shown in the figure.
The generated graph is further processed and an FSM-based
design is generated (Fig 2c).

3. EXPERIMENTAL RESULTS

To evaluate the DWARV toolset, 4 kernels from different ap-
plication domains are selected and the corresponding VHDL
designs are generated by DWARV. The designs are further
synthesized for Xilinx Virtex II Pro (XC2VP30) in the Xil-
inx ISE 8.1 design environment. Next, hybrid software /
hardware co-execution of the applications with the gener-
ated kernels is carried on the MOLEN polymorphic proces-
sor prototype. All reported times are expressed in PowerPC
cycles. These times are measured using the PowerPC timer
that increments at 300MHz frequency. The kernel execu-
tion time is measured when running soley on the GPP and
when executed by the FPGA. We refer to them respectively
as hardware and software execution. The same hold for the
entire application taking into account that only part of it is
executed on the FPGA. For each measurement, the PowerPC
timer base reagister is initialized to 0 and its value is read at
the end of the execution. The reported hardware execution
times include the time for evaluating and transferring the
function parameters. Hence, the hardware / software inter-
face overhead is included in them.

Application profile: The applications and the consid-
ered kernels are listed in Table 1. The G721 application is
from the MediaBench benchmark suite [8]. The kernels are
selected after profiling the applications. The respective pro-
files are presented in the third column of Table 1. The first
number specifies the percentage of the application execution
time spent in the corresponding kernel. The second number
indicates the call counts for each kernel. These profiles are
derived after execution on the MOLEN prototype. The ap-
plication execution times and the kernel execution times are
measured in separate runs to avoid skewing of the profil-



static int fmult(int an, int srn, short power2[15]) {
     short anmag. anexp, anmant, wanexp, wanmant;
     short retval;
     int i;
     anmag = (an>0) ? an : (−an & 0x1FFF);
     for(i = 0; i < 15 && anmag < power2[i]; i++);
     anexp = i−6;
     anmant = (anmag == 0) ? 32 :
                      (anexp >= 0) ? anmag >> anexp :
                      anmag << −anexp;
     wanexp = anexp + ((srn >> 6) & 0xF) −13;
     wanmant = (anmant * (srn & 077) + 0x30) >> 4;
     retval = (wanexp >= 0) ? 
                    ((wanmant << wanexp) & 0x7FFF) :
                    (wanmant >> −wanexp);
     return (((an^srn) < 0 ) ? −retval : retval);

#pragma hw_op
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Fig. 2. G721 encoder - fmult: (a) C code; (b) HDFG; (d) schematics

Application Kernel Profile Theoretical
Speedup Limit

G721 encoder
update 33.40% / 2000 1.5
fmult 46.28% / 16000 1.86

G721 decoder
update 28.31% / 4000 1.39
fmult 56.31% / 32000 2.29

MJPEG DCT 79.05% / 72 4.77
- AES 97.81% / 192 45.65

Table 1. Applications Profile

ing results due to the timer manipulation overhead. The last
column of the table shows the maximum overall application
speedup that can be achieved according to Amdahl’s law [5].

The considered kernels exhibit different characteristics.
The implementation of the Rijndael algorithm (AES) re-
quires random memory accesses. The DCT, on the other
hand, performs regular processing on the input stream. The
fmult function performs table look-up and the update func-
tion is control dominated processing of multiple scalar vari-
ables.

Kernels synthesis: The VHDL generation and the syn-
thesis of the kernels are performed under Fedora Core 2.6
Linux on AMD Athlon 64 3200+ Processor. The times nec-
essary for DWARV to generate the VHDL for each kernel
are reported in the seventh column of Table 2. The first
number is the time necessary to built the HDFG for each
kernel. The second number is the time necessary to gen-
erate the VHDL designs from the HDFG. These times are
measured by the Linux time utility. The first number in
the next column gives the number of C code lines for each
kernel. The second number in the same column gives the
corresponding lines of VHDL code. From these numbers
the declaration lines are excluded. The last column of the
table shows the synthesis times (first number) and the times

Kernel Software,
PPC cycles

Hardware,
PPC cycles

Speedup

fmult (e) 23720954 6444656 3.68
fmult (d) 55263398 13442072 4.11
update (e) 17121714 2170212 7.89
update (d) 27784666 3816908 7.28
DCT 37740312 3876408 9.74
AES 2209728 281280 7.86

Table 3. Kernels Execution Time

necessary to build the final bitstreams (second number) by
the Xilinx tools for each kernel. The synthesis estimations of
necessary resources and execution frequency for each kernel
are reported in Table 2.

