A LOAD/STORE UNIT FOR A MEMCPY HARDWARE ACCELERATOR

Stamatis Vassiliadis ', Filipa Duarte 2, and Stephan Wong !

Computer Engineering

Delft University of Technology
emails: ! {S.Vassiliadis, J.S.S.M.Wong} @ewi.tudelft.nl ? F.Duarte @ce.et.tudelft.nl

ABSTRACT

Recently, a dedicated hardware accelerator was propo-
sed that works in conjunction with caches found next to
modern-day microprocessors, to speedup the commonly uti-
lized memcpy operation. The main assumption of the pro-
posal was that the to-be-memcpy-ed data has to reside in-
side the cache, which is not always valid. In this paper,
we present a dedicated load/store unit and its implementa-
tion which cooperates with the previously proposed mem-
cpy hardware accelerator and cache to ensure that data be-
comes available in the cache. Experimental results, using
synthetic benchmarks, show that the load/store unit in con-
junction with the memcpy hardware accelerator is capable
of reducing the memcpy latencies by 85% (when the data is
not present in the cache) compared to a highly optimized,
hand-coded in assembly software solution.

1. INTRODUCTION

Profiling investigations of network related applications show
memcpy as one of the most time-consuming function/opera-
tion in certain applications [1], [2]. The memcpy function
is responsible for copying data of size size from memory
address src to memory address dst. This function has under-
gone extensive research in order to find a suitable optimiza-
tion in software. The most utilized solution is to hand-code
this function in assembly, and exploit machine-depended
features, and link it to the program instead of compiling the
straightforward C code. This will result in more efficient
code, however the optimizations are only valid for the se-
lected machine.

In [3], a dedicated hardware accelerator was introduced
to efficiently perform the memcpy function working in tan-
dem with a cache that is nowadays commonly found next to
many microprocessors (both general-purpose and embedded
ones). This work assumed that the to-be-copied data was al-
ready operated upon before being memcpy’ed, implying that
itis already present in the cache. However, this is not always
true. Therefore, a solution must be sought after to address
this. Moreover, as the mentioned hardware accelerator is
tightly coupled with a cache, a write to either the source or

destination address must result in the invalidation of the data
in the cache and the data must be correctly stored back into
the main memory.

We created a synthetic benchmark (its behavior derived
from the Bluetooth protocol) which we compared the perfor-
mance of utilizing an optimized hand-coded version of the
memcpy (optimized for our utilized platform) with the per-
formance of our complete hardware memcpy solution. The
complete solution (the custom cache, the memcpy hardware
accelerator, and the load/store unit) has the following advan-
tages:

e the load/store unit (in conjunction with the custom
cache) determines whether there is a need to load all
the requested data by the memcpy from the main me-
mory. When it is necessary, the unit only ‘suffers’
once from the read main memory latency after which
each subsequent clock cycle yields a newly loaded
word (only restricted by the available bandwidth).

o the memcpy hardware accelerator avoids duplicating
data in cache, because the copy (of the original data) is
simply represented by inserting an additional pointer
to the original data that is already present in the cache.
This pointer allows the ‘copied’ data to be accessed
from the cache.

e it offloads the processor as it is no longer required to
perform the real copies or to deal with the memcpy
loads and stores.

e the synthetic benchmark achieves a speedup of ap-
proximately 7 in hardware than an optimized software
implementation.

The paper is organized as follows. In Section 2, we pre-
sent the related work and in Section 3, we present the con-
cepts behind both the memcpy hardware accelerator and the
load/store unit. In Section 4, we discuss the platform used
for the implementation of the proposed solution and show
the implementation details of each module of the system. In
Section 5, we present the experimental results for both the



software and hardware implementations of the memcpy uti-
lizing the same processor and compare the results. Finally,
in Section 6, we draw some conclusions.

2. RELATED WORK

In this section, we first present some of the solutions pro-
posed to reduce the impact of the memcpy, either being hard-
ware or software, and secondly, an overview of still on-
going research on load/store units and their hardware imple-
mentations. As several memory controllers and load/store
units can be found in literature, this related work section fo-
cus on the hardware design of such units.

