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Efficient Execution of Video

Applications
on Heterogeneous Multi- and Many-Core Processors

Abstract

I
n this dissertation we present methodologies and evaluations aiming at

increasing the efficiency of video coding applications for heterogeneous

many-core processors composed of SIMD-only, scratchpad memory based

cores. Our contributions are spread in three different fronts: thread-level par-

allelism strategies for many-cores, identification of bottlenecks for SIMD-only

cores, and software cache for scratchpad memory based cores.

First, we present the 3D-Wave parallelization strategy for video decod-

ing that scales for many-core processors. It is based on the observation that

dependencies between frames are related with the motion compensation ker-

nel and motion vectors are usually within a small range. The 3D-Wave strat-

egy combines macroblock-level parallelism with frame- and slice-level par-

allelism by overlapping the decoding of frames while dynamically managing

macroblock dependencies. The 3D-Wave was implemented and evaluated in a

simulated many-core embedded processor consisting of 64 cores. Policies for

reducing memory footprint and latency are presented. The effects of memory

latency, cache size, and synchronization latency are studied.

The assessment of SIMD-only cores for the increasing complexity of

current multimedia kernels is our second contribution. We evaluate the suit-

ability of SIMD-only cores for the increasing divergent branching in video

processing algorithms. The H.264 Deblocking Filter is used as test case. Also,

the overhead imposed by the lack of a scalar processing unit for SIMD-only

cores is measured using two methodologies. Low area overhead solutions are

proposed to add scalar support to SIMD-only cores.

Finally, we focus on the memory hierarchy and we propose a new soft-

ware cache organization to increase the efficiency and efficacy of scratchpad

memories for unpredictable and indirect memory accesses. The proposed Mul-

tidimensional Software Cache reduces software cache overhead by allowing

the programmer to exploit known access behavior in order to reduce the num-

ber of accesses to the software cache and by grouping memory requests. An

instruction to accelerate MDSC lookup is also presented and analyzed.
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1
Introduction

I
n the past, increasing computational demand was mainly satisfied by in-

creasing the clock frequency and by exploiting more instruction-level par-

allelism (ILP). Due to the inability to increase the clock frequency much

further because of thermal constraints and because it is difficult to exploit more

ILP, multi-core architectures have appeared on the market. As the number of

transistors in a die keep increasing as the fabrication technology continuously

evolve, it is expected that the number of cores on a chip will double every three

years [91]. Current Intel processor Westmere features 6 high performance

cores in a single die [54]. AMD also produces a 6 core processor, the Phe-

nom II [30]. The power budget for the processor, however, does not increase,

as heat releasing capacity does not have changed. This limits the number of

computations that can be performed simultaneously on the processor.

On the other hand, the consumer market pushes higher quality and

feature rich media experience. Audio is shifting from lossy (such as MP3)

to lossless compression (FLAC [23], DTS-HD Master Audio [31], Dolby

TrueHD [28]), even in multichannel formats. High Definition video play-

back and recording are already present in mobile devices [70] and the next

devices capable of decoding 4K (4096×3072) video resolution [73] are being

developed [27]. 4K resolution video is even already supported by the internet

streaming video service YouTube [84].

1
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Another feature being pushed by the market is the 3D video in stereo-

scopic (at the time of writing) and soon in freeview (glasses free 3D) formats.

Stereoscopic 3D requires 2 different images, one for each eye, to be displayed

simultaneously. It relies on glasses that filter the correct image to each eye.

Freeview experience, however, is already being advertised [69] and requires

up to 9 frames to be displayed simultaneously. These features are covered

with amendments in the H.264 standard [92], called Multiview Video Coding

(MVC) [19]. In order to decrease the bitstream size, the extra frames depend

on the simultaneous and previous ones. This results in an even higher compu-

tational complexity than running several independent H.264 streams.

To enable the processing of this new media contents within the limits

of the power budget, an increase in power efficiency is needed. One option to

increase power efficiency is to parallelize the application on a heterogeneous

multi-/many-core processor composed of power efficient cores in tune with

the target applications characteristics [53, 52]. This, however, requires thread-

level parallelism (TLP) in applications. TPL is the case when different threads

or processes can execute simultaneously, either on the same or different data.

Moreover, the amount of thread-level parallelism should be sufficient to scale

the processing to a large number of cores to provide the required computational

power by increasing the number of cores. Fortunately, multimedia processing

usually exhibits TLP but current approaches do not scales to large number of

cores [66].

Multimedia applications typically also exhibit significant amounts of

data-level parallelism (DLP). DLP is the case when the same operation or task

can be applied simultaneously on different pieces of data. DLP can be ex-

ploited in a power-efficient manner by means of Single-Instruction Multiple-

Data (SIMD) operations. SIMD units have been widely used by high-end pro-

cessors to accelerate multimedia applications. The Sony-Toshiba-IBM (STI)

Cell processor [50] brought this concept further. The Cell processor is an het-

erogeneous multi-core processor that features a general purpose core and 8

SIMD-only cores. SIMD-only cores are cores which instructions operate ex-

clusively on a SIMD fashion, i.e., on all elements of the input vectors simulta-

neously. Its design has been driven by power efficiency [45].

The shift towards multi-core architectures also brings new challenges

for the memory hierarchy. One of these challenges is the design of the mem-

ory hierarchy tuned for power efficiency. Scratchpad memories reappeared as a

solution because they can be very efficient in terms of power and performance

for applications with predictable memory access patterns [12]. Furthermore,



1.1. SARC ARCHITECTURE 3

multimedia applications feature mostly predictable data sets and access pat-

terns making it possible to transfer the necessary data before the computation.

These data transfers usually need to be explicitly exposed by the program-

mer. This structure also makes possible to overlap computation and data trans-

fers by means of double buffering techniques. Scratchpad memories also have

predictable latencies. However, some multimedia applications do not feature

predictable data sets and access patterns. These applications present two sig-

nificant problems for scratchpad memory based processors. The first problem

is that the data transfer cannot be overlapped with the computation. The pro-

cess has to wait for the data to be transferred to the scratchpad memory. The

second problem is that data locality cannot easily be exploited. It is difficult to

keep track of the memory area present in the scratchpad memory and new data

must be requested for each access.

The remainder of this chapter is organized as follows. Section 1.1

presents the processor architecture template that will be used as the baseline

for improvements. The objectives of this thesis are detailed in Section 1.2. The

organization and contributions of this thesis are presented in Section 1.3.

1.1 SARC Architecture

This thesis is part of the collaborative Scalable computer ARChitecture

(SARC) project [83, 78]. The SARC project aimed at designing a scalable

many-core architecture for a wide range of applications. The SARC archi-

tecture is a heterogeneous many-core architecture template that is based on

a master-worker programming model. It targets a new class of task-based

data-flow programming models that includes StarSs [77], Cilk [14, 39], Rapid-

Mind [65], Sequoia [36], and OpenMP 3.0 [74, 25]. These programming mod-

els allow programmers to write efficient parallel programs by identifying can-

didate functions to be off-loaded to processing cores.

A SARC processor instance consists of Master cores, target applications

or application domain accelerators, Network on Chip (NoC), a banked level-

2 (L2) cache, and Memory Interface Controllers (MICs). Figure 1.1 depicts

the block diagram of a general SARC processor instance. The type and num-

ber of the application accelerators as well as the number of master cores, L2

banks, and MICs are implementation dependent. A brief description of each

architectural component is given below.

The Master cores are responsible for executing the master threads. The

Master cores start the applications and create the threads that will be executed
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Figure 1.1: Block diagram of a generic SARC instance.

by the Worker cores. It runs the runtime system, which manages data and task

scheduling. A Master core can also create threads for other Master cores that

will also spawn Worker threads. Because the system performance depends on

the tasks being sequentially spawned by the master core, their single-thread

performance is critical. Therefore, they are high-performance out-of-order

cores. Master cores rely on data and instruction caches to exploit locality as

their working set is not predictable.

Application accelerators consist of a set of locally connected Worker

cores. The Worker cores are specialized application or application domain

cores. They execute the tasks offloaded from the Master cores. A common fea-

ture of the Worker cores is the presence of a scratchpad memory. The scratch-

pad memory is mapped in the logical address space, so Workers can access

scratchpad memories of other Workers. Workers feature a DMA controller to

transfer data from/to their scratchpad memories to/from main memory while

processing. In this thesis, we will focus on the development of the SARC

multimedia instance, including the microarchitecture of the Worker cores.

The SARC NoC consists of a hierarchy of K-buses. A K-bus is a col-

lection of buses. For instance, a 4-bus allows for up to 4 simultaneous data

transfers, given the fact that the destination ports are mutually exclusive.
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A banked L2 cache is implemented to eliminate the need for maintain-

ing cache coherence. This is possible because data is mapped to a cache bank

based on its physical address. The L2 cache in the SARC architecture tem-

plate captures both misses from L1 caches and DMA transfers. The L2 cache

accesses the external memory via the MICs. Each MIC supports several Dy-

namic Random-Access Memory (DRAM) channels.

The above description of the SARC architecture template is the result of

the research realized through the period of the project, from 2006 to 2010, and

were not finalized during the development of the work described in this thesis.

Because of this, the used architecture template in this thesis is slightly differ-

ent. The differences are mainly restricted to the memory hierarchy. While in

the described architecture template the Worker cores features a cache hierar-

chy, the version used in this thesis features only a scratchpad memory. Also,

the described L2 cache is not featured on the experiments and, therefore, the

DMA unit accesses the external memory directly.

Thought this thesis, we use the STI Cell processor and its Synergistic

Processing Elements (SPEs) [43] as an architectural emulator for the SARC

media instance and the Worker core, respectively. The Cell was chosen be-

cause it was, at the beginning of our work, an already available heterogeneous

multi-core multimedia accelerator that shares several characteristics with the

SARC accelerators. The Cell processor uses a ring buses to connect the SPEs,

similarly to the SARC K-buses local connection, and the SPEs are scratchpad

memory based cores that transfer data via DMA requests. The Cell processor

and the SPE cores are described in detail in Section 4.3.

1.2 Objectives

In the design of the SARC multimedia instance, we focus on three topics to

achieve efficient execution of video coding applications on many-cores pro-

cessors. TLP, DLP, and memory hierarchy need to be efficiently exploited in

order to scale the computational throughput with the number of cores. Im-

provements on each of these topics correspond to the main objectives of this

thesis.

Current parallelization techniques for high definition (from 1280×720

to 1920×1080 pixels) video processing do not properly scale over 8 cores [66,

22]. Therefore, the first objective of this thesis is to leverage video coding ap-

plications to the forthcoming many-core era. This is key for the development of

many-core processors because if there is not sufficient parallelism, most of the
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cores will be idle or under utilized. The solution should exhibit high scalabil-

ity with increasing number of cores in order to be able to provide the required

performance for future applications. The solution should also be feasible in

terms of processing latency and memory requirements, among others.

Identifying and eliminating bottlenecks in the execution on SIMD-only

cores is the second objective of this thesis. SIMD processing has well doc-

umented processing overheads [80, 89, 8], such as data transpositions, data

(un)packing, and alignment. Transposition is the operation of writing the

columns of a matrix A as the rows of a matrix AT . This operation is re-

quired when data store in row-wise form (in single memory word) need to be

computed in a column-wise fashion (in separated memory words). Data pack-

ing is the selection of data scattered over memory words into a SIMD word

while unpacking is the merging of the contents of the SIMD word back with

the original content of the memory words. Alignment issues happen when the

data to be processed are split in two consecutive SIMD words, as they need to

be combined in one single word to be processed. SIMD-only cores introduces

new aspects, in contrast with cores with SIMD units, that lead to overheads.

These specific SIMD-only overheads and how they could be eliminated are

still an open topic.

Finally, the third objective of this thesis is to increase the effectiveness

and efficiency of scratchpad memories for unpredictable memory accesses. In

general, scratchpad memories are power efficient and fit well with the charac-

teristics of video coding applications, as well as other multimedia applications.

Some multimedia kernels, however, present access behaviors that do not allow

the request of required data in advance. In this case, the core will have to stall

while waiting for the data. One solution for such kernels with irregular and

indirect data accesses is to use software caches. Software caches, however,

incur significant overhead with the cache access being the dominant overhead,

as will be demonstrated later in this thesis. Software and hardware alternatives

should be analyzed in order to reduce software cache overhead.

1.3 Organization and Contributions

As mentioned in the previous section, we focus in three topics: TLP, DLP, and

memory hierarchy. Each of these topics is addressed in a set of two chapters

as follows. Chapters 2 and 3 deals with the exploitation of TLP in video pro-

cessing for many-core architectures. It is followed, in Chapters 4 and 5, by the

evaluation of SIMD-only cores for divergent branching kernels and scalar pro-
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cessing. Solutions for increasing efficiency and efficacy of scratchpad mem-

ories for unpredictable and indirect memory accesses are presented in Chap-

ters 6 and 7. The contributions of this thesis and the contents of each chapter

are presented below.

The first main contribution of this thesis is the 3D-Wave video

(de)coding parallelization strategy that scales to a large number of cores.

This strategy breaks frame dependencies in a novel way by overlapping the

(de)coding of several inter-dependent frames and stressing the MB parallelism

that can be exploited. We choose the H.264 as our target video decoding stan-

dard due to its high computational demands and wide utilization. In order to

evaluate the potential of the 3D-Wave strategy, the Static 3D-Wave evaluation

methodology is introduced in Chapter 2. The Static 3D-Wave calculates the

number of macroblocks (MBs) that can be processed in parallel given a max-

imum motion vector length, where each MB has a fixed decoding time. A

second evaluation methodology, called Dynamic 3D-Wave, is also presented.

It computes the number of MBs that can be processed in parallel by evaluating

the MB dependencies chain in a given video sequence. A fixed MB decoding

time is also assumed. Chapter 2 also briefly presents the H.264 standard and

review previous parallelization techniques for video (de)coding.

Implementing the 3D-Wave in a simulated many-core processor turned

out to be quite challenging and led to several contributions. A mechanism

that guarantees that MBs are not processed before their intra and inter frame

dependencies are satisfied is presented. Furthermore, a decoding policy is in-

troduced to reduce the latency of the technique given the number of frames

decoded simultaneously. In addition, in order to control the size of the work-

ing memory, a frame scheduling policy is introduced to control the number of

frames in flight. Memory latency, impact of L1 cache size, impact of task man-

agement latency, and entropy decoding acceleration are also evaluated. The

implementation of the 3D-Wave and the above contributions and evaluations

are described in Chapter 3.

The second main contribution of this thesis is the assessment of SIMD-

only cores for divergent branching multimedia kernels. As a case study, the

highly adaptive H.264 Deblocking Filter (DF) kernel is vectorized with SIMD

instructions on the Worker core. The vectorized DF execution is analyzed and

its overheads are classified into SIMD and divergent branching related. For

comparison, the DF is also vectorized with SIMD instructions in a similar

general purpose core with a SIMD processing unit. The described assessment

is presented in Chapter 4. Chapter 4 also presents a brief description of the
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DF kernel, a literature review on SIMD overhead, and a description of the Cell

processor with focus on the SPE (used to emulate the Worker core).

The quantification of the scalar processing overhead on SIMD-only

cores is the third main contribution of this thesis. The scalar processing in

current SIMD-only cores is handled by the compiler. The compiler introduces

a number of operations to guarantee the correct program semantic. These op-

erations, however, introduce overhead in terms of extra instructions to be exe-

cuted and pipeline stalls. Two evaluation methodologies are developed in or-

der to quantify the overhead. The first methodology, called Large-Data-Type,

eliminates the sources of scalar processing overhead in SIMD-only cores by

increasing the size of the scalar word to 128 bits. Without the sources of over-

head, the program execution in the SIMD-only core is equal to a program

execution in a core with scalar support. The second methodology compares

the execution times of kernels in the SIMD-only core with a similar core with

scalar support. Additionally, special load and store instructions that minimize

the scalar overhead are presented. The scalar overhead evaluation and the pro-

posed instructions are presented in Chapter 5.