Kernel Performance Improvement: To evaluate the
kernel performance improvement, the applications are ex-
ecuted on the MOLEN prototype. The software parts of the
applications are executed on PowerPC 405. The CCUs fre-
quency is set to 100MHz. The software and the hardware
kernel execution times are reported in Table 3. These times
are recorded through actual execution on a real hardware
platform. The presented times are the total (sum) cycles
spent in the corresponding kernel during the application exe-
cution. The execution times of fmult and update functions
depend on the input data, which explains the difference be-
tween the execution time of the functions within the encoder
and decoder applications.

In order to evaluate the quality of the generated designs
and to outline future directions for DWARV improvement, a
comparison with the manual implementation [9] of the AES
kernel is made. The hand-crafted implementation is 8 times
smaller than the automated one and operates also at a higher
frequency. The achieved kernel speedup is 5.5 times lower
than the speedup achieved by the manual design for the same



Kernel Slices Flip Flops LUTs MUL18X18 Frequency,
MHz

DWARV time,
sec

Code
Lines

Xilinx tools
time, sec

update 2779 (20%) 2939 (10%) 4298 (15%) 0 169.926 5.930 / 0.586 127 / 1758 98.332 / 507.117
fmult 1029 (7%) 835 (3%) 1769 (6%) 2 (1%) 129.659 0.495 / 0.111 21 / 445 81.177 / 333.816
DCT 3307 (24%) 3971 (17%) 4965 (18%) 40 (29%) 100.197 2.330 / 0.150 22 / 776 78.074 / 679.791
AES 4181 (30%) 4295 (15%) 6097 (22%) 0 155.130 10.771 / 0.434 74 / 1708 99.945 / 652.226

Device Capacity 13696 27392 27392 136 N/A N/A N/A N/A

Table 2. Synthesis Time and Synthesis Estimations

Application SW, cy-
cles

HW, cy-
cles

Speedup Efficiency

G721 E, fmult 51258516 34080767 1.5 58.51%
G721 E, update 51258516 36983874 1.39 76.95%
G721 E, both 51258516 N/A 2.69 43.17%
G721 D, fmult 98137145 57091687 1.72 55.78%
G721 D, update 98137145 71477821 1.37 94.44%
G721 D, both 98137145 N/A 3.03 36.95%
MJPEG 47743441 16275541 2.93 51.25%
AES 2259217 334117 6.76 12.90%

Table 4. Overall Application Speedup

input data. This is mainly due to the fact that DWARV cur-
rently assumes that all data, including the constant tables,
reside in shared memory, where as in the manual implemen-
tation the constant data is available on the FPGA. In fact,
the particular algorithm implementation uses five constant
tables with precomputed values. Four of those tables are
accessed in a loop. This translates to multiple memory ac-
cesses in the kernel. As the shared memory in the current
MOLEN prototype is a single port memory, those accesses
prevent parallelization of the algorithm. The manual design
on the other hand implements the constant tables in multi-
port on-chip memories. This allows four memory accesses
to be executed in parallel, which translates to roughly four
times faster design in the particular case. This case study
shows one possible future optimization, namely privatiza-
tion of global constant data, to be implemented in DWARV.
Such optimization would help in some cases to bring the
quality of the automated designs closer to the one of the
manual design, if not in terms of area, at least in terms of
performance.