Hardware optimizations for memory copies, besides D-
MA support, include the use of vector processors. Specif-
ically for the PPC, the Velocity Engine (also known as Al-
tiVec) expands the current PPC architecture through addi-
tion of a 128-bit vector execution unit. This unit operates
concurrently with existing integer and floating-point units.
This approach expands the processors capabilities to con-
currently address high-bandwidth data processing (such as
streaming video) and the algorithmic intensive computati-
ons.

Several software solutions have been proposed, basically
variations on the ‘zero-coping’ scheme [4], [5]. Another so-
lution was presented by [6], that introduced a new portable
communication library, providing one-sided communication
capabilities for distributed array libraries. Moreover, sup-
port was added for remote memory copy, accumulate, and
synchronization operations optimized for non-contiguous da-
ta transfers.

Load/store units are still a research topic mainly on po-
wer- or energy-aware [7] area and on speculative loads [8],
[9]. Some work has been performed on improving the lo-
ad/store queues [10]. However, on hardware design of a
load/store unit little literature can be found. In [11], the
authors present a hardware load/store unit for the SCIMA
memory architecture that the same authors presented. An-
other work involves a hardware design for a load/store unit
[12]. This general-purpose load/store unit was developed for
a Virtex II Pro FPGA, while the FPGA we used in our cus-
tom memcpy load/store unit is a Virtex 4. A complete mem-
ory system, for a multiprocessor platform using the Virtex
IT Pro FPGA was presented in [13]. This work implements
a cache and a shared memory for the two processors on the
Virtex II Pro.

3. CONCEPTS

In this section, we will present a short description of the pre-
viously published memcpy hardware accelerator and discuss
the concepts behind the proposed load/store unit. In [3], we
proposed a hardware solution to perform memcpy operations

of entire cache-lines. Our solution stemmed from the sim-
ple observation that in some cases the data to be copied (of
size size) from a source address (src) to a destination ad-
dress (dst) was already present inside the cache. Perform-
ing the memcpy operation in a traditional manner (utilizing
loads and stores) would pollute the cache by either insert-
ing data already present in the cache or even overwriting
data that may be needed later on. The proposed solution has
the advantage of not performing the actual data movements
(resulting in the mentioned disadvantages) and of being in-
dependent of the cache organization.

The memcpy hardware accelerator performs a memcpy
utilizing an additional indexing table inside the cache. The
table is accessed by the index part of the dst address and
contains the tag and the index parts of the src address, the
tag part of the dst address and a bit stating that it is a valid
entry. Each indexing table entry is a pointer to an entire
cache-line. Summarizing, the memcpy operation can now be
simply replaced by introducing a new indexing table to the
cache data-memories by assuming that the data to be copied
is already present in the cache and that the data is already
aligned to a cache-line size. Finally, in order to maintain
consistency in the main memory, any write operation to the
data at either the source or destination locations (stored over
multiple cache-lines) will result in the invalidation of the
corresponding cache-line and writing the cache-line back to
the main memory. For details an interested reader is directed
to [3].

The memcpy hardware accelerator previously presented
assumed that the data was already present in cache. This
may be true in some cases, however, it is not for all cases.
As such, we present in this paper a solution to load and store
the needed data in/from main memory. The load/store unit is
responsible for loading/storing data from/to the main mem-
ory, respectively. It is situated between the custom cache
and the main memory and communicates control signals to
direct the behavior of the latter referred modules. In ad-
dition, it controls the memcpy hardware accelerator. The
load/store unit is mainly an finite-state machine (FSM) with
two different paths for the read and write operations. Fur-
thermore, certain states were specifically introduced to han-
dle specific situations particular to the memcpy hardware ac-
celerator, e.g., the presence of data in the cache or in the in-
dexing table. Extra-read and -write states are introduced for
the controller to wait for the hit or miss information from the
cache or from the memcpy hardware accelerator.

On a read operation, if the address requested by the pro-
cessor exists in cache or in the indexing table the data is im-
mediately provided to the processor. If it is not in cache nor
in the indexing table, the controller is responsible to request
the data (a cache-line) from the main memory. However,
if a memcpy is being executed, the size requested can vary
from no request to main memory (because all data for the



PPC Data I
_ i | T
Instructions % o gi Q Ui T % i % O External
205 881 Z3135(— )
gggl_‘:rg‘ %‘817 DDR
88 °® 1 2.3
DSOCM to DDR Controller

BRAMs Other
instruction Peripherals
memory

Fig. 1. System used to experiment the memcpy hardware
and the DSOCM2DDR controller

memcpy is already in cache) up to the size of the memcpy.
Finally, the controller enters the final state, in order to finish
the execution of the memcpy.