In Chapter 6, we contribute by presenting a novel Multidimensional

Software Cache (MDSC) organization for scratchpad memory based cores that

reduces software cache overhead. The MDSC reduces the software cache over-

head on two fronts. First, it allows the exploitation of known access behavior

to minimize the number of cache accesses. This exploitation is enabled by

the use of matrix indices instead of linear addresses combined with the multi-

dimensional cache blocks. For instance, if the programmer (or the compiler)

identifies access patterns in the program that are restricted to a small number of

cache blocks, the first access to the cache block is kept while the subsequent ac-

cesses can be replaced by pointer arithmetic. Second, the MDSC groups mul-

tiple external memory requests, which reduces latency when compared with

the sum of individual transfers.

The last main contribution of this thesis is an instruction to accelerate

the MDSC. The proposed instruction, called LookUp SC, performs the tag

formation, cache look-up, and address calculation. These steps are the main

body of the MDSC access functions that are the predominant overhead of the

MDSC, as will be presented on Chapter 6. Nevertheless, these steps consist

of operations that are sufficiently simple to be implemented in hardware and

many steps can be performed in parallel. The LookUp SC instruction resulted

in speedups ranging from 1.28 to 2.1 in the evaluated kernels. The description

and evaluation of the LookUp SC instruction is presented in Chapter 7.
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Chapter 8 concludes this dissertation. A summary of the presented con-

tent and contributions are given. Chapter 8 also includes directions on how the

work can be extended in the future, based on the acquired results.

Because the contributions of this thesis relate to different topics, there is

no separated related work chapter. Instead, the related work will be presented

per chapter or per group of chapters, in order to provide easiness of reference

and to obtain a more consistent structure of the thesis.





2
A Scalable Parallel Algorithm for H.264

Decoding

A
s argued in Chapter 1, an important question is whether emerging and

future applications exhibit sufficient parallelism, in particular thread-

level parallelism (TLP), to exploit the large numbers of cores future

many-core processors are expected to contain. In this chapter, we investigate

the amount of TLP available in video coders/decoders (codecs), an important

application domain now and in the future. Specifically, we analyze and present

a method to enhance the parallel scalability of the H.264 [92] decoding pro-

cess.

This chapter is organized as follows. Section 2.1 briefly introduces the

need and applicability of scaling video processing to many-core architectures.

Section 2.2 presents a short overview of the H.264 standard. Possible par-

allelization techniques for H.264 and related work are reviewed in the Sec-

tion 2.3. In Section 2.4, we present a novel parallelization strategy called 3D-

Wave and analyze the amount of TLP it exhibits using a static approach. Sec-

tion 2.5 discusses the effects of limiting resources available to the 3D-Wave

strategy. A dynamic 3D-Wave evaluation that takes real macroblock (MB)

dependencies into account is briefly presented in Section 2.6. Section 2.7 con-

cludes this chapter.

11
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2.1 Introduction

The demand for computational power increases continuously in the consumer

market as new applications such as Ultra High Definition (UHD) video [73],

3D TV [29], and real-time High Definition (HD) video encoding are fore-

casted. In the past this demand was mainly satisfied by increasing the clock fre-

quency and by exploiting more instruction-level parallelism (ILP). As noted in

Chapter 1, however, due to the inability to increase the clock frequency much

further because of thermal constraints and because it is difficult to exploit more

ILP, multi-core architectures have appeared on the market.

This new paradigm relies on the existence of sufficient thread-level par-

allelism (TLP) to exploit large number of cores. Techniques to extract TLP

from applications will be crucial to the success of multi-cores. This chap-

ter investigates the exploitation of the TLP available in an H.264 video de-

coder on an multi-core processor H.264 was chosen due to its high compu-

tational demands, wide utilization, and development maturity. Furthermore,

even more demanding applications such as 3D TV are based on current video

coding methods [68]. Although a 64-core processor is not required to decode

a Full High Definition (FHD) video in real-time, real-time encoding remains a

problem, and decoding, furthermore, is part of encoding.

In this chapter we propose a novel parallelization strategy, called 3D-

Wave, for H.264 decoding which is scalable to a large number of cores. It

is mainly based on the observation that inter-frame dependencies have a lim-

ited spatial range. Because of this, certain MBs of consecutive frames can be

decoded in parallel. In this chapter, we analyze the available MB-level paral-

lelism using a static approach, called Static 3D-Wave. In this static approach,

the decoding of the next frame is started as soon as the reference window of the

upper-left MB is decoded, given an arbitrary maximum motion vector (MV)

length. We use arbitrary MV lengths because the actual MV lengths on real se-

quences are much smaller than the maximum MV length allowed by the H.264

standard, as we will present in Section 2.6. In Section 2.6 we also consider the

actual MV length and analyze how this affects the scalability. This will be used

as basis for the implementation described in Chapter 3.

Although our focus in this chapter is on the decoder, the proposed tech-

nique is also suitable for parallelizing the encoder. Because in the encoder the

dependencies are known a priori, however, it is easier to apply the 3D-Wave to

the encoder than to the decoder. Due to the restrictions and challenges in the

decoder, it was chosen as the target of this study.
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This chapter is the result of a close collaboration effort with two other

PhD students, Cor Meenderinck and Mauricio Alvarez. Their work is pre-

sented mainly in the introductory sections of this chapter. Credit will be given

where it is due. Broadly, we made the observation which forms the basis of

the 3D-Wave strategy and performed an initial evaluation using the static ap-

proach, while Cor Meenderinck performed the dynamic analysis, and Mauricio

Alvarez reviewed the related literature.

2.2 Overview of the H.264 Standard ∗

Currently, one of the leading video coding standard, in terms of compression

and quality is H.264 [2, 72]. It is used in Blu-Ray Disc, internet streaming,

and many countries are using or will use it for terrestrial television broadcast,

satellite broadcast, and mobile television services. It has a compression im-

provement of over two times compared to previous standards such as MPEG-4

ASP and H.262/MPEG-2 [98]. The H.264 standard was designed to serve a

broad range of application domains ranging from low to high bitrates, from

low to high resolutions, and a variety of networks and systems, e.g., inter-

net streams, mobile streams, disc storage, and broadcast. The H.264 standard

was jointly developed by ITU-T Video Coding Experts Group (VCEG) and

ISO/IEC Moving Picture Experts Group (MPEG). It is also called MPEG-4

part 10 or AVC (Advanced Video Coding).

Figures 2.1 and 2.2 depict block diagrams of the decoding and the en-

coding process of H.264, respectively. The main kernels are Prediction (intra

prediction, Motion Estimation (ME), and Motion Compensation (MC)), Dis-

crete Cosine Transform (DCT), Quantization, Deblocking filter, and Entropy

Coding. They operate on macroblocks (MBs), which are blocks of 16 × 16
pixels, although the standard allows some kernels to operate on smaller blocks,

down to 4 × 4. H.264 uses the YCbCr color space with a 4:2:0 subsampling.

Advances in ME/MC is one of the major contributors to the compres-

sion improvement of H.264. The standard allows variable block sizes ranging

from 16×16 down to 4×4, and each block has its own MV(s). The MV is quar-

ter sample accurate. Furthermore, multiple reference frames can be used in a

weighted fashion. This significantly improves coding occlusion areas where

an accurate prediction can only be made from a frame further in the past. The

MC kernel will be further detailed in Chapter 6.

∗This section is based on text written mainly by Cor Meenderinck.
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Two types of intra coding are supported, which are denoted as In-

tra 4×4 and Intra 16×16. The first type uses spatial prediction on each 4 × 4
luminance block. Eight modes of directional prediction are available, among

them horizontal, vertical, and diagonal. This mode is well suited for MBs with

small details. For smooth image areas the Intra 16×16 type is more suitable,

for which four prediction modes are available. Chroma components are esti-

mated for whole MBs using one specialized prediction mode.

MPEG-2 and MPEG-4 part 2 employed an 8 × 8 floating point trans-

form. However, due to the decreased granularity of the motion estimation,

there is less spatial correlation in the residual signal. Thus, a standard 4 × 4
(that means 2×2 for chrominance) transform is used, which is as efficient as a

larger transform [63]. Moreover, a smaller block size reduces artifacts known

as ringing and blocking. An optional feature of H.264 is Adaptive Block size

Transform (ABT), which adapts the block size used for DCT to the size used

in motion estimation [100]. Furthermore, to prevent rounding errors that occur

in floating point implementations, an integer transform was chosen.
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Processing a frame in MBs can produce blocking artifacts, generally

considered the most visible artifact in prior standards. This effect can be

resolved by applying a deblocking filter around the edges of a block. The

strength of the filter is adaptable through several syntax elements [59]. While

in H.263+ this feature was optional, in H.264 it is standard and it is placed

within the motion compensated prediction loop (see Figure 2.1) to improve

the motion estimation. The Deblocking Filter will be further detailed in Chap-

ter 4.

There are two classes of entropy coding available in H.264: Vari-

able Length Coding (VLC) and Context Adaptive Binary Arithmetic Coding

(CABAC). The latter achieves up to 10% better compression but at the cost

of large computational complexity [64]. The VLC class consists of Context

Adaptive VLC (CAVLC) for the transform coefficients, and Universal VLC

(UVLC) for the small remaining part. CAVLC achieves large improvements

over simple VLC, used in prior standards, without the full computational cost

of CABAC.

Figure 2.3 depicts how the video data is structured in H.264. A video

sequence is composed out of Group of Pictures (GOPs) which are independent

sections of the video sequence. GOPs are used for synchronization purposes

because there are no temporal dependencies between them. Each GOP is com-

posed by a set of frames, which can have temporal dependencies when motion

prediction is used. Each frame can be composed of one or more slices. The

slice is the basic unit for encoding and decoding. Each slice is a set of MBs

and there are no temporal or spatial dependencies between slices. Further,

there are MBs, which are the basic units of prediction. MBs are composed

of luma and chroma blocks of variable size. Finally each block is composed

of picture samples. Data-level parallelism can be exploited at each level of

the data structure, each one having different constraints and requiring different

parallelization methodologies.

H.264 defines three main types of slices and macroblocks: I, P, and B.

An I-slice uses intra prediction MBs (I MBs) and is independent of other slices.

In intra prediction a MB is predicted based on adjacent blocks. A P-slice is

composed of I and P MBs. A P-MB uses motion estimation and depends on

one or more previous slices, either I or P. Motion estimation is used to exploit

temporal correlation between slices. Finally, B-slices are composed of I, P

and B MBs. A B-MB uses bidirectional motion estimation and depends on

slices from past and future [38]. Figure 2.4 depicts a typical slice order and the

dependencies, assuming each frame consists of one slice only. The standard
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Figure 2.3: H.264 data structure.

I B B P B B P

Figure 2.4: A typical slice/frame sequence and its dependencies.

also defines SI and SP slices that are slightly different from the ones mentioned

before and which are targeted at mobile and internet streaming applications.

The standard was designed to suite a broad range of video application

domains. Each domain, however, is expected to use only a subset of the avail-

able options. For this reason profiles and levels were specified to mark con-

formance points. Encoders and decoders that conform to the same profile are

guaranteed to inter-operate correctly. Profiles define sets of coding tools and

algorithms that can be used while levels place constraints on the parameters of

the bitstream.

The standard initially defined three profiles, but has since then been ex-

tended to a total of 11 profiles, including three main profiles, four high profiles,
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and four all-intra profiles. The three main profiles and the most important high

profile are:

• Baseline Profile (BP): the simplest profile mainly used for video con-

ferencing and mobile video.

• Main Profile (MP): intended to be used for consumer broadcast and

storage applications, has been overtaken by the high profile.

• Extended Profile (XP): intended for streaming video and includes spe-

cial capabilities to improve robustness.

• High Profile (HiP) intended for high definition broadcast and disc stor-

age, and is used in HD DVD and Blu-ray.

Besides HiP there are three other high profiles that support up to 14 bits

per sample, 4:2:2 and 4:4:4 sampling, and other features [92]. The all-intra

profiles are similar to the high profiles and are mainly used in professional

camera and editing systems.

In addition 16 levels are currently defined which are used for all profiles.

A level specifies, for example, the upper limit for the picture size, the decoder

processing rate, the size of the multi-picture buffers, and the video bitrate.

Levels have profile independent parameters as well as profile specific ones.

The H.264 standard has many options. For more details the interested reader

is referred to [99, 93].

2.3 Parallelizing H.264 †

The coding efficiency gains of advanced video codecs such as H.264 come at

the price of increased computational requirements. The demands for comput-

ing power increases also with the shift towards high definition resolutions. As

a result, current high performance uniprocessor architectures are not capable

of providing the required performance for real-time processing [5, 76, 55, 47].

In order to obtain the required performance for real-time operation at

high definition, it is necessary to exploit parallelism. The H.264 codec can be

parallelized either by a task-level or a data-level decomposition. Each tech-

nique has advantages and disadvantages. In this section we examine both and

compare them in terms of communication and synchronization requirements,

load balancing, and scalability.

†This section is based on text written mainly by Mauricio Alvarez.
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2.3.1 Task-Level Decomposition

In a task-level decomposition the functional partitions of the algorithm are

assigned to different processors. As depicted in Figure 2.1, the process of

decoding H.264 consists of performing a series of operations on the coded

input bitstream. Some of these tasks can be done in parallel and the processing

can be pipelined where the results of one task are streamed as input to the next.

Because of this streaming behavior, task-level decomposition requires

a significant amount of communication between the different tasks in order to

send the data from one processing stage to the other, and this may become a

bottleneck. Additionally, synchronization between the modules is required.

The main drawbacks, however, of task-level decomposition are poor

load balancing and limited scalability. Balancing the load is difficult because

the time to execute each task is not known before hand and depends on the

data being processed. Scalability is also difficult to achieve because increas-

ing the number of processors requires to redistribute the tasks and a new load

balancing of the pipeline. Finally, from the software optimization perspective,

the task-level decomposition requires that each task/processor implements a

specific software optimization strategy.

Gulati et al. [44] describe a system for encoding and decoding H.264

on a multiprocessor architecture using a task-level decomposition approach.

The employed multiprocessor includes eight DSPs and four control processors.

This system achieves real-time operation for low resolution video inputs, using

the baseline profile which is a limited set of the H.264 standard features (e.g.,

no CABAC, no B-frames).

2.3.2 Data-Level Decomposition

In a data-level decomposition the work (data) is divided into smaller parts and

each of the parts is assigned to a different processor. Each processor runs the

same program but on different (multiple) data elements (SPMD). In H.264 data

decomposition can be applied at different levels of the data structure.

2.3.2.1 GOP-Level Parallelism

The coarsest grained parallelism is at the GOP-level (see Figure 2.3.2). H.264

can be parallelized at the GOP-level by defining a GOP size of N frames and

assigning each GOP to a different processor. GOP-level parallelism requires
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a significant amount of memory for storing all the frames, and therefore this

technique maps well to multicomputers in which each processing node has a

lot of computational and memory resources. Additionally, parallelization at

the GOP-level results in a very high latency that cannot be tolerated in some

applications. This scheme is not well suited for multi-core architectures, in

which the memory is shared by all the processors, because the working set is

likely larger than the last-level of shared cache.

Rodriguez et al. [81] implemented the H.264 encoder using GOP- (and

slice-) level parallelism on a cluster of workstations using MPI. Although real-

time operation can be achieved with such an approach, the latency is very high.

2.3.2.2 Frame-Level Parallelism

The next level after GOP-level is frame-level parallelism. As shown in Fig-

ure 2.4, in an I-P-B-B frame sequence inside a GOP, some frames are used as

reference frames for other frames (such as I and P frames), while some other

frames (B frames) are not used as reference frames. That means that different B

frames can be processed in parallel. In this case, a control processor can assign

independent frames to different processors. Frame-level parallelism achieves

good load balancing but has scalability problems. This is due to the fact that

usually there are no more than two or three B frames between P frames. This

limits the amount of TLP to a few threads. The main disadvantage of frame-

level parallelism, however, is that, unlike previous video standards, in H.264

B frames can be used as reference frames. In that case, the encoder cannot use

B frames as reference if the decoder wants to exploit frame-level parallelism.