Overall application speedup: The lower kernel speedup
of the automated designs, however, does not necessary trans-
late to lower speedups application-wise. The achieved over-
all application speedup is reported in Table 4. To measure
this speedup, each application is executed once with the soft-
ware version and once with the hardware version of the ker-
nel on the MOLEN prototype with the same input data set.
The measured times are reported in Table 4. The perfor-
mance efficiency, reported in the last column of the table,

indicates how close the speedup is to the theoretical maxi-
mum (the last column of Table 1). The efficiency is com-
puted by the formula: ((Sm − 1)/(St − 1)) ∗ 100, where
Sm is the measured application speedup and St is the the-
oretical limit. Such efficiency computation allows possible
slowdown of the application also to be captured. The differ-
ences in the efficiency of the achieved application speedups
is the natural corollary from Amdahl’s law, which suggests
that when a larger part of the execution time is considered,
the higher the potential overall speedup is. The AES kernel
comprises ∼98% of the application execution time. There-
fore, although the highest speedup is achieved for that ap-
plication, the efficiency is the lowest. On the other hand,
the update kernel offers the lowest application speedup but
it is the closest to the theoretical maximum. This is due to
the fact that only ∼30% of the application is implemented
in the hardware. The separate hardware implementation of
the fmult and update functions does not bring large perfor-
mance improvement. Nevertheless, as can be observed from
Table 2, although automatically generated, the two designs
together occupy less than 30% of the available area. This
fact allows for their simultaneous mapping on the hardware
without dynamic reconfiguration to be neccessary. It can be
computed ¡something¿ the Amdahl’s law, that a 3-fold ap-
plication speedup can be achieved in that case.

4. RELATED WORK

The automated HDL generation is in the focus of multiple
research projects. The ROCCC project [10] aims paral-
lelization of the computation. Also off-chip memory ac-
cesses optimization is considered. The target application
domain is streaming applications. In the studied applica-
tions, only the DCT kernel exhibits such characteristics. In
contrast to ROCCC, DWARV does not limit the application
domain. Streams-C [11] and SA-C [12] also have the lim-
ited application domain drawback. In addition, they intro-
duce new syntactical constructs, which requires application
re-writing. Our toolset does not introduce new syntax, hence
no kernel re-writting is necessary. The SPARK project [13]
emphasizes on operation scheduling. More specifically, they
propose speculative code motion that aims to increase in-
struction level parallelism in control-intensive kernels. How-



ever, the compiler assumes that all data resides on the chip
and all parameters are passed through IO ports. For the DCT
kernel this will translate to 2048 IO ports. The XC2VP30
device has 556 IO buffers. DWARV, on the other hand,
respects the physical capacity of the target device. It can
provide a performance improvement for any pre-defined I/O
constraints. In recent years, several commercial tools that
generate hardware from HLL input also appeared. Handel-
C [14] accepts as input C-like language but to use it one
needs advanced hardware knowledge. Impulse-C[15] is com-
mercialization of Streams-C and suffers from the same draw-
backs. Catapult-C [16] requires extensive designer input in
both the applied optimizations and the actual mapping pro-
cess. DWARV is oriented towards the software designers
and does not require in-depth hardware knowledge.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the DWARV C to VHDL
generator tool. Speedups of up to 9.7x kernel-wise and 6.7x
times application-wise over the software execution were ob-
served. For some of the applications the achieved speedup
is up to 94% of the theoretical maximum. Where related ap-
proaches produce highly optimized designs for narrow ap-
plication domains, DWARV is designed to support a broad
variety of application domains (multimedia, DSP, encryp-
tion and more). The generated designs respect the physical
constraints (memory bandwidth, access times, IO ports) of
existing devices. Moreover, the generated designs were ac-
tually tested on a real hardware platform. The performed
optimizations, although limited at the current stage, pro-
vide reasonable overall application speedup by exploiting
the available operation parallelism. A current limitation,
which will be addressed in the future, is the absence of hard-
ware reuse, which evidently introduces overhead. Further-
more, we want to introduce design patterns and a hardware
grammar derived from them to improve the overall quality
of the generated designs.
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