On a write operation, the controller is responsible of
storing the data to the main memory. If a memcpy is be-
ing executed, the controller is responsible to write to the
main memory the data pointed to by the current access to
the indexing table (if any). If the write address is a src or dst
address, the controller also has to write to the main mem-
ory the data pointed to by the current access to the indexing
table and update the new value in the main memory.

4. IMPLEMENTATION ENVIRONMENT

In this section, we describe the system used to experiment
both our custom cache implementation, the memcpy hard-
ware accelerator, and the load/store unit (from now on re-
ferred to as DSOCM2DDR controller - its name derive from
the fact that we utilize the Data-Side OCM bus of the Virtex
4 to connect to a specially designed DDR controller).

We implemented the DSOCM2DDR controller on an the
ML410 board containing a Virtex 4-FX FPGA with two Po-
werPCs (PPCs) 405 cores, although only one is used. The
PPC is running at 100 MHz and, as we implemented our
own custom cache in order to have control/access over it,
we disabled the PPC internal caches (both the instruction
and data caches). Figure 1 depicts the described system.

We implemented a standard 32 KBytes direct-mapped
write-through cache with 32 bytes cache-lines, and included
a custom part in order to support the memcpy hardware ac-
celerator. The main differences between our custom cache
and a standard one are, first, the use of a dual-ported mem-
ory for the tag memory and, second, some changes in the
controller states in order to handle the memcpy hardware ac-
celerator. The first change allows for checking whether the
data is in the cache while loading the data to a different ad-
dress. The second change involves supporting loads of more
than one cache-line (until the size of the memcpy is reached).
The number of cache-lines and the number of entries of the
indexing table have to be the same in order for the system to

write request read request

memcpy\request

'not memcpy SRC
or DST addresses
memcpy SRC or|
DST addresse:

‘cache or mempcy
indexing table MISS
cache or memcpy
indexing table HITy

READ BURST

mempcy request and
size reached?

Return Return Return Return

to INIT to INIT to INIT to INIT

Fig. 2. States and states transitions of the load/store unit,
including the memcpy states

work properly.

On a memcpy, the cache controller operates as follows
depending on whether the src address hits or misses. When
the src address hits in the cache:

e Check the consecutive address;

e Check if the dst address is in use on the memcpy in-
dexing table and if it is, provide its content to the
memory controller.

e Repeat the previous steps until the size is reached.
When the src address misses in the cache:

e Wait until the main memory provides the data and
then enable the cache data-memories to write it.

Figure 2 depicted the FSM and its transitions between states
of the DSOCM2DDR controller.

One particular implementation detail is that we utilized
specific addresses to control the execution of the memcpy
hardware accelerator. This implies that the main memory
cannot utilize these addresses as standard addresses (these
are not written or read to/from the main memory, therefore
the controller stays in the INIT state). Only when other ad-
dresses are put on the bus, the controller changes state.

Subsequently, we present the detailed operations done in
the WRITE, MEMCPY _WRITE, READ_BURST, and RE-
AD states. In the WRITE state, the controller:

e sets the write request signals to the main memory;
e returns to the INIT state, on a write_ack signal.

In the MEMCPY _WRITE state, the controller executes the
following steps:

o If the address provide by the processor is a src or dst
address of a previous memcpy then, the controller:

— sets the write request signals to the main mem-
ory;



— writes the cache-line provided by the cache in
the main memory;

— writes the changed word into memorys;

— finally, the controller returns to the INIT state.

e If the address provided by the processor is OxA1F-
FFFFO (i.e., the execution of a memcpy) and the dst
address is in use in the indexing table (i.e., a previous
memcpy exists) then:

— sets the write request signals to the main mem-
ory;
— writes the data provided by the cache in the main

memory, until the size of current memcpy is rea-
ched;

— returns to INIT.

In the READ_BURST state, the controller executes the fol-
lowing steps:

o I[f the address provided by the processor is not 0xA1F-
FFFF0, 0xA1FFFFF4, OxA1FFFFFS, or OxA1FFFF-
FC (i.e., not memcpy related addresses) then, the con-
troller:

— sets the read request signals to the main memory,
until a cache-line size is reached;

— returns to INIT.

e [f the address provided by the processor is OxA 1FFF-
FFO (i.e., start of a memcpy) then, the controller:

— increases the src address and waits for a hit or
miss in the cache;

— if the address is not in cache, sets the read re-
quest signals to the main memory;

— repeats the previous steps until size is reached;
— goes to the MEMCPY _WRITE.