This might increase the bitrate, but more importantly, encoding and decoding

are usually completely separated and there is no way for a decoder to enforce

its preferences on the encoder.

Frame-level parallelism has been implemented in the open-source en-

coder x264 [102] and is also described in the work of Chen et al. [20], where a

combination of frame-level and slice-level parallelism is proposed. To obtain

frame-level parallelism they do not allow to use B-frames as reference in the

encoder and use a static I-P-B-B-P-B-B frame sequence. They obtain a 3.8×
speedup on a machine with 4 cores. Their approach, however, does not scale

to more processors.
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2.3.2.3 Slice-Level Parallelism

In H.264 as well as in most current hybrid video coding standards, each picture

is partitioned into one or more slices. Slices have been included in order to add

robustness to the encoded bitstream in the presence of network transmission

errors and losses. In order to accomplish this, slices in a frame should be

completely independent from each other. That means that no content of a

slice is used to predict elements of other slices (in the same frame) [99, 92].

Although support for slices have been designed for error resilience, it can be

used for exploiting TLP because slices in a frame can be encoded or decoded

in parallel. The main advantage of slices is that they do not have dependency

or ordering constraints. This allows exploiting slice-level parallelism without

making significant changes to the code.

There are a number of disadvantages associated with exploiting TLP

at the slice-level, however. First, in H.264 the number of slices per frame is

determined by the encoder. That poses a scalability problem for parallelization

at the decoder level as the encoder can produce frames with only one slice.

Second, H.264 includes a deblocking filter that can be applied across slice

boundaries and thus making them dependent. Finally, the main disadvantage of

slices is that an increase of the number of slices per frame increases the bitrate

for the same quality level (or, equivalently, it reduces quality for the same

bitrate level). Meenderinck et al. [66] report that when the number of slices

increases to 32 slices the bitrate increase ranges from 3% to 24%, and when

going to 64 slices the increase ranges from 4% to 34%. For some applications

this bitrate increase is unacceptable and thus using a large number of slices to

obtain high scalability is not feasible.

Several works have proposed to utilize slice-level parallelism in order

to exploit TLP in the H.264 encoder and/or decoder. In [21, 20] a combination

of frame-level and slice-level parallelism is proposed for IA32 Pentium pro-

cessors with Simultaneous Multi-Threading (SMT) and CMP multi-threading

capabilities. The proposed algorithm first exploits frame-level parallelism and

when the limit of independent frames is reached, slice-level parallelism is ad-

ditionally exploited. This scheme cannot scale to a large number of proces-

sors because of the limited frame-level parallelism and the coding efficiency

limitations of having a large number of slices. In [82] a scheme is proposed

for exploiting slice-level parallelism in the H.264 decoder by modifying the

encoder. The main idea is to overcome the load balancing disadvantage by

developing an encoder that produces slices that are not balanced in the number

of MBs, but in their decoding time. The main disadvantages of this approach
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Figure 2.5: 2D-Wave approach for exploiting MB parallelism. The arrows indicate

dependencies.

is that it requires modifications to the encoder in order to exploit parallelism

at the decoder, and the inherent loss of coding efficiency due to having a large

number of slices.

2.3.2.4 Macroblock-Level Parallelism

To exploit parallelism between macroblocks (MBs) it is necessary to take into

account the dependencies between them. In H.264, motion vector prediction,

intra prediction, and the deblocking filter use data from left, upper-left, upper-

right, and upper neighboring MBs. MBs can be processed out of scan order

provided these dependencies are satisfied. Processing MBs in a diagonal wave-

front manner satisfies all the dependencies and therefore allows to exploit par-

allelism between MBs. We refer to this parallelization technique as 2D-Wave,

to distinguish it from the 3D-Wave proposed in this chapter.

Figure 2.5 depicts an example for a 5×5 MBs image frame (80×80

pixels). Assuming it takes one time slot to decode a MB, at time slot T7 three

independent MBs can be processed: MB (4,1), MB (2,2), and MB (0,3). The

figure also shows the dependencies that need to be satisfied in order to process

each of these MBs. The maximum number of independent MBs in a frame

depends on the resolution. Figure 2.6 depicts the available MB-level paral-

lelism over time for Standard Definition (SD), High Definition (HD), and Full

High Definition (FHD) resolutions, assuming that the time to decode a MB is

constant. In other words, it shows the number of MBs that can be decoded in

parallel at each time slot.
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Figure 2.6: MB parallelism for a single SD, HD, and FHD frame using the 2D-Wave

approach.

MB-level parallelism has several advantages over other parallelization

schemes for H.264. First, this scheme potentially has good scalability since,

as shown in Figure 2.6, the number of independent MBs increases with the

resolution of the image. Second, it is possible to achieve good load balancing

provided a dynamic scheduling system is used. A dynamic scheduling system

is a system that dynamicaly evaluates dependency resolutions and is needed

because the time to decode a MB is not constant and depends on the data be-

ing processed. The load would be balanced if a centralized scheduler would

dynamically assign a MB to a processor once all the dependencies of the MB

have been satisfied. Additionally, because in MB-level parallelization all the

processors/threads run the same program, the same set of software optimiza-

tions (for exploiting ILP and SIMD) can be applied to all processing elements.

MB-level parallelism has also some disadvantages, however. The first

one is that the entropy decoding cannot be parallelized using data decomposi-

tion, due to the fact that the lowest level of data that can be parsed from the

bitstream are slices. Individual MBs cannot be identified without performing

entropy decoding. That means that in order to decode independent MBs, they

should be entropy decoded first, in sequential order. This disadvantage can

be overcome by using special purpose instructions or hardware accelerators

for the entropy decoding process, such as the hardware accelerator described

in [75].
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The second disadvantage is that the number of independent MBs does

not remain constant during the decoding of a frame, as can be seen in Fig-

ure 2.6. Therefore, it is not possible to sustain a certain processing rate during

the decoding of a frame. This problem is solved by using the parallelization

strategy proposed in Section 2.4.

MB-level parallelism has been proposed in previous work. Van der Tol

et al. [95] proposed the exploitation of MB-level parallelism for optimizing

the H.264 decoding. The analysis was performed for a multiprocessor system

consisting of 8 Trimedia processors with private L1 caches and a shared L2

cache. The paper also suggested the combination of MB-level with frame-level

parallelism to increase the number of independent MBs, but did not analyze it

thoughtfully. The use of frame-level parallelism is determined statically by

the length of the MVs. Chen et al. [20] evaluated a similar approach for a

H.264 encoder: a combination of MB- frame-level parallelism on Pentium

machines with SMT and CMP capabilities. In the above mentioned works the

exploitation of frame-level parallelism is limited to two consecutive frames and

the identification of independent MBs is done statically by taking into account

the maximum allowed MV length, which is roughly half the vertical resolution

of the frame.

2.3.2.5 Block-Level Parallelism

The finest grain of data-level parallelism is at the block level. Most computa-

tions of the H.264 basic modules are performed at the block level. This applies,

for example, to the interpolations performed at the motion compensation stage,

to the IDCT, and to the deblocking filter. This level of data parallelism maps

well to SIMD instructions [104, 90, 5, 56]. SIMD parallelism is orthogonal to

the other levels of parallelism described above and because of that it can be

combined, for example, with MB- and frame-level parallelism to increase the

performance of each thread.

2.4 3D-Wave Strategy

None of the approaches described above scale to future many-core architec-

tures consisting of 100 cores or more. Figure 2.6 shows that in the 2D-Wave,

there is a considerable amount of MB-level parallelism, but at the beginning

and at the end of processing a frame, there are only a few MBs that can be

processed in parallel. In this work we propose to start decoding a MB as soon
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as its reference area in the reference frame has been decoded. In other words,

we combine MB-level parallelism with frame-level parallelism. We refer to

our strategy as the 3D-Wave.

2.4.1 Parallelization Strategy

In the decoding process there are dependencies between frames only in the

Motion Compensation (MC) module. MC can be regarded as copying an area,

called the reference area, from the reference frame, and then adding this pre-

dicted area to the residual MB to reconstruct the MB in the current frame.

The reference area is pointed to by a Motion Vector (MV). The MV

length is limited by two factors: the H.264 level and the motion estimation

algorithm. The H.264 standard has levels which define the maximum length

of the vertical component of the MV and a fixed horizontal component for all

levels from -2048 to 2047.75, inclusive [2]. In the encoding process the motion

estimation maximum search range is usually restricted to only dozens of pixels,

because increasing the search range is very computationally demanding and

provides only a small benefit [61]. Most motion estimation algorithms use

some kind of strategy to decrease the search area, since exhaustive searching

the full range is computationally too expensive.

When the reference area has been decoded it can be used by the refer-

encing frame. Thus it is not necessary to wait until the entire frame, or max-

imum reference area, is completely decoded before decoding the next frame,

as in Van der Tol et al. [95]. The decoding process of the next frame can start

after the reference area of the reference frame(s) has been decoded. Figure 2.7

illustrates the 3D-Wave parallel decoding of frames, each of which is decoded

using the 2D-Wave strategy.

2.4.2 3D-Wave Static Evaluation

In order to obtain a first approximation of the potential of combining MB-

level parallelism with frame-level parallelism, we developed a static analysis

method. This method computes the number of MBs that could be processed

in parallel when decoding a video sequence, for a given MV range. In this

analysis a MB can be decoded after its reference range has been decoded in the

reference frame and its intra-frame dependencies has been satisfied. Figure 2.8

illustrates the reference range concept, assuming a MV range of 32 pixels. The

hashed MB in Frame 1 is the MB under consideration. Its reference range is
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Figure 2.7: 3D-Wave strategy: Frames can be decoded partially in parallel because

inter-frame dependencies have a limited range.

Figure 2.8: Reference range example: The hashed area in Frame 0 is the reference

range of the hashed MB in Frame 1.

represented by the hashed area in Frame 0. The MV can point to any area a the

range of [-32,+32] pixels, representing an offset in the vertical and horizontal

directions from the MB under consideration. In the same way, every MB in the

wavefront of Frame 1 has a reference range similar to the presented one, with

its respective displacement.

In this analysis, we assume that all available MBs are processed in par-

allel and have the same processing time. Once the reference range of the first

(upper-left) MB is decoded, the 2D-Wave decoding of the frame can start.

In this analysis the following conservative assumptions are made to cal-

culate the amount of MB-level parallelism. First, B frames are used as refer-

ence frames, since in the H.264 standard, B frames can be used as reference

frames. This also makes the evaluation valid for the Baseline profile of the

standard, where B frames are not used. When B frames are not used as refer-
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ence frames they can be decoded in parallel with other B frames and with the

next P frame in the decoding order.

Second, the reference frame is always the previous one. H.264 allows

multiple reference frames. In this evaluation the worst case is assumed, since

having the previous frame as the reference frame limits the progression of the

wave decoding of the current frame. In other words, the older the reference

frame is, the further it has been decoded.

Third, only the first frame of the sequence is an I frame. As I frames

do not have inter frame dependencies, they can be decoded in parallel with

their preceding frames. The number of frames between I frames, however, is

defined by the encoder and can be arbitrary large, e.g., 60 frames or more.

Because of that, only the first frame of the video sequence is considered to be

an I frame.

The static analysis methodology of the 3D-Wave strategy can be de-

scribed as follows: Given a MV range, it is possible to determine the number

of time steps that have to elapse between the decoding of two consecutive

frames. For example, for MVs with a maximum length of 16 pixels, it is possi-

ble to start the decoding of the second frame when the MBs (0,0), (0,1), (1,0),

and (1,1) of the first frame have been decoded. Of these MBs, (1,1) is the last

one decoded in 2D-Wave order, namely at time t = 3. So when the maximum

MV length is 16 pixels, we can start decoding the second frame at time t = 4,

and the third frame at time t = 8, etc. Similarly, we find that for a maximum

MV length of 32 pixels, we can start decoding the second frame at time t = 7
and the third frame at time t = 14. For maximum MV lengths of 64, 128, 256,

and 512, we can start decoding the second frame at time t = 13, 25, 49, and

97, respectively. In general, for a MV range length of n pixels (⌈n/16⌉ MBs),

the decoding of the second frame can start at time t = 1 + 3 × ⌈n/16⌉.

The number of parallel MBs available in a video sequence is calculated

based on the overlap between consecutive frames (each one decoded using

the 2D-Wave). The number of available parallel MBs in each time step. Let

N2D(t) be the number of parallel MBs at time step t using the 2D-Wave. Then

the number of parallel MBs N3D(t) at time step t of the 3D-Wave is given by

N3D(t) =

t/offset∑

i=0

N2D(t − i × offset) (2.1)

where offset is the number of time steps that have to elapse between

the decoding of two consecutive frames.



2.4. 3D-WAVE STRATEGY 27

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  20  40  60  80  100  120  140

P
a
ra

lle
l 
m

a
c
ro

b
lo

c
k
s

Time

Frame 9
Frame 8
Frame 7
Frame 6
Frame 5
Frame 4
Frame 3
Frame 2
Frame 1
Frame 0

Figure 2.9: Stacking of frames of a FHD sequence with a 128 pixels maximum MV

length.

Figure 2.9 depicts this function for the first 10 frames of a FHD se-

quence with a maximum MV length of 128 pixels. It also shows to which

frame each MB belongs. It can be seen that a stacking effect occurs.

The videos from HD-VideoBench [7] benchmark was chosen because

of their resolution and the content of the scenes. The benchmark contains the

following test sequences:

• rush hour: rush-hour in Munich city; static background, slowly moving

objects.

• riverbed: riverbed seen through waving water; abrupt and stochastic

changes.

• pedestrian area: shot of a pedestrian area in city center; static back-

ground, fast moving objects.

• blue sky: top of two trees against blue sky; static objects, sliding cam-

era.

All movies are available in three formats: 720×576 (SD), 1280×720 (HD),

1920×1088 (FHD). Each movie has a frame rate of 25 frames per second and

has a length of 100 frames.
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Table 2.1: Static 3D-Wave results of available parallel MBs and number of frames in

flight.

Offset Max # Parallel MBs Max # Frames in Flight

SD HD FHD SD HD FHD

512 - 40 91 - 2 3

256 34 76 169 3 4 6

128 66 145 328 5 7 11

64 126 277 629 9 13 20

32 232 515 1166 17 24 37

16 414 900 2040 29 42 64

2.4.2.1 Maximum Parallelism

Using the static analysis we determined the number of parallel MBs in the

3D-Wave for each video resolution in the HD-VideoBench, SD, HD, and FHD

with MV ranges of 16, 32, 64, 128, 256, and 512 pixels. 512 pixels is the

maximum vertical MV length allowed for level 4.0 in the H.264 standard.

Figure 2.10 depicts the MB-level parallelism (i.e., the number of MBs

that can be processed in parallel) obtained by the static analysis of the 3D-Wave

strategy for each point in time for an FHD sequence using different maximum

MVs ranges. The results show that the 3D-Wave strategy is much more scal-

able than the 2D-Wave strategy. For example, while the 2D approach can

process at most 60 MBs in parallel for FHD resolution, the 3D-Wave strategy

achieves 1150 parallel MBs for a MV range of 32 pixels and more than 2000

parallel MBs for a MV range of 16 pixels. Furthermore, the 3D-Wave strategy

can process more than 80 MBs in parallel even when the MV range is 512

pixels (almost half the frame height). An additional advantage of the 3D-Wave

is that after a certain time, the number of parallel MBs stays constantly high.

This is in contrast to the 2D-Wave strategy, which achieves little parallelism at

the beginning and at the end of processing each frame.

Figure 2.11 depicts the number of frames in flight for different MV

ranges. The time unit is the time required to process one MB (which is assumed

to be constant in this evaluation). The shapes of the SD and HD resolutions

curves are similar and are therefore not presented for brevity. Instead, Table 2.1

presents the maximum MB parallelism and number of frames in flight for SD,

HD and FHD video sequences.
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Figure 2.10: Number of parallel MBs in the 3D-Wave for FHD frames with different

MV ranges.
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Figure 2.11: Frames in flight for FHD frames with different MV ranges.
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2.5 Limited Resources

A potential problem of the 3D-Wave strategy is, however, the large number

of frames that are decoded simultaneously. Figure 2.11 depicts the number of

frames in flight at each point in time for an FHD sequence and different MV

ranges. The figure shows that when, for example, the MV range is 16 pixels,

there can be up to 64 frames in flight simultaneously. This can be a problem

in systems with limited memory since each active frame has to be stored in

memory. To investigate this limitation, we have also analyzed the tradeoff

between the number of active frames and the amount of MB-level parallelism.

In this analysis the number of active frames is limited. The decoding

of the next frame is started only if the number of active frames is less than or

equal to a specified maximum number of frames in flight. If this is not the

case, the decoding of the next frame has to wait until a frame is decoded.

The analysis focuses on FHD resolution with a MV range of 16 pixels.

This MV range has been chosen because it clearly shows the effect of limiting

the number of frames in flight, as it has the maximum amount of MB-level

parallelism. The maximum number of frames in flight was set to 4, 8, 16, and

32. Figure 2.12 presents the results. For reference, the curve for the case that

does not limit the number of active frames is also shown.

Limiting the number of frames in flight has two different effects on the

amount of MB-level parallelism. The first one is a proportional decrease of the

average number of parallel MBs. After the ramp up part of the MB parallelism

curve, there are 2040 MBs available when there is no limit on the number of

frames in flight in which case there are up to 64 frames in flight. Limiting

the number of active frames to 32, the average number of MBs available to be

processed in parallel is reduced to 1020. For 16, 8, and 4 active frames, the

results show an average of 508, 253, and 126 parallel MBs, respectively.

The second effect of limiting the number of frames in flight is that the

number of parallel MBs fluctuates over time, as can be seen in Figure 2.12.

While there is just a very small (or no) fluctuation when there is no limit on

the number of active frames, the fluctuation is large when the number of active

frames is limited. This fluctuation also increases when the number of active

frames decreases. For 32 active frames, after the ramp up, at most 1528 and at

least 512 parallel MBs are available. Limiting the number of active frames to

16, 8, and 4, the maximum number of available MBs becomes 888, 472, 240

and the minimum is 128, 32, 8 MBs, respectively. This fluctuation is the result

of the superposition of peaks in the 2D-Wave MB parallelism curves.
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Figure 2.12: Macroblock parallelism with limited frames in flight.

The fluctuation of the number of available parallel MBs can result in un-

derutilization of computational resources. This can happen, for instance, when

the number of cores available is larger than the number of available parallel

MBs at a given time.

A scheduling technique can be used to reduce the fluctuation of the

amount of MB-level parallelism. To minimize the fluctuation, we should start

decoding the next frame Tframe/nactive time units after the time we have started

decoding the current frame, where Tframe is the processing time of a frame

and nactive is the maximum number of active frames. Figure 2.13 shows the

curves resulting from this scheduling strategy. This strategy has a small effect

on the average amount of MB-level parallelism, compared with limiting the

frame parallelism without the scheduling. Table 2.2 presents the maximum,

minimum, and average MB parallelism with and without scheduling. As can

be seen in this table, the amount of MB-level parallelism is proportional to the

number of allowed frames in parallel.
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Figure 2.13: Scheduled macroblock parallelism with limited frames in flight.

Table 2.2: Number of available parallel MBs with and without the proposed schedul-

ing technique, for FHD.

Frames in Regular With Scheduling

Flight Max Min Fluctuation Avg Max Min Fluctuation Avg

32 1528 512 66% 1020 1148 872 24% 1010

16 888 128 86% 508 544 484 11% 514

8 472 32 93% 252 264 202 23% 233

4 240 8 97% 124 127 67 47% 97
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2.6 Dynamic Analysis of the 3D-Wave ‡

In the previous section we have analyzed the 3D-Wave using a static approach,

considering that the MV length of all MBs is equal to a given maximum. In

reality, however, the MV length of each MB may differ. For completeness

and because the implementation described in the next chapter have similar be-

havior, in this section we briefly present a dynamic analysis of the 3D-Wave.

Meenderinck et al. [66] evaluate the 3D-Wave technique using a dynamic ap-

proach. This dynamic approach computes the number of available parallel

MBs considering their actual dependencies in the evaluated video sequence.

As before, it is assumed that it takes one time unit to decode a MB.

To determine the amount of parallelism, the FFmpeg H.264 de-

coder [37] was modified to analyze the MB dependencies in real video se-

quences. Each MB has its dependencies analyzed and a timestamp assigned

as follows. The timestamp of a MB is simply the maximum of the timestamps

of all MBs upon which it depends (in the same frame as well as in the refer-

ence frames) plus one. Because the frames are processed in decoding order,

and within a frame the MBs are processed from left to right and from top to

bottom, the MB dependencies are observed and it is assured that the MBs on

which a MB B depends have been assigned their correct timestamps by the

time the timestamp of MB B is calculated.

The video sequences are from the HD-VideoBench. However, because

the sequences have only 100 frames, the used input sequences are composed of

the original sequences replicated four times. The encoding is performed by the

X264 encoder using the following options: 2 B-frames between I and P frames

(B frames cannot be reference frames), 16 reference frames, weighted predic-

tion, hexagonal motion estimation algorithm (hex) with a maximum search

range of 24, one slice per frame, and adaptive block size transform. Movies

encoded with this set of options represent the typical case.

Figure 2.14 depicts the MB-level parallelism time curve for FHD, while

Figure 2.15 depicts the number of frames in flight in each time slot. The results

show peaks of 4.000 to 7.000 parallel MBs. The maximum number of frames

in flight is just above 200 for all sequences.

These results show that much more parallelism is available in actual

video sequences than indicated by the static analysis. For example, the static

analysis reported a maximum of 2.040 parallel MBs for a FHD sequence while

the dynamic analysis reports between 2.000 to 4.000 parallel MBs, after ramp-

‡This section is based on work performed by Cor Meenderinck.
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Figure 2.14: Number of parallel MBs in each time slot for the 3D-Wave, using the

dynamic analysis, for FHD resolution using a 400-frame sequence.

up, for the pedestrian sequence, which is the sequence with the lowest number

of parallel MBs among the tested sequences. This is due to two factors. First,

the static evaluation only considers inter-dependent frames while the dynamic

evaluation uses 2 B frames between P frames. As the 2 B frames are inde-

pendent from each other, they can be processed in parallel as well as the next

P frame. This is a three fold increase in the number of MBs and frames in

parallel. Second, the smallest range for the static evaluation considers a max-

imum MV length of 16 pixels, while the average MV length in the evaluated

sequences for the dynamic evaluation is about 5 pixels. As reported in the

previous section, the number of parallel MB increases when the MV length

decreases.

This study adds more precision to the static analysis presented earlier

and confirms our findings. However, it still presents limitations. The MB de-

coding time is assumed to be fixed while in reality this is not the case. By

itself this reduces the available MB parallelism by 33% [3]. Another limita-

tion is that our analysis does not include the synchronization overhead. Syn-

chronization overhead can be a major problem in a parallel implementation

of the decoder [4]. Moreover, an implementation mechanism is not proposed.

These limitations will be addressed in our implementation of the 3D-Wave on

a many-core processor in the next chapter.
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Figure 2.15: Number of frames in flight in each time slot for the 3D-Wave, using the

dynamic analysis, for FHD resolution using a 400-frame sequence.

2.7 Conclusions

In this chapter we have investigated if contemporary and perhaps future video

applications exhibit sufficient parallelism to exploit the large number of cores

expected in future many-core processors. As a case study, we have analyzed

the parallel scalability of the H.264 video decoder, currently the leading video

coding standard.

First, we have discussed different ways to parallelize H.264 and showed

that slice-level parallelism has two main limitations. First, using many slices

increases the bitrate and, second, not all sequences contain sufficient slices

to scale to a large number of cores, since the encoder determines the number

of slices per frame. It was also shown that frame-level parallelism, which

exploits the fact that some frames (B frames) are not used as reference frames

and can therefore be processed in parallel, is also not very scalable, because

usually there are no more than three B frames between consecutive P frames

and, furthermore, in H.264 B frames can be used as reference frames.

More promising is MB-level parallelism, which can be exploited inside

a frame in a diagonal wavefront manner. Intra-frame MB-level parallelism,

however, exhibits at most 60 parallel MBs, which is not sufficient for a many-

core. It was observed that MBs in different frames are only dependent through

MVs which have a limited range. We therefore proposed a novel parallelization

strategy, called 3D-Wave, which combines MB-level parallelism with frame-
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level parallelism. The MB-level parallelism available in the 3D-Wave was an-

alyzed using a static and a dynamic approach. In the static approach, for FHD

resolution, the results show that when the MV range is limited to 16 pixels, up

to 2040 MBs can be processed in parallel. In the worst case, when the MV is

at most 512 pixels, at most 91 parallel MBs are available, which is still much

more than the number of parallel MBs other parallelization approaches reach.

Furthermore, we showed that the fluctuation of the number of parallel MBs can

be reduced by applying a simple scheduling strategy. Nevertheless, this static

analysis is conservative since it is based on the assumption that the MV length

of each MB is equal to the maximum MV length. A dynamic evaluation of

the 3D-Wave showed that in real video sequences with regular coding options,

there is even more MB-level parallelism than the static evaluation suggests.



3
3D-Wave Implementation

I
n the previous chapter we have proposed the 3D-Wave parallelization strat-

egy for H.264 video decoding. It has been shown that the 3D-Wave

strategy potentially scales to a much larger number of cores than previ-

ous strategies do. However, we have done so using a very high-level evalu-

ation methodology, assuming constant macroblock (MB) decoding time and

zero communication and synchronization overhead. In this chapter we remedy

these limitations by presenting an implementation of 3D-Wave parallelization

strategy on an embedded many-core with up to 64 cores.

This chapter is organized as follows. Section 3.1 motivates the pre-

sented implementation and details the contributions of this chapter. In Sec-

tion 3.2 the simulation environment and the experimental methodology used to

evaluate the proposed 3D-Wave implementation are presented. In Section 3.3

the implementation of the 3D-Wave on the embedded many-core is detailed.

This section also presents a frame scheduling policy used to limit the number

of frames in flight and the priority policy used to reduce latency. Addition-

ally, a 3D-Wave visualization tool is also described in Section 3.3. Section 3.4

presents extensive experimental results analyzing the following aspects: scal-

ability and performance of the 3D-Wave, the policies for frame scheduling

and priority, the impacts of the memory latency, L1 cache size, parallelization

overhead, and entropy decoding. Conclusions are drawn in Section 3.5.

37
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3.1 Introduction

In the previous chapter we have proposed the 3D-Wave parallelization strategy

for H.264 video decoding. It has been shown to potentially scale to a much

larger number of cores than existing strategies do. However, the previous chap-

ter presented only analytical results. It analyzed how many macroblocks could

be processed in parallel assuming infinite resources, no communication delay,

infinite bandwidth, and a constant MB decoding time.

In this chapter we present an implementation of the 3D-Wave strategy

on an embedded many-core consisting of up to 64 cores. Implementing the

3D-Wave turned out to be quite challenging. First, it requires to dynamically

identify inter-frame MB dependencies and handle their thread synchronization,

in addition to intra-frame dependencies and synchronization. In our previous

analytical analysis thread synchronization was not an issue because the MBs

were visited sequentially and assigned a timestamp representing the earliest

time slot in which they could be processed. For the 3D-Wave strategy both

intra- and inter-frame synchronization have to be taken into account in a way

that the synchronization overhead does not limit the scalability, for the target

number of cores. This led to the development of a subscription mechanism

where the current MB checks if the MBs it depends on are already processed.

If one of the MBs is not yet processed, the current MB subscribes itself to a

so-called Kick-off List (KoL) associated with the MB it depend on and halts.

The processing of halted MBs is restarted when the current MB, after finishing

its processing, resumes the processing of MBs subscribed to its KoL.

A potential drawback of the 3D-Wave strategy is that the decoder la-

tency may become unbounded because many frames are decoded simultane-

ously. A policy is presented that gives priority to the oldest frame so that newer

frames are only decoded when there are idle cores. Another potential drawback

of the 3D-Wave strategy is that the memory requirements might increase be-

cause of the large number of frames in flight. To overcome this drawback we

present a frame scheduling policy to control the number of frames in flight.

The effect of memory system, thread synchronization, and entropy de-

coding in the 3D-Wave scalability are also analyzed in this Chapter. Memory

requirements are an issue when dealing with parallel applications. We ana-

lyze the impact of the memory latency and the L1 cache size on the scalability

and performance of the 3D-Wave strategy. The experimental platform features

hardware support for thread management and synchronization, making it rela-

tively light weight to submit/retrieve a task to/from a task pool. We analyze the
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importance of this hardware support by artificially increasing the time it takes

to submit/retrieve a task. The 3D-Wave focuses on the MB decoding part of

the H.264 decoding and assumes an accelerator for entropy decoding. Finally,

we analyze the performance required from the entropy decoding accelerator to

avoid affecting the 3D-Wave scalability.

3.2 Experimental Methodology

In this section the tools and methodology used to implement and evaluate the

3D-Wave technique are detailed. The components of the many-core system

simulator used to evaluate the technique are also presented.

An NXP proprietary simulator based on SystemC is used to run the

application and collect performance data. Computations on the cores are mod-

eled cycle-accurate. The memory system is modeled using average transfer

times with channel and bank contention. When channel or bank contention is

detected, the traffic latency is increased. NoC contention is also modeled. The

simulator is capable of simulating systems with up to 64 TM3270 [94] cores

with shared memory and their cache coherence protocol. The operating system

is not simulated.

The TM3270 is a Very Large Instruction Word (VLIW) media-

processor based on the Trimedia architecture. It is targeted at the requirements

of multi-standard video processing at standard resolution and the associated

audio processing requirements for the consumer market. The architecture sup-

ports VLIW instructions with five guarded issue slots. The pipeline depth

varies from 7 to 12 stages. Address and data words are 32 bits wide. The

unified register file has 128 32-bit registers. 2×16-bit and 4×8-bit SIMD in-

structions are supported. To produce code for the TM3270 the state-of-the-art

highly optimizing NXP TriMedia C/C++ compiler version 5.1 is used. For our

experiments, the TM3270 processor clock frequency was set to 300 MHz.

The modeled system features a shared memory using the MESI cache

coherence protocol. Each core has a private L1 data cache and can copy data

from other L1 caches through 4 channels. The 64KB L1 data cache has 64-byte

lines and is 4-way set-associative with LRU replacement and write allocate

policies. The instruction cache is not modeled. It is not considered to be a

limitation because as the code is concise and highly optimized, it would fit

in a regular sized instruction cache. The cores share a distributed L2 cache

with 8 banks and an average access time of 40 cycles. The average access

time takes into account L2 hits, misses, and interconnect delays. L2 bank
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contention is modeled in the simulator, thus two cores cannot access the same

bank simultaneously.

The multi-core programming model follows a task pool model. A Task

Pool (TP) library implements submissions and requests of tasks to/from the

task pool, synchronization mechanisms, and the task pool itself. Each core

runs a thread by requesting a task from the TP, executing it, possibly identi-

fying and submitting tasks to the TP, and requesting another task. The task

execution overhead is low. The time to request a task is less than 2% of the

MB decoding time.

The experiments focus on the baseline profile of the H.264 standard.

This profile only supports I and P frames and every frame can be used as a

reference frame. This feature prevents the exploitation of frame-level paral-

lelization techniques such as the one described in [20]. This profile, however,

highlights the advantages of the 3D-Wave, since the scalability gains come

purely from the application of the 3D-Wave technique. Encoding was done

with the X264 encoder [102] using the following options: no B-frames, at

most 16 reference frames, weighted prediction, hexagonal motion estimation

algorithm with a maximum search range of 24, and one slice per frame. The

experiments use all four videos from the HD-VideoBench [7].