Finally, on the READ state, the controller:
e gives the data provided by the cache to the PPC;
e returns to the INIT state.

It is also worth noticing that the READ_BURST state
benefits from the functionality of nowadays main memories,
that allow bursts of data to be read. The controller generates
addresses until the size is reached (either being the size of a
memcpy or of a cache-line) which implies a delay to access
the first word equal to the read latency of the main memory
and the next requested word is provided every clock cycle.
Another advantage of our solution is that the size of a mem-
cpy is known in advance which enables the possibility of
requesting all the necessary data and only paying once the
initial main memory read latency.

5. RESULTS AND COMPARISON

We implemented the memcpy hardware accelerator, the cus-
tom cache, and the load/store unit in VHDL. We used Mod-
elSim XE-III, a HDL simulation environment, that enables
the verification of the HDL source code and functional and
timing models of the designs. Both the software and the
hardware implementation of the memcpy function, as well as
the DSOCM2DDR controller, are analyzed using this tool.

In order to test our solution, we executed a memcpy of
4 cache-lines, and a sequence of reads and/or writes to ei-
ther memcpy’ed addresses. The time required to perform
the memcpy (in this case of 4 cache-lines or 128 bytes) in
software is 415 clock cycles while in hardware it takes 169
clock cycles. The software version requires more accesses
with smaller sizes to the main memory than the hardware
version, thus implying a bigger total latency, due to the main
memory latency of 9 clock cycles for the first word.

It is important to notice that the only difference between
the software and the hardware implementation is the way
the memcpy function is called. In the software, we use the
function call memcpy implemented in assembly' and in or-
der to program the memcpy hardware accelerator (i.e. pass
the function parameters), the values are written to specific
addresses.

In order to show the advantages of our solution (the cus-
tom cache, the memcpy hardware accelerator and the load/-
store unit), we created a synthetic benchmark based on a
real application. We based our benchmark on the data col-
lect by [1] which describes the procedure to reassemble a
frame of the Bluetooth protocol in the Linux OS. In the pre-
sented procedure reassembles a frame by calling the mem-
cpy function 5 times. Therefore, we utilized 4 memcpy calls
with a size of 352 bytes plus one of 96 bytes (correspond-
ing of 4x11 cache-lines + 1x3 cache-lines in the hardware
version). The Bluetooth protocol uses consecutive src ad-
dresses to reassemble one frame, which means that the data
has to be loaded from memory for every memcpy (in the
hardware case). For the dst addresses, the Bluetooth pro-
tocol also uses consecutive addresses, which means there is
no need to write-back to memory (in the hardware case).
For the hardware implementation, the complete synthe-tic
benchmark takes 906 clock cycles while the software ver-
sion takes 6263 clock cycles. This implies that, for this syn-
thetic benchmark, the hardware implementation achieves a
speedup of approximately 7 compared with the software ver-
sion.

Subsequently, we present results for the best and worst
cases in software and compare them with the worst case in

IThe memcpy assembly code used is a changed version of the linux-
2.4.20 for PPC. The change of the assembly code was necessary in order to
take out the cache management instructions, because we implemented our
own cache. The cross-compiler used to compile the C code is the powerpc-
eabi-gcc with optimizations -O2.



SW solution (best case) —— SW solution (worst case) -#-HW solution (worst case) ‘

35000
30000 2
25000 /
20000 /
15000 4//

10000 //
5000

1 2 4 8 16 32 64 128 256
Number of Cache-lines

Clock Cycles

Fig. 3. Comparison between the software and the hardware
solution for different values of size

hardware, for an increasing number of cache-lines. Figure 3
depicts the worst case scenario for the memcpy hardware ac-
celerator, which is no data required for a memcpy is in cache
(all the data has to be loaded from the main memory) and
the memcpy is overwriting previously performed memcpy*s
(every cache-line has to be written-back to main memory).
The best case scenario for the software version is having
all the required data in cache, while the worst case is not
having it. As expected, the benefit of the hardware solution
increases with the increase of the size of a memcpy. For a
memcpy of only one cache-line, there is no clear benefit of
the worst case hardware solution compared with either the
best or worst case software solutions. However, for bigger
sizes the hardware solution is capable of reducing the mem-
cpy‘s latencies by 82% (for the 256 cache-lines) compared
with the best case for the software implementation of mem-
cpy function.