The 3D-Wave technique focuses on the TLP available in the MB pro-

cessing kernels of the decoder. The entropy decoder is known to be challeng-

ing to parallelize. To isolate the influence of the entropy decoder, its output

has been buffered and its decoding time is not taken into account. Although

it is not the main objective, as a side effect the 3D-Wave also eases the en-

tropy decoding challenge. Since entropy decoding dependencies do not cross

slice/frame borders, multiple entropy decoders can be used. We analyze the

performance required from an entropy decoder accelerator in Section 3.4.7.

3.3 Implementation

Our work is based on the NXP H.264 decoder. The 2D-Wave parallelization

strategy has already been implemented in this decoder [46], making it a per-

fect starting point for the implementation of the 3D-Wave. The NXP H.264

decoder is highly optimized, including both machine-dependent optimizations

(e.g. SIMD operations) and machine-independent optimizations (e.g. code

restructuring).
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The 3D-Wave implementation serves as a proof of concept and thus

the implementation of all features of H.264 is not necessary. Intra prediction

inputs are deblock filtered samples instead of unfiltered samples as specified

in the standard. This does not, however, add perceptive visual artifacts to the

decoded frames or change the MB dependencies.

This section describes the 2D-Wave implementation used as the starting

point, the 3D-Wave implementation, and the frame scheduling and priority

policies.

3.3.1 2D-Wave Implementation

The MB processing tasks of the 2D-Wave implementation consists of four ker-

nels that are grouped slightly different than previously presented. The kernels

are vector prediction (VP), picture prediction (PP), deblocking info (DI), and

deblocking filter (DF). VP calculates the motion vectors (MVs) based on the

predicted motion vectors of the neighbor MBs and the differential motion vec-

tor present in the bitstream. PP performs the reconstruction of the MB based

on neighboring pixel information (Intra Prediction) or on reference frame ar-

eas (Motion Compensation). Inverse quantization and the inverse DCT are

also part of this kernel. DI calculates the strength of the DF based on MB data,

such as the MBs type and MVs. Finally, DF smooths block edges to reduce

blocking artifacts.

Each kernel is parallelized using the 2D-Wave strategy. As shown in

Figure 2.5 on page 21, within a frame each MB depends on at most four other

MBs. These dependencies are covered by the dependencies from the left MB to

the current MB and from the upper-right MB to the current MB. In other words,

if the left and the upper-right dependencies are satisfied then all dependencies

are satisfied. Therefore, in the implementation each MB is associated with a

reference count between 0 and 2 representing the number of MBs it depends

on. For example, the upper-left MB has a reference count of 0, the other MBs

at the top edge and at the left edge have a reference count of 1. When a MB

has been processed, the reference counts of the MBs that depend on it are

decremented. When one of these counts reaches zero, a thread that will process

the associated MB is submitted to the TP. Figure 3.1 depicts pseudo C-code

for applying the DF on a frame and on a MB. tp_atomic_decrement

atomically decrements the counter and returns its value. tp_submit submits

a function and its parameters to the TP.
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int deblock_ready[w][h]; // matrix of reference counts

void deblock_frame() {

for (x=0; x<w; x++)

for (y=0; y<h; y++)

deblock_ready[x][y] = initial reference count;

// 0, 1, or 2

tp_submit(deblock_mb, 0, 0); //start 1st task MB<0,0>

tp_wait();

}

void deblock_mb(int x, int y){

// ... the actual work

if (x!=0 && y!=h-1){

new_value =

tp_atomic_decrement(&deblock_ready[x-1][y+1], 1);

if (new_value==0)

tp_submit(deblock_mb, x-1, y+1);

}

if (x!=w-1){

new_value =

tp_atomic_decrement(&deblock_ready[x+1][y], 1);

if (new_value==0)

tp_submit(deblock_mb, x+1, y);

}

}

Figure 3.1: Pseudo-code for deblocking a frame and a MB.

When a core loads a MB in its cache, it also fetches the data of neighbor-

ing MBs. Therefore, locality can be improved if the same core also processes

the right MB. To increase locality and reduce task submission and acquisi-

tion overhead, the baseline 2D-Wave implementation features an optimization

called tail submit. After the MB is processed, the reference counts of the MB

candidates are checked. If both MB candidates are ready to execute, the core

processes the right MB and submits the other one to the task pool. If only

one MB is ready, the core starts its processing without submitting or acquiring

tasks to/from the TP. In case there is no neighboring MB ready to be processed,

the task finishes and the core requests another one from the TP. Figure 3.2 de-

picts pseudo-code for MB decoding with the tail submit optimization. If the

deblock_ready counter reaches zero, the MB dependencies are met.
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void deblock_mb(int x, int y){

again:

// ... the actual work

ready1 = x>=1 && y!=h-1 &&

tp_atomic_decrement(&deblock_ready[x-1][y+1])==0;

ready2 = x!=w-1 &&

tp_atomic_decrement(&deblock_ready[x+1][y])==0;

if (ready1 && ready2){

tp_submit(deblock_mb, x-1, y+1);

// submit left-down block

x++;

goto again; // goto right block

}

else if (ready1){

x--; y++;

goto again; // goto left-down block

}

else if (ready2){

x++;

goto again; // goto right block

}

}

Figure 3.2: Tail submit.

3.3.2 3D-Wave Implementation

In this section the 3D-Wave implementation is described. First we note that

the original per-kernel structure of the decoder is not suitable for the 3D-Wave

strategy, because inter-frame dependencies are satisfied only after the DF is

applied. To implement the 3D-Wave, it is necessary to develop a version in

which the kernels are applied on a MB basis rather than on a slice/frame basis.

In other words, we need a decode_mb function in which the MB kernels are

fused.

Since the 3D-Wave implementation decodes multiple frames concur-

rently, modifications to the Reference Frame Buffer (RFB) are required. The

RFB stores the decoded frames that are going to be used as reference. As it

can serve only one frame in flight, the 3D-Wave would require multiple RFBs.

In this proof of concept implementation, the RFB was modified such that a
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void decode_mb(int x, int y, int skip, int RMB_start){

if (!skip) {

Vector_Prediction(x,y);

RMB_List = RMB_Calculation(x,y);

}

RMB = RMB_List.table[RMB_start];

while (RMB != RMB_List.table[RMB_last]) {

if (!RMB.Ready) {

RMB.Subscribe(x, y);

return;

}

RMB = RMB.next();

}

Picture_Prediction(x,y);

Deblocking_Info(x,y);

Deblocking_Filter(x,y);

Ready[x][y] = true;

MB = KoL.start;

while (MB != KoL.last){

tp_submit(

decode_mb, MB.x, MB.y, true, MB.RMB_start);

MB = MB.next;

}

//TAIL_SUBMIT

}

Figure 3.3: Pseudo-code for the decode mb function of the 3D-Wave.

single instance can serve all frames in flight. In the new RFB all the decoded

frames are stored. The mapping of the reference frame index to RFB index

was changed accordingly.

Figure 3.3 depicts pseudo-code for the decode_mb function of the

3D-Wave implementation. It relies on the ability to test if the reference MBs

(RMBs) of the current MB have already been decoded or not. The RMB is

defined as the MB in the bottom right corner of the reference area, including

the extra samples for fractional motion compensation. To be able to test this,

first the RMBs have to be calculated. If an RMB has not been processed yet, a

method is needed to resume the execution of this MB after the RMB is ready.

The RMBs can only be calculated after motion vector prediction, which

also defines the reference frames. Each MB can be partitioned in up to four
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8×8 pixel areas and each one of them can be partitioned in up to four 4×4

pixel blocks. The 4×4 blocks in an 8×8 partition share the reference frame.

With the MVs and the reference frames information, it is possible to calculate

the RMB of each MB partition. This is done by adding the MV, the size of the

partition, the position of the current MB, and the additional area for fractional

motion compensation, and by dividing the result by 16, the size of the MB.

The RMB results of each partition is added to a list associated with the MB

data structure, called the RMB-list. To reduce the number of RMBs to be

tested, the reference frame of each RMB is checked. If two RMBs are in the

same reference frame, only the one with the larger 2D-Wave decoding order

(see Figure 2.5 on page 21) is added to the list.

To reduce the overhead, the first time decode_mb is called for a spe-

cific MB it is called with the parameter skip set to false and RMB_start

set to 0. If the decoding of this MB is resumed, it is called with the parameter

skip set to true. Also RMB_start carries the position of the MB in the

RMB-list to be tested next.

Once the RMB-list of the current MB is computed, it is verified if each

RMB in the list has already been decoded or not. Each frame is associated with

a MB ready matrix, similar to the deblock_readymatrix in Figure 3.1. The

corresponding MB position in the ready matrix associated with the reference

frame is atomically checked. If all RMBs are decoded, the decoding of this

MB can continue.

To handle the cases where an RMB is not ready, an RMB subscription

technique has been developed. The technique was motivated by the specifics

of the TP library, such as low thread creation overhead and no sleep/wake up

capabilities. Each MB data structure has a second list called the Kick-off List

(KoL) that contains the parameters of the MBs subscribed to this RMB. When

an RMB test fails (i.e., it has not been decoded yet), the current MB subscribes

itself to the KoL of the RMB and finishes its execution. Furthermore, each

MB, after finishing its processing, indicates that it is ready in the ready matrix

and verifies its KoL. A new task is submitted to the TP for each MB in the

KoL. The subscription process is repeated until all RMBs are ready. Finally,

the intra-frame MBs that depend on this MB are submitted to the TP using tail

submit, identical to Figure 3.2.

Figure 3.4 illustrates this subscription mechanism. Light gray boxes

represent decoded MBs and dark gray boxes MBs that are currently being pro-

cessed. Hatched boxes represent MBs available to be decoded, while white

boxes represent MBs whose dependencies have not yet been resolved. In this
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Figure 3.4: Illustration of the 3D-Wave and the subscription mechanism.

example MB(0,2) of frame 1 depends on MB(3,3) of frame 0 and is subscribed

to the KoL of the latter. When MB(3,3) is decoded it submits MB(0,2) to the

task pool.

3.3.3 Frame Scheduling Policy

To achieve the highest speedup, all frames of the sequence are scheduled to

run as soon as their dependencies are met. This, however, can lead to a large

number of frames in flight and large memory requirements, since every frame

must be kept in memory. Mostly, it is not necessary to decode a frame as soon

as possible to keep all cores busy. The frame scheduling technique presented

in Section 2.5, was adapted to keep the working set to its minimum.

Frame scheduling uses the RMB subscription mechanism to define the

moment when the processing of the next frame should be started. In this policy,

the first MB of the next frame can be subscribed to start after a specific MB

of the current frame. With this simple mechanism it is possible to control the

number of frames in flight. Adjusting the number of frames in flight is done

by selecting an earlier or later MB with which the first MB of the next frame

will be subscribed.

3.3.4 Frame Priority

Latency is an important quality characteristic of video decoding systems. The

frame scheduling policy described in the previous section reduces the frame la-

tency compared to the baseline 3D-Wave implementation, since the next frame
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is scheduled only when a part of the current frame has been decoded. When

a new frame is scheduled to be decoded, however, the available cores are dis-

tributed equally among the frames in flight. A priority mechanism was added

to the TP library in order to reduce the frame latency even further.

The TP library was modified to support two levels of priority. An extra

task buffer was implemented to store high priority tasks. When the TP receives

a request for a task, it first checks if there is a task in the high priority buffer.

If so this task is selected, otherwise a task in the low priority buffer is selected.

With this simple mechanism it is possible to give priority to the tasks belonging

to the frame “next in line”. Before submitting a new task, the process checks

if its frame is the frame “next in line”. If so the task is submitted with high

priority. Otherwise it is submitted with low priority. This mechanism does not

lead to starvation because if there is insufficient parallelism in the frame “next

in line”, the low priority tasks are selected.

3.3.5 3D-Wave Viewer

A tool to visualize the 3D-Wave strategy, called 3D-Wave Viewer, was devel-

oped in order to help with the development of the 3D-Wave itself as well as the

frame scheduling and frame priority policies. The 3D-Wave Viewer enables a

more in depth analysis of the temporal behavior of the 3D-Wave decoding pro-

cess and the identification of bugs in the frame scheduling and priority policies.

The 3D-Wave Viewer uses trace information from the execution of the

3D-Wave H.264 decoder. The trace contains the starting and finishing time

of the decoding of each MB of the input sequence as well as the MB frame

number and its vertical and horizontal coordinates. The tool reads the trace

file and orders the MBs by their decoding start time. Following the decoding

order, the tool draws a black square to represent a decoded MB at adjustable

intervals. Rectangular white areas are used to depict frames. A screenshot of

the 3D-Wave Viewer is presented in Figure 3.5. The figure shows the decoding

of the first 12 frames of the Rush Hour sequence by the 3D-Wave strategy on

the 64-core processor without frame scheduling or priority. The screenshot

shows that at this point in time 10 frames are decoded in parallel (frame 3

to frame 12), and that the decoding of each frame stays a little “behind“ the

decoding of the previous frame, as expected.
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Figure 3.5: Screenshot of the 3D-Wave Viewer.

3.4 Experimental Results

In this section, the experimental results are presented. The results include the

scalability results of the 3D-Wave (Section 3.4.1), results of the frame schedul-

ing and priority policies (Section 3.4.2), memory and bandwidth requirements

(Section 3.4.3), influence of memory latency (Section 3.4.4), influence of L1

data cache size on scalability and performance (Section 3.4.5), the impact of

parallelism overhead on scalability (Section 3.4.6), and the requirements for

the CABAC accelerator to leverage a 64-core system (Section 3.4.7).

To evaluate the 3D-Wave, one second (25 frames) of each sequence was

decoded. Longer sequences could not be used due to the maximum amount of

memory the simulator could allocate was insufficient. The four sequences of

the HD-VideoBench using three resolutions were evaluated.

3.4.1 Scalability

The scalability results are presented for 1 to 64 cores. Initially, the simulator

supported up to 32 cores. It was extended to support 64 cores but more cores

could not be simulated due to the required modifications in the compiler to

support larger number of cores. Figures 3.6(a), 3.6(b), and 3.6(c) depict for
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SD, HD, as well as FHD, the scalability of the 3D-Wave implementation on

p processors (T3D(1)/T3D(p)), 2D-Wave scalability (T2D(1)/T2D(p)), and

speedup of the 3D-Wave over the 2D-Wave on a single core (T2D(1)/T3D(p)),
labeled as 3D vs 2D. Figure 3.6(c) depicts the scalability of the 3D-Wave for

each of the HD-VideoBench sequences, Rush Hour (labeled RH), Riverbed

(RB), Blue Sky (BS), and Pedestrian Area (PA). Since the result for the Rush

Hour sequence are close to the average and other sequences differ less than 5%,

only its results are analyzed and depicted in the remaining figures, including

Figures 3.6(a) and 3.6(b). On a single core, the 2D-Wave can decode 39 SD,

18 HD, and 8 FHD frames per second.

On a single core the 3D-Wave implementation takes about 8% more

time than the 2D-Wave implementation due to the additional administrative

overhead. The 3D-Wave scales almost perfectly up to 8 cores, while the 2D-

Wave incurs an 11% efficiency drop already for 2 cores due to the following

reason. The tail submit optimization attempts to assign a line of MBs to a

single core. At the end of processing a frame, however, when a core finishes

its line and there is no other line to be decoded, in the 2D-Wave the core re-

mains idle until all cores have finished their line. If the last line happens to

be slow, the other cores wait for a long time, and the core utilization is low.

In the 3D-Wave, cores that finish their line, when there is no new line to be

decoded in the current frame, will be assigned a line of the next frame. There-

fore, the core utilization as well as the scalability of the 3D-Wave is higher.