6. CONCLUSIONS

In this paper, we proposed a new load/store unit that attached
to a cache complements the memcpy hardware accelerator.
The unit is able to autonomously perform loading of data
from the main memory to support the memcpy operation
when the data was not present in the cache. Moreover, as the
size of the to-be-loaded data is known beforehand, the new
unit is able to fully utilize the available bandwidth between
the cache and the main memory. In addition, this approach
allows the load latency to be reduced.

In order to experiment our system, we developed a syn-
thetic benchmark (based on a the reassembly of a Bluetooth
frame) and showed that the proposed hardware solution (a
custom cache, the memcpy hardware accelerator and the lo-
ad/store unit) provides a speedup of approximately 7, for the
experimented benchmark, compared to an optimized (hand-
coded in assembly) software solution. We also presented a

comparison between the worst case in the hardware solution
with the best case in the software solution, and show that
the hardware solution brings increasing benefits for bigger
number of cache-lines copies.

7. REFERENCES

[1] F Duarte and S. Wong, “Profiling Bluetooth and Linux on the
Xilinx Virtex-II Pro,” in Proc. IEEE 9th Euromicro Confer-
ence on Digital System Design, 2006, pp. 229-235.

[2] P. Mackerras, “Low-Level Optimizations in the PowerPC
Linux Kernels,” in Proc. of the Linux Symposium, 2003, pp.
321-331.

[3] S. Wong, F. Duarte, and S. Vassiliadis, “A Hardware Cache
memcpy Accelerator,” in Proc. IEEE International Confer-
ence in Field Programmable Technology, 2006, pp. 141-147.

[4] H. Tezuka, F.O’Carroll, A. Hori, and Y. Ishikawa, ‘“Pin-down
Cache: A Virtual Memory Management Technique for Zero-
copy Communication,” in Proc. IEEE 12th International Par-
allel Processing Symposium, 1998, pp. 308-315.

[5] F. O’Carroll, H. Tezuka, A. Hori, and Y. Ishikawa, “The de-
sign and implementation of zero copy MPI using commodity
hardware with a high performance network,” in Proc. ACM

12th International Conference on Supercomputing, 1998, pp.
243-250.

[6] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote
Memory Copy Library for Distributed Array Libraries and
Compiler Run-Time Systems,” Lecture Notes in Computer
Science, pp. 533-546, Apr. 1999.

[7] J. Yang and R. Gupta, “Energy-Efficient Load and Store
Reuse,” in Proc. IEEE/ACM International Symposium on
Low Power Electronics and Design, 2001, pp. 72-75.

[8] H. Hwang and J. Shann, “An X86 Load/Store Unit with
Aggressive Scheduling of Load/Store Operations,” in Proc.
IEEE International Conference on Parallel and Distributed
Systems, 1998, pp. 496-503.

[9] T. Moreshet and R. I. Bahar, “Effects of speculation on per-
formance and issue queue design,” IEEE Trans. Very Large
Scale Integration Systems, pp. 1123-1126, Oct. 2004.

[10] C. Lemuet, W. Jalby, and S. Touati, “Improving Load/Store
Queues Usage in Scientific Computing,” in Proc. IEEE Inter-

national Conference on Parallel Processing, 2004, pp. 38—
45.

[11] T. Ohneda, M. Kondo, M. Imai, and H. Nakamura, “Design
and evaluation of high performance microprocessor with re-
configurable on-chip memory,” in Proc. IEEE Asia-Pacific
Conference on Circuits and Systems, 2002, pp. 211-216.

[12] B. Donchev, G. Kuzmanov, and G. N. Gaydadjiev, “External
Memory Controller for Virtex II Pro,” in Proc. International
Symposium on System-on-Chip, 2006, pp. 37-40.

[13] E. Vlachos, “Design and Implementation of a Coherent
Memory Sub-System for Shared Memory Multiprocessors,”
Computer Architecture & VLSI Systems Laboratory, Univer-
sity of Crete, Tech. Rep., July 2006.