Another advantage of the 3D-Wave over the 2D-Wave is that it increases the

efficiency of the Tail Submit optimization. In the 2D-Wave the relatively low

growth of thread-level parallelism causes the cores to stall more often due to

unsolved intra-frame dependencies. In the 3D-Wave, the available parallelism

is much larger, which increases the distance between the MBs being decoded

(as depicted in Figure 3.5), minimizing intra-frame dependency stalls.

For SD sequences, the 2D-Wave technique saturates at 16 cores, with

a speedup of only 8.4 (Figure 3.6(a)). This happens because of the limited

amount of MB-level parallelism inside a frame and the dominant ramp up and

ramp down of the number of parallel MBs (see Figure 2.6 on page 22). The

3D-Wave technique for the same resolution continuously scales up to 64 cores,

with almost 80% of the linear scalability. For the FHD sequence, the saturation

of the 2D-Wave occurs at 32 cores with a speedup of 14.4, while the 3D-Wave

continuously scales up to 64 cores, with 85% of the linear scalability.

The scalability of the 3D-Wave increases slightly for higher resolutions,

the 2D-Wave implementation, on the other hand, achieves higher speedups
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Figure 3.6: 2D-Wave and 3D-Wave speedups for the 25-frame sequence Rush Hour

for different resolutions.



3.4. EXPERIMENTAL RESULTS 51

for higher resolutions, since the amount of MB-level parallelism increases. It

would take, however, an extremely large resolution for the 2D-Wave to lever-

age 64 cores, and the 3D-Wave implementation would still be more efficient.

The slightly less than perfect speedup of the 3D-Wave for larger num-

bers of cores has two reasons. First, cache trashing occurs for large numbers

of cores, leading to a significant number of memory stalls, as will be shown in

the next section. Second, at the start and at the end of a sequence, not all cores

can be used because little parallelism is available. The more cores are used,

the more cycles are relatively wasted during these two periods. The ramp up

and ramp down effects on the 3D-Wave would be negligible in a real sequence

with many frames. To demonstrate this Figure 3.6(a) also shows the scalabil-

ity results for 100 frames of the Rush Hour SD sequence. Simulations with

HD or FHD sequences with more than 25 frames are not possible because the

simulator cannot allocate the required data structures.

For 64 cores the scalability grows from 49.3 to 55.7 when processing

100 instead of 25 SD frames. The effects of ramp up and ramp down times are

minimized when more frames are used. In this case, the scalability results are

closer to the results that would be achieved in a real life situation.

The overall performance of the 64-core system is sufficient to process

FHD sequences about 16 times faster than real-time performance in frames per

second. This achieved performance is important for processing future video

applications. For instance, the processing of stereoscopic 4K resolution se-

quences would require such computational power [27].

As previously mentioned, this study focuses on the baseline profile se-

quence where all frames can be used as reference frames. Other H.264 profiles

use B frames which are not commonly used as reference frames. B frames can

be started simultaneously together with the following I or P frames for cases

where B frames are not marked as references. Depending on the number of

B frames, the available MB parallelism can be multiplied by two or three, for

IBPBP and IBBPBB sequences, respectively.

3.4.2 Frame Scheduling and Priority

In this section, experimental results for the frame scheduling and priority poli-

cies are presented. The effectiveness of these policies is presented first, fol-

lowed by their impact on the 3D-Wave efficiency.

Figure 3.7 presents the results of the frame scheduling technique applied

to the FHD Rush Hour sequence using a 16-core system. This figure presents
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Figure 3.7: Number of MBs processed per ms using frame scheduling for FHD Rush

Hour on a 16-core processor. Different gray scales represent different

frames.

the number of MBs processed per ms. Furthermore, the different colors show

to which frame the processed MBs belong. In this particular case, processing

of the next frame is started after the last MB on the MB line that is at 1/3rd

of the frame vertical resolution is decoded. For this configuration there are at

most 3 frames in flight. Currently, the selection of the MB that will kick-off

the processing of the next frame must be done statically by the programmer. A

methodology to dynamically fire new frames based on core utilization remains

to be developed.

In the original 3D-Wave implementation, the latency of the first frame

is 58.5 ms, using the FHD Rush Hour sequence with 16 cores. Using the

frame scheduling policy, the latency drops to 15.1 ms. This latency is fur-

ther reduced to 9.2 ms when the priority policy, presented in Section 3.3.4, is

applied together with frame scheduling. This is only 0.1 ms longer than the

latency of the 2D-Wave, which decodes frames one-by-one. Figure 3.8 depicts

the number of MBs processed per ms when this feature is used.

Four configurations are used to analyze the impact of frame scheduling

and priority on the scalability. These configurations use 3 and 6 frames in

flight, with and without frame priority. Figures 3.9(a), 3.9(b), and 3.9(c) depict

the impact of the presented techniques on the scalability for SD, HD, and FHD

resolutions, respectively. The baseline 2D-Wave (labeled 2DW) and 3D-Wave

(labeled 3DW) scalability results are presented for reference. In Figure 3.9, FS

refers to the frame scheduling. The addition of frame priority has no significant
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Figure 3.8: Number of MBs processed per ms using frame scheduling and priority

policy for FHD Rush Hour on a 16-core processor. Different gray scales

represent different frames.

impact on the scalability and is only show in Figure 3.9(b), as it decreases

legibility. The reported scalability is based on the 2D-Wave execution time on

a single core.

Figure 3.9(a) shows that 3 or 6 frames in flight are not sufficient to lever-

age a 64-core system when decoding an SD sequence. The maximum speedup

of 22.0 is the result of the relatively low amount of MB-level parallelism in SD

frames. As presented in Figure 3.6(a), for SD the 2D-Wave has a maximum

speedup of 8.4. For HD, the performance when 6 frames in flight are allowed

is already close to the performance of the original 3D-Wave, as depicted in

Figure 3.9(b). The maximum speedups are 24.0 and 45.7, for 3 and 6 frames

in flight, respectively. The latter is 92% of the maximum 3D-Wave speedup.

For FHD, depicted in Figure 3.9(c), allowing three frames in flight provides

a speedup of 45.9. When 6 frames are used, the difference between the per-

formance of the 3D-Wave with the frame scheduler enabled and the original

3D-Wave is only 1%.

3.4.3 Bandwidth Requirements

In this section, the intra-chip bandwidth requirements for the 3D-Wave and its

frame scheduling and priority policies are reported. The amount of data traffic

between L2 and L1 data caches is measured. Accesses to the main memory

are not reported by the simulator.
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Figure 3.9: Frame scheduling and priority scalability results of the Rush Hour 25-

frame sequence
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The effects of frame scheduling and priority policies on data traffic be-

tween L2 and L1 data caches are depicted in Figures 3.10(a), 3.10(b), and

3.10(c). The figures depict the data traffic for SD, HD, and FHD resolutions,

respectively. In the figures, FS refers to the frame scheduling while P refers to

the use of frame priority.

Data locality decreases as the number of cores increases, because the

task scheduler does not take data locality into account when assigning a task

to a core (except with the tail submit strategy). This decrease in the locality

contributes to traffic increase. Due to these effects, the 3D-Wave increases the

data traffic by approximately 104%, 82%, and 68% when going from 1 to 64

cores, for SD, HD, and FHD, respectively.

Surprisingly, the original 3D-Wave requires the least communication

between L2 and L1 data caches for 8 cores or more. It transfer approximately

20% to 30% (from SD to FHD) less data than the original 2D-Wave, for 16

cores or more. This is caused by the high data locality in the original 3D-

Wave technique. The 3D-Wave implementation starts processing new frames

as soon as their dependencies are met. This increases the probability that the

reference areas of the MB that is processed is present in the L1 data cache of

another core. The probability increases because nearby area of several frames

are decoded together, so the reference area is likely to be present in data caches

of other cores. This reduces the data traffic because the motion compensation

requires a significant portion of previous frames to be copied.

The use of FS and Priority has a negative impact on the L2 to L1 data

cache traffic. The use of FS and Priority decreases the data locality, as they

increase the time between processing MBs from co-located areas of consec-

utive frames. However, when the number of frames is sufficient to sustain a

good scalability, the data traffic when using FS and Priority is still lower than

the data traffic of the 2D-Wave implementation. For SD, the data traffic for

FS and Priority is higher than the 2D-Wave when the available parallelism is

not sufficient to leverage 32 and 64 cores. The same happens for the HD using

only 3 frames in flight. For FHD, the 2D-Wave is the technique that requires

the most data traffic, together with FS with 3 frames in flight. When the num-

ber of frames in flight is sufficient to leverage 32 or 64 cores, FS have 4 to

12% less data traffic than 2D-Wave. FS and Priority have 3 to 6% less data

traffic than the 2D-Wave in the cases when the number of frames in flight is

insufficient to utilize all the cores.

With the presented data traffic results, it is possible to calculate the L2

to L1 bandwidth requirements. The bandwidth is calculated by dividing the
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Figure 3.10: Frame scheduling and priority data traffic results for Rush Hour se-

quence.
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total traffic by the time to decode the sequence in seconds. The total amount of

intra chip bandwidth required for 64 cores is 21 GB/s for all resolutions of the

Rush Hour sequence. The bandwidth is independent of the resolution because

the number of MBs decoded per time unit per core is constant.

3.4.4 Impact of the Memory Latency

The type of interconnection used and the number of cores in the system in-

fluence the memory latency. For increasing number of cores, also the latency

of an L2 to L1 data transfer increases. As mentioned in Section 3.2, the L2

cache is modeled using an Average Memory Latency (AML) that includes hits,

misses, and interconnection latency. In this section, we analyze the impact of

this latency on the performance by varying the AML. In the previous experi-

ments, the AML was set to 40 cycles. In this experiment it ranges from 40 to

100 cycles in steps of 10 cycles.

Figure 3.11(a) depicts the scalability results for FHD resolution. That

is, for each AML, the performance using p cores is compared to the perfor-

mance using one core using the same AML. The results show that the memory

latency does not significantly affect the scalability. For 64 cores, increasing the

AML from 40 to 100 cycles decreases the scalability by only 10%. The scal-

ability, however, does not equal the absolute performance. In Figure 3.11(b)

the performance is depicted using the execution time on a single core with an

AML of 40 cycles as baseline. The graph shows that a larger AML decreases

the performance significantly. That indicates that large systems might be inef-

fective if the memory latency increases too much.

3.4.5 Impact of the L1 Cache Size

in this section, we analyze the influence of the L1 data cache size on the scal-

ability and the amount of L2-L1 traffic. The baseline system has 4-way set-

associative L1 data caches of 64KB, with LRU replacement and write allocate.

By modifying the number of sets in the cache systems, different cache sizes,

i.e., 16, 32, 64, 128, and 256KB, were simulated. The results for FHD resolu-

tion are depicted in Figure 3.12(a). The depicted performance is relative to the

decoding time on a single core with the baseline 64KB L1 cache.

The systems with 16KB and 32KB caches have a large performance

drop of approximately 45% and 30%, respectively, for any number of cores.

The reason for this is depicted in Figure 3.12(b), which presents the L1-L2
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Figure 3.11: Scalability and performance for different Average Memory Latency

(AML) values, using the 25-frame Rush Hour FHD sequence. In the

scalability graph the performance is relative to the execution on a single

core, but with the same AML. In the performance graph all values are

relative to the execution on a single core with an AML of 40 cycles.
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cache data traffic for FHD resolution. Compared to a system with 64KB

caches, the system with 16KB caches has between 3.1 and 4.7 times more

traffic while the system with 32KB caches has between 1.8 and 2.5 times more

traffic. Those huge increases in data traffic are due to cache misses. For FHD

resolution, one MB line occupies 45KB. Preferably, the caches should be able

to store more than one MB line, as the data of each line is used in the decoding

of the next line and serves as input for the motion compensation in the next

frames. For FHD, the 16KB and 32KB caches suffer greatly from data thrash-

ing. As a result, there are a lot of write backs to the L2 cache as well as reads.

For smaller resolutions the effects are less prominent. For example, for SD

resolution using 16KB L1 caches the data traffic increases with a factor be-

tween 1.19 and 1.66 compared to the baseline with 64KB caches. With 32KB

caches, the traffic increases only by approximately 7%.

Using caches larger than 64KB provides small performance gains (less

than 4%).’ The reason for this is again the size of a MB line. Once the dataset

fits in the cache it makes no use of the additional memory space. This is also

reflected in the data traffic graph. For FHD, the system with 256KB caches

has 13 to 27% less traffic than the 64KB system. For the lower resolutions, the

traffic is reduced by at most 10% and the performance gain is at most 4%.

3.4.6 Impact of the Parallelization Overhead

Alvarez et al. [4] implemented the 2D-Wave approach on an architecture

with 64 dual core IA-64 processors. Their results show that the scalability

is severely limited by the thread synchronization and management overhead,

i.e., the time it takes to submit/retrieve tasks to/from the task pool. On their

platform it takes up to 9 times as long to submit/retrieve a task as it takes to

decode a MB. To analyze the impact of the synchronization and management

overhead on the scalability of the 3D-Wave, we increase the TP overhead by

adding dummy calculations in the submit/retrieve functions of the TP.

The inserted extra overheads are 10%, 20%, 30%, 40%, 50%, and 100%

of the average MB decoding time, which is 4900 cycles. Because of the Tail

Submit enhancement, not every decode mb task requests or submits a task to

the TP. For example, on a single core, the version with 100% TP overhead is

only 3% slower than the baseline version. The effects of the increased over-

head are depicted in Figures 3.13(a), 3.13(b), and 3.13(c), for SD and FHD

resolutions, respectively.
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Figure 3.12: Impact of the L1 cache size on performance and L1-L2 traffic for the

25-frame Rush Hour FHD sequence.
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Figure 3.13: TP overhead effects on scalability for Rush Hour frames
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The results for SD resolution clearly show the impact of the increased

overhead on the scalability. For 32 cores the scalability is considerably re-

duced when the overhead is 40% or more. For 64 cores the extra overhead

reduces the scalability even more. The SD resolution is severely affected by

the increased overhead because the frame resolution is comparatively low and

the lines are short, which increases the number of task submissions per frame.

For the HD resolution, the increased overhead limits the scalability to 32 cores

while for FHD it slows down the scalability, but does not limit it. As the res-

olution increases the number of requests to the TP per MB decreases and so

does the impact of the extra overhead. These results show the drastic effects of

the overhead on the scalability, even with enhancements that reduce the num-

ber of requests to the task pool. An interesting characteristic of the results is

that, in some cases, a lower overhead causes a larger reduction in scalability

than a higher overhead. Although we cannot fully explain the reasons of this

behavior, we believe that is due to the change in the order in which tasks are

submitted and consequently in their dependency chain.

3.4.7 CABAC Accelerator Requirements

Broadly speaking, H.264 decoding consists of two parts: entropy (CABAC)

decoding and MB decoding. CABAC decoding of a single slice/frame is

largely sequential while we have shown that MB decoding is highly paral-

lel. We therefore assumed that CABAC decoding is performed by a specific

accelerator. In this section we evaluate the performance required of such an

accelerator to allow the 3D-Wave to scale to a large number of cores.

Figure 3.14 depicts the speedup as a function of the number of (MB

decoding) cores for different speeds of the CABAC accelerator. The base-

line accelerator, corresponding to the line labeled “no speedup”, is assumed to

have the same performance as the TM3270 TriMedia processor. These results

were obtained using a trace-driven, abstract-level simulator that schedules the

threads given the CABAC and MB dependencies and their processing times.

The traces have been obtained using the simulator described in Section 3.2 and

used in the previous sections.

The results show that if CABAC decoding is not accelerated, then the

speedup is limited to 7.5, no matter how many cores are employed. Quadru-

pling the speed of the CABAC accelerator improves the overall performance

by a similar factor, achieving a speedup of almost 30 on 64 cores. When

CABAC decoding is accelerated by a factor of 8, the speedup of 53.8 on 64

cores is almost the same as the results presented previously which did not con-
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sider CABAC. There are proposals(e.g., [75]) that achieve such a speedup for

CABAC decoding. This shows that the CABAC processing does not pose a

strict limitation on the scalability of the 3D-Wave technique. We remark that

the 3D-Wave also allows employing multiple CABAC accelerators, since dif-

ferent slices/frames can be CABAC decoded in parallel, as entropy-decoding

dependencies do not cross slice/frame borders.

3.5 Conclusions

Future CMPs will contain dozens if not hundreds of cores. For such systems,

developing parallel applications that can harness them is the key challenge.

In this chapter we have contributed to this challenge by presenting a highly

scalable parallel implementation of H.264 decoding. While a many-core is

not necessary to achieve real-time FHD video decoding, it is likely that fu-

ture video coding standards will be computationally more intensive and will

be similarly block-oriented and based on motion compensation. Furthermore,

decoding is part of encoding and real-time encoding is still a challenge. In ad-

dition, emerging applications such as 3D TV are based on current video coding

standards.

While the idea behind the 3D-Wave was presented in the previous chap-

ter, in this chapter we have contributed by providing an actual implementation

and by providing extensive simulation results. Implementing the 3D-Wave

required, for example, developing a subscription mechanism where MBs are

subscribed to a so-called Kick-off List associated with the MBs in the reference
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frame(s) they depend on. Several optimizations have been performed to reduce

the overhead of this mechanism. For example, vector prediction is skipped if it

has already been performed and if two reference MBs are in the same reference

frame, only the one that will be decoded last is added to the list.

The simulation results show that the 3D-Wave implementation scales

almost perfectly up to 64 cores. More cores could not be simulated due to

limitations of the simulator. Furthermore, one of the main reasons why the

speedup is slightly less than linear is that at the beginning and at the end of

decoding a sequence of 25 frames, not all the cores can be used because little

TLP is available. In a real sequence these periods are negligible. The presented

frame scheduling and priority policies reduce the number of frames in flight

and the frame latency. By applying these policies, the frame latency of the

3D-Wave is only 0.1 ms (about 1%) longer than that of the 2D-Wave.

We also measured the amount of data traffic between the shared L2

and the private L1 data caches. Obviously, increasing the number of cores

increases the L2-L1 data traffic, since the cores have to communicate via the

L2 cache. 64 cores generate approximately the same amount of L2-L1 traffic

as 32 cores, however, and both produce roughly twice as much traffic as a

single core. To our initial surprise, the original 3D-Wave generates the least

amount of L2-L1 data traffic. This is because the original 3D-Wave exploits

the data reuse between a MB and its reference MBs, more so than the 2D-Wave

and the 3D-Wave with frame scheduling and priority.

Next we have analyzed the impact of the memory latency and of the

L1 cache size. While increasing the average memory latency (AML) hardly

affects the scalability (i.e., the speedup of the 3D-Wave running on p cores over

the 3D-Wave running on a single core), it of course reduces the performance.

Doubling the AML from 40 to 80 cycles reduces the performance on 64 cores

by approximately 25%. The results for different L1 data cache sizes show that

a 64KB data cache is necessary and sufficient to keep the active working set

in cache. Smaller L1 data caches significantly reduce the performance, while

larger L1 data caches provide little improvement. The reason is that a single

line of MBs is 45KB for FHD and, therefore, caches larger than 45KB can

exploit the data reuse between a MB line and the next MB line.

In addition, we have analyzed the impact of the parallelization overhead

by artificially increasing the time it takes to submit/retrieve a task to/from the

task pool. The 3D-Wave exploits medium-grain TLP (decoding a single MB

takes roughly 5000 cycles on the TM3270), so task submission/retrieval should

be efficient. Because of the tail submit optimization, however, not for every
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MB a task is submitted to the task pool. The results show that even when the

parallelization overhead is 50% of the MB decoding time (about 2500 cycles),

the speedup on 64 cores is still higher than 41 for FHD. For SD, because it

exhibits less TLP and therefore submits more tasks per MB, the effects are

more dramatic.

Finally, we have analyzed the performance required of a CABAC ac-

celerator so that CABAC decoding does not become the bottleneck that limits

the scalability of the 3D-Wave. The results show that if CABAC decoding is

performed by a core with the same speed as the other cores, then the speedup is

limited to 7.5, no matter how many cores are employed. If CABAC decoding

is accelerated by a factor of 8, however, the speedup for 64 cores is almost the

same as when CABAC decoding is not considered.





4
Suitability of SIMD-Only Cores for

Kernels with Divergent Branching

T
he last two chapters focused on the first goal of this thesis, increase

the scalability of video processing for many-core processors. It was

shown that there is sufficient thread-level parallelism in video process-

ing to leverage it for the many-core processors. From this chapter on we focus

on microarchitecture of the cores composing a many-core processor. As part

of our second goal, this chapter evaluates the suitability of SIMD-only cores

for the increasingly amount of divergent branching in video processing algo-

rithms. The H.264 Deblocking Filter (DF) is used as a test case as it features

4 to 6 branches on the main body of the filtering functions. The Cell Syner-

gistic Processing Element (SPE) is used to emulate the SARC Worker core for

multimedia processing.

This chapter is organized as follows. Section 4.1 presents the motiva-

tion of the work in this chapter. Existing works related to SIMD processing

overheads are discussed in Section 4.2. The Cell processor and its SPE are

briefly described in Section 4.3. The DF is described in Section 4.4 and its

implementation on the SPE is given in Section 4.5. Section 4.6 presents and

analyzes the experimental results. In Section 4.7 conclusions are drawn.

67
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4.1 Introduction

As discussed in Chapter 1, to deal with the increasing complexity of video

processing coders/decoders (codecs), many processors feature Single Instruc-

tion Multiple Data (SIMD) units to accelerate multimedia processing. SIMD

processing has well documented overheads, that will be briefly reviewed in

Section 4.2. Cores which the instruction set is composed only by instructions

that operate in SIMD fashion, called SIMD-only cores, however, introduce

new challenges to processing efficiency. Two of these challenges are the effi-

cient processing multimedia kernels with divergent branching and the efficient

processing of scalar data. The first challenge is the focus of this chapter while

the second is evaluated in the next chapter of this thesis.

The increasing complexity of multimedia kernels can have a negative

impact on the efficiency of SIMD processing, due to the fact that presence

of complex control structures in the program decreases data-level parallelism.

Moreover, this can be critical on SIMD-only cores without specific units to

support divergent branching, such as branch prediction and superscalar pro-

cessing units.

Branch prediction and superscalar processing require complex hard-

ware structures. Branch prediction relies on large tables to store branch histo-

ries. Superscalar processing requires complex control logic to extract ILP from

the program. Because the performance gains of these structures are not scal-

able with the area overhead and power consumption [45], they are not featured

in our Worker cores. Alternative low overhead implementations, however, are

being investigated [15].

This chapter evaluates the suitability of SIMD-only cores for algorithms

with highly divergent branching. As a case study, a highly adaptive filtering

algorithm was chosen: the Deblocking Filter (DF) of the H.264 video com-

pression standard. The DF is not the most time consuming kernel of H.264,

but might take up to 49% of the total processing time if not vectorized using

SIMD instructions along with the other kernels [6].

As mentioned in Chapter 1, we use the Cell processor SPE cores to

emulate the SARC Worker cores. This allowed us to start the Worker core

evaluation while the SARC simulation tools were still in development.
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4.2 Related Work

Several works focused on reducing SIMD overhead, i.e., the overhead needed

for bringing the data in a form amenable to SIMD processing, in scalar cores

with SIMD extensions. These overheads include data alignment, packing and

unpacking of subwords, and subword rearrangement. Ranganathan et al. [79]

report that after vectorized with SIMD instructions, on average, 41% of their

instructions for several image and video processing kernels is overhead.

Compiler techniques to reduce the overhead related to data permuta-

tions, strided accesses, and alignment constraints were presented in [80], [71],

and [34], respectively. Ren et al. [80] presented a strategy to optimize data

permutations needed for non-contiguous and misaligned memory references.

Experiments were performed on several applications. The results showed that

up to 77% of the permutation instructions were eliminated. Nuzman et al. [71]

introduced an automatic compilation scheme that supports effective vectoriza-

tion in the presence of interleaved data with constant strides that are powers

of 2. Experimental results on a wide range of kernels showed execution time

speedups of up to 3.7. Eichenberger et al. [34] presented a compilation scheme

that vectorized with SIMD instructions loops in the presence of misaligned

memory references. Several techniques were proposed to minimize the num-

ber of data reorganization operations. For a set of loops where 75% or more

of the static memory references are misaligned, the results showed near peak

performance.

Hardware techniques to reduce packing/unpacking and data rearrange-

ment overhead were proposed in [89]. Two techniques were presented. The

first technique, called extended subwords, uses four extra bits for every byte

in a media register. This allows many SIMD operations to be performed with-

out overflow and avoids packing/unpacking conversion overhead. The second

technique introduces a Matrix Register File that allows flexible row-wise and

column-wise access to the register file. This eliminates the costly transposition

steps which are required for many multimedia kernels. Experimental results

showed that these techniques have an average speedup of almost 2 compared

to a conventional SIMD instruction set extension.

Another approach for matrix transposition is presented in [67]. It

proposes an instruction that swaps the odd numbered elements of the first

source/destination SIMD register with the even-numbered elements of the sec-

ond source/destination register. It differs from regular shuffle instructions as it

has two destination registers, reducing the number of steps required to trans-
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pose a matrix by half. For the DF, it provides an overall performance improve-

ment of 35%.

Alvarez et al. [8] measured the overhead of unaligned access for video

processing and proposed splitting the memory bank into two to support un-

aligned data accesses. Results showed that unaligned access provides a

speedup up to 2 for luma interpolation part of the H.264 MC, compared to

the plain SIMD version.

All these works focused on SIMD overhead that is still present in

SIMD-only cores. In this and in the next chapter, however, we focus on over-

head specifically related to processing on SIMD-only architectures not pre-

viously studied. For example, in scalar cores with SIMD extensions scalar

operations do not pose a problem, but in SIMD-only cores they may.

4.3 Cell Processor Architecture

This section briefly describes the The Cell Broadband Engine processor [50,

43]. The main characteristics of the Cell processor are presented with the focus

on the memory system and the SIMD architecture of the SPEs.

The Cell processor is a heterogeneous multi-core processor designed

for multimedia and game processing. Although originally designed for mul-

timedia and gaming, the Cell processor has also been used as a basic block

of high-performance and supercomputers. For example, it is part of the first

supercomputer to run Linpack at a sustained speed in excess of 1 Pflop/s [13].

The performance and power efficiency of the Cell processor make it a suitable

option to accelerate a wide range of applications. It consists of one Power Pro-

cessor Element (PPE) and eight Synergistic Processing Elements connected by

the Element Interconnect Bus (EIB) that consists of four 16B-wide data rings.

A block diagram of the processor is depicted in Figure 4.1(a).

The PPE is a simplified version of the PowerPC processor family. It is

based on IBM’s 64-bit Power Architecture [1] with 128-bit SIMD media ex-

tensions. It is fully compliant with the 64-bit Power Architecture specification

and can run 32-bit and 64-bit operating systems and applications. The PPE

is dual-threaded and has a two-way in-order execution pipeline unit with 23

stages. The PPE has a conventional two-level cache hierarchy with split 32KB

L1 instruction and data caches and a 512KB unified L2 cache.

As depicted in Figure 4.1(b), each SPE consists of a Synergistic Pro-

cessing Unit (SPU), a Local Store (LS), and a Memory Flow Controller (MFC).
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(a) Cell Broadband Engine block diagram. (b) SPE block diagram.

Figure 4.1: Cell and SPE block diagrams.

The LS is a 256KB scratchpad memory and the MFC is composed of a Di-

rect Memory Access (DMA) engine, a memory management unit, and a bus

interface. The SPUs are tailored for multimedia processing and are single-

threaded, non-preemptive, two-way in-order processors. One issue slot can

contain fixed- and floating-point operations and the other can contain loads/-

stores, byte permutation operations, as well as branches. Branches are hinted

by software and miss-predicted branches have a penalty of 18 cycles. Even

unconditional branches need to be hinted in order to avoid the penalty. The

register file contains 128 128-bit wide registers. All instructions are SIMD and

they operate on 128-bit vectors with varying element width, i.e., 2 × 64-bit,

4 × 32-bit, 8 × 16-bit, 16 × 8-bit, or 128 × 1-bit. The SPE instruction set

does not contain scalar operations. Because of this, the SPE is often called a

SIMD-only type of core. Furthermore, data should be 128-bit aligned.

SPEs can only access data and code stored in their 256KB LS. The LS

is mapped into the main memory address space to allow LS-to-LS communi-

cation, but this memory (if cached) is not coherent in the system. To access

the external memory the SPU issues a DMA request to the MFC. There are

four types of DMA requests: put, get, putlist, and getlist. A put writes data

from the LS to the external memory. A get copies data in the external memory

to the LS. Requests can be grouped in a list with up to 1024 requests, that are

issued by putlist and getlist requests. The DMA unit requests the data and

sets a flag when the request is performed. Data are transferred in packets of at

most 16KB and both the source and the target address must be 16B aligned.

The DMA unit can handle up to 16 requests concurrently and data communi-

cation can be performed in parallel with computation. Double buffering can be

employed to hide the data transfer latency. Double buffering is the technique

of processing one block of data while fetching the next block.
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(a) Addition of two scalar variables. (b) Merging and storing the scalar result.

Figure 4.2: Example of compiler managed scalar operation in the SPE.

The design decision to not support scalar and unaligned operations was

taken to reduce the control complexity and to eliminate several stages from

the critical memory access path [43]. To process scalar and unaligned data, the

compiler inserts shuffle and shift instructions to align or allocate the data in the

preferred slot. The preferred slot is the leftmost word in a 128-bit quadword.

Figure 4.2 illustrates the steps to add two scalars, x and y, and store the result

z in the rightmost slot of the quadword. The SPE compiler manages scalar

operations by first moving both operands to the preferred slot of a register and

then the SIMD operation corresponding to the scalar operation is performed,

as depicted in Figure 4.2(a). Next, the CWX instruction generates the shuffle

control word to store the result in its destination slot. Finally, The shuffle

merges the result with the original content of the register while placing the

result in its destination slot and writes back the data to the register file. These

operations are depicted in Figure 4.2(b). Memory addresses for loads and

stores, branch conditions, and branch addresses for register-indirect branches

must be placed in the preferred slot.

For operations that involve only scalar variables, the compiler can place

these variables in memory locations congruent with the preferred slot, at the

price of wasting memory. If, however, the scalar is an element of a vector, then

reorganization overhead is unavoidable.

For the experiment in this chapter we used a 2.4GHz Cell processor in a

prototype Cell Blade [48]. For the remaining experiments in this thesis, we use

the 3.2GHz Cell processor present in the Playstation 3 (PS3). It has 6 out of the

8 SPEs available, as one SPE is disabled for redundancy purposes and another

one is used by the system for resources access management. Another important

characteristic is that the PS3 has only 256MB of RAM. For the measurements

we use the SPE has hardware counters. The SPE counter runs at a smaller

frequency than the processor itself. In the PS3, it runs at 78.8 MHz, which

is 40 times slower. This approach is not suitable for fine grain profiling, for
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(a) (b)

Figure 4.3: Line of pixels used for the vertical (a) and the horizontal (b) edges.

such cases we use a Cell processor simulator. Nevertheless, it is sufficiently

accurate to measure the performance of functions.

4.4 Deblocking Filter

The discrete cosine transform applied in video and image compression can

produce an artifact known as blocking; square areas in the picture. The aim

of the deblocking filter (DF) is to improve the visual quality of the decoded

pictures by smoothing the block edges. In H.264, this filter is mandatory. The

DF is highly adaptive and has different filter strengths depending on the block

types, e.g., intra- and inter-predicted types.

The filters employed in the DF are one-dimensional, i.e., they are ap-

plied to lines or columns of pixels. The bi-dimensional behavior is obtained

by applying the filter to both the vertical and the horizontal edges of all 4×4

luma or chroma blocks.

The DF is applied to a line of pixels orthogonal to the block edge (see

Figure 4.3). Let qi (0 ≤ i ≤ 3) denote the pixels of the current block and let pi
denote the pixels of the neighboring blocks. Depending on the filter strength,

the values of pixels p2 to p0 and q0 to q2 are modified, p3 and q3 always

remain unaltered.



74 CHAPTER 4. SUITABILITY OF SIMD-ONLY CORES FOR KERNELS ...

Figure 4.4: The filtering process of one macroblock.

The DF process first filters the left edges of the macroblock (MB) and

then the vertical internal edges. This process is repeated for the horizontal

edges. This process is illustrated in Figure 4.4, where each box represents a

4×4 luma block. The gray area represents the current MB, darkly-hatched the

p blocks, and the q blocks are lightly-hatched.

The strength of the filter is determined dynamically and depends on

the current quantizer, the coding of the neighboring blocks, and the gradi-

ent of the image samples across the boundary [60]. There are five Boundary

Strengths (BSs) which the filter can apply, ranging from 0 (no filtering) to

4 (strongest one). Boundary strength 4 is applied between edges of two In-

tra Prediction MB boundary blocks. Boundary strength 3 is applied between

edges of an Intra Prediction blocks. The others are used to edges between Inter

prediction blocks.

Filtering is applied if the conditions (p0− q0) < α, (p1− p0) < β and

(q1−q0) < β are met. The thresholds α and β depend on the encoder average

quantization parameter over the edge. There are two filter functions. When the

BS value is 4, the function depicted in Figure 4.5 is applied, where pi′ is the

new value for pixel pi. The function depicted in Figure 4.6 is applied for all

other BS values. The presented code filters the p pixels. The equations for the

q pixels are symmetrical.
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if (p0 - q0 < (alpha << 2) + 2){

if (p2 - p0 < beta){

p0’ = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3;

p1’ = (p2 + p1 + p0 + q0 + 2) >> 2;

p2’ = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3;

}

else

p0’ = (2*p1 + p0 + q1 + 2) >> 2;

}

else

p0’ = (2*p1 + p0 + q1 + 2) >> 2;

Figure 4.5: Filtering function for Intra MB boundaries.

clip(x, y, z){

return x < y ? y : ( x > z ? z : x)

}

clip(x) {return clip(x, 0, 255)}

if( p2 - p0 < beta){

p1’’ = ((p2 + ((p0 + q0 + 1) >> 1)) >> 1) - p1;

p1’ = p1 + clip(p1’’, -tc0, tc0);

}

delta’ = (((q0 - p0 ) << 2) + (p1 - q1) + 4) >>3;

delta = clip(delta’,-tc, tc);

p0’ = clip( p0 + delta );

Figure 4.6: Filtering function for other MB boundaries.
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4.5 Implementation

In this section, the implementation of the DF on the Cell SPE is detailed. The

implementation will be described in a top-down fashion starting with the main

loop of the kernel and gradually goes down to the inner parts of the implemen-

tation. The focus of this analysis is the computational part of the DF.

The baseline version is a scalar implementation extracted from the

FFMPEG H.264 decoder [37]. The extracted code does not include the pa-

rameter calculation of the DF. The analysis focuses on the sample filtering of

the code. This scalar version is then vectorized using the SIMD intrinsics for

the SPE and AltiVec intrinsics for the PPE. Because the AltiVec implementa-

tion is very similar to the SPE version, only the SPE version will be presented.

In the SPE implementations, the PPE is used only to read the parame-

ters from the input files and to store them in main memory. After storing the

parameters, the SPE threads are spawned. Thereafter, the PPE thread sends a

signal to all SPEs to start the computation.

Each SPE thread processes one frame. The 3D-Wave technique was

not considered because this research was performed before the 3D-Wave tech-

nique was developed. The processing of the DF per frame, however, avoids

data movements between SPEs and/or between SPEs and main memory as all

data dependencies are between instructions executed on the same SPE. The

processing starts by reading the input pointers for the samples and parameters

from the main memory.

Each frame is divided into several MB lines (MBs from the same row),

in order to use the SPE’s ability of performing computation and data commu-

nication in parallel. This partitioning is based on several factors such as the la-

tency, maximum DMA transmission package size, number of DMA transfers,

and organization of the data in the memory. The start-up latency increases

with the partition size, so a large partition incurs large start-up latency. The

pixel components Y, Cb, and Cr are stored in separate arrays. Partitioning into

complete lines of MBs allows to load the pixel samples of one partition with

three DMA transfers. Using partitions that do not cover complete lines would

require a separated DMA request for each pixel line in the partition.

For every MB line there are four DMA transfers from memory to the

LS. One DMA transfer is necessary for 16 lines of luma samples, two for 8

lines of each set of chroma samples, and another one for the DF parameters of

the MB line. After the data is available in the LS, the processing of the MB

line is performed and the results are transmitted back to the main memory.
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DMA.get (MB_Line[0]);

DMA.get (MB_Line[1]);

DMA.wait (MB_Line[0]);

Filter (MB_Line[0]);

FOR x = 2 TO frame_height_in_MB -1

{

DMA.get (MB_Line[x]);

DMA.wait (MB_Line[x-1]);

Filter (MB_Line[x-1]);

DMA.put (MB_Line[x-2]);

}

Filter (MB_Line[x-1]);

DMA.put (MB_Line[x-2]);

DMA.put (MB_Line[x-1]);

Figure 4.7: Double buffering of MB lines.

Figure 4.8: Deblocking Filter processing diagram.

The processing of the MB lines is performed as a software pipeline

and uses a double buffering strategy. First, the data for the first MB line is

requested, followed by the request of the data for the second MB line. After

the data of the first MB line is available in the LS, it is filtered. This way the

processing of MB line i is performed in parallel with the DMA transfer of of

MB line i+1 from memory to the LS. The pseudo-code in Figure 4.7 illustrates

the process. Figure 4.8 depicts the diagram of the DF process. The gray area

in Filter indicates the waiting time for the DMA request to complete.

The processed MB line cannot be immediately transmitted back to

memory. As depicted in Figure 4.4, the processing of the next MB line changes

the values of the current bottom edge samples.
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The filter process is performed per MB. As described in Section 4.4,

there are 8 edges, four vertical and four horizontal. First the four vertical

edges are filtered and then the four horizontal. The filtering process is divided

into the following steps: (1) unpack the 8-bit (8b) samples of the current and

left MBs to signed 16b, (2) transpose the current and left MBs so the pixels to

be filtered are moved from inside the same quadword (as in Figure 4.3(a)) to

different quadwords, and thus, more amenable to SIMD processing, (3) filter

the vertical edges, (4) transpose the result, (5) pack back the left MB result to

8b, (6) unpack the last 4 lines of the top MB to 16b, (7) filter the horizontal

edges, and finally, (8) pack back the MB result to 8b.

The computational core of the DF is the edge filtering. There are four

functions required to implement the edge filtering. Luma and chroma samples

require two functions each: one for Intra MB external edges blocks and another

one for the other cases. These functions exhibit data-level parallelism and have

been optimized with SIMD instructions of the SPE, such that the edge filtering

computes 8 pixels simultaneously.

Because of the high branch penalties, it is necessary to eliminate

branches whenever possible to improve performance. To perform the filter-

ing without branches, all equations of the function have to be computed. All

branches are replaced by comparisons that result in a mask. These masks are

used to select the positions of the result vectors that will be written back to

memory. All the filtering functions have been implemented without branches,

except for the one to select between the filter processes listed above. The im-

pact on the performance of the SIMD-only core is analyzed in the next section.

4.6 Experimental Results

In this section, the experimental results are presented. First, the input data and

methodology are described. It is followed by an analysis of the results. Based

on the analysis, the conclusions are drawn.

As input, the first eight frames of the Lake Wave video sequence, in

the QVGA (320×240 pixels) resolution, are used. The reason why we used a

QVGA video sequence is that at the time of this research was performed, only

QVGA sequences were available to us. Furthermore, the goal was to compare

a SIMD implementation to a scalar one and for this, the QVGA resolution

is sufficient. The time is measured using the SPE hardware counters. The

presented results are the average of three runs.
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Figure 4.9 depicts the time in milliseconds required to filter a single

frame for each version of the kernel: the scalar version running on the PPE

(PPE - Scalar), the AltiVec version on the PPE (PPE - AltiVec), the scalar ver-

sion on the SPE (SPE - Scalar), the SIMD version on the SPE without double

buffering (SPE - SIMD no D.B.), and the SIMD version on the SPE with dou-

ble buffering (SPE - SIMD D.B.). For the scalar versions, filtering a QVGA

frame takes on average 2.79 and 2.72 ms on the PPE and SPE, respectively.

The PPE AltiVec implementation has an average run-time of 2.15 ms, which

is 30% faster than the PPE scalar version. The SPE SIMD version takes 1.14

ms per frame, while using a double buffering technique reduces the average

runtime to 1.05 ms. The latter corresponds to a speedup of 2.6 compared to

the SPE scalar version. For comparison, SIMD implementations of the DF

for SSE2 have been presented in [57, 97] where speedups of 1.13 and 1.49

respectively, are reported.

As the AltiVec and SPE SIMD versions are almost identical, the differ-

ence in speedup obtained by vectorizing with SIMD instructions is interesting.

A critical difference between the PPE AltiVec unit and the SPE is that the first

one has only 32 vector registers, while the second has 128. Profiling the SPE-

SIMD version using the IBM Cell Full-System Simulator [17] showed that all

128 registers are used, with an average of 120 registers alive. Because a MB

is much larger than the PPE AltiVec register file, additional loads/stores are

required, decreasing performance. Moreover, the SPE versions benefit from

the LS, since no cache conflicts occur, and the direct access to main memory

through the DMAs, as the kernel has a predefined memory access pattern.

The performance difference between the double buffering implemen-

tation with the non-double buffering is only 8%. The profiling results also

show that the double buffering strategy successfully hides the communication

latency. The total number of cycles the cores are stalled waiting for data from

memory accounts for only 0.4% of the total runtime, on average. This shows

that the DF kernel spends much more time processing than acquiring the data.

As consecutive frames can be overlapped, the data communication latency in-

fluences only the start-up stage of the process.

The required SIMD overhead was also measured using the IBM Cell

simulator. For profiling purposes the kernel was divided into four parts: Trans-

position, Pack/Unpack, Filtering, and Control. We call Control all parts of the

kernel that do not fit in the first three categories. Figure 4.10 depicts the num-

ber of cycles spent in each part of the kernel. Filtering consumes 47% to 62%

of the cycles required to process a frame, with an average of 58%. Approx-
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Figure 4.9: Average execution time of the deblocking filter implementations for one

QVGA frame.

imately one third of the time is spent on the Transposition and Pack/Unpack

parts. They consume on average 20% and 12%, respectively. The remaining

10% are used by the control structures of the kernel, e.g., data requests and

function calls. The SIMD overhead for this kernel is within the previously re-

ported range [79]. Although significant, this overhead is not the focus of this

work as it has been the subject of several other works, as shown in Section 4.2.

If the known SIMD overhead is discarded, the DF vectorized with

SIMD instructions has a speedup of approximately 5 compared with the PPE

scalar version. This is 62.5% of the theoretical maximum (8, as 16 bits are nec-

essary to represent the intermediate data). The 37.5% performance loss is due

to two factors. First, the need of compute every possible result, one for each

branch of the control statement. Second, the selection of the right result for

each byte in the quadword. This performance loss is significant but acceptable

if the number of branches in the original code is taken into account. To reduce

this performance loss, different operators for a single SIMD word would be

necessary, similar to the Imagine processor architecture [51].

The results show that SIMD-only cores can still achieve significant per-

formance improvement over the scalar implementations, even in the presence

of a significant number of branches. Moreover, the main contributor to the

SPE speedup compared to the AltiVec is the large unified register file that is

characteristic for a SIMD-only architecture.
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Figure 4.10: Execution breakdown of the SPE DF implementation for 8 QVGA

frames.

4.7 Conclusions

This chapter presented PPE and SPE implementations of the H.264 Deblock-

ing Filter to analyze the efficiency of video filtering on the SARC media

Worker core. The Cell SPE was used to simulate the media Worker core.

The DF was vectorized with SIMD instructions and ported to the SPEs of

the Cell processor. Execution time was measured using hardware counters,

while profiling was performed using the IBM Cell Simulator. Results show

that approximately one third of the processing time of the SPE SIMD version

is spent on well-known SIMD overheads such as transposition and data pack-

ing and unpacking. Despite this overhead and the high adaptivity of the kernel,

the SPE version of the kernel vectorized with SIMD instructions is 2.6 times

faster than the PPE and SPE scalar versions. If the known SIMD overheads

are discarded, the DF vectorized with SIMD instructions reaches 62.5% of the

theoretical maximum performance. These experiments show that SIMD-only

cores can achieve significant performance improvement over the scalar imple-

mentations, even in the presence of many control flow statements.





5
Scalar Processing on SIMD-Only

Architectures

C
ontinuing our study on SIMD-only architectures, we focus on an-

other one of its characteristics, while SIMD processing overheads in

scalar cores with SIMD extensions are well documented in the litera-

ture [79, 89, 8], scalar processing overheads in SIMD-only cores have not yet

been evaluated. In this chapter we study the latter overheads, identify their

sources, and propose architectural enhancements to eliminate these overheads.

This chapter is organized as follows. Section 5.1 motivates the study

and briefly describes scalar processing on SIMD-only cores. Section 5.2

presents the methodologies applied to determine the scalar processing over-

head. It is followed, in Section 5.3, by brief descriptions of the evaluated

kernels/applications. Experimental results are presented in Section 5.4 and op-

tions to reduce the overhead are discussed in Section 5.5. Finally, conclusions

are drawn in Section 5.6.

5.1 Introduction

As argued in the previous chapter, SIMD processing is a power-efficient man-

ner of exploiting the Data-Level Parallelism (DLP) present in many multime-
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dia kernels. Unfortunately, not every parallelizable application benefits signif-

icantly from SIMD processing.

For example, sorting, information retrieval (e.g. histogram), and other

kernels do not exhibit substantial amounts of DLP. These kernels, however,

belong to important applications that cannot be neglected. Furthermore, even

if a kernel is vectorizable using SIMD instructions, it often contains scalar

operations.

As depicted in the previous chapter, to perform scalar operations and on

SIMD-only cores as the SPE, the compiler inserts shuffle and shift instructions

to move the data to the preferred slot. Next, the SIMD operation corresponding

to the scalar operation is performed. Finally, a shuffle moves the result to the

destination slot and writes back the data to the register file.

In this chapter, we evaluate SIMD-only cores for parallelizable kernel-

s/applications that do not benefit significantly from SIMD processing. The

objective of this work is to identify the amount of overhead introduced by

the lack of scalar instructions and the situations that cause this overhead. In

other words, the goal is to evaluate if the SARC Worker core (or SIMD-only

processors in general) would profit significantly from a scalar datapath in ad-

dition to the SIMD datapath. To the best of our knowledge, we are the first

to quantify the overhead caused by the lack of scalar operations in SIMD-only

architectures. We study the impact of compiler-managed scalar and unaligned

data for different applications. If significant overhead is incurred, it can jus-

tify modifications to the Worker core architecture. The performance degra-

dation for scalar computations can justify the area overhead of a scalar unit

or other support for scalar operations. This was the solution implemented in

other many-cores such as the canceled Intel Larrabee [85] that keep scalar and

vector processing datapath separated. We, however, discuss possible solutions

for the scalar overhead without resorting to a complete scalar unit.

5.2 Experimental Methodologies

In this section, the methodologies used to determine the scalar processing over-

head are described. Since implementing an architectural model would require

too much effort for an initial evaluation, a methodology called Large-Data-

Type is presented to study the overhead generated by the compiler to imple-

ment scalar operations. This methodology, however, is feasible only for rel-

atively small kernels as it requires manual code modifications. To evaluate

larger kernels and applications, a second methodology called SPE-vs-PPE is
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presented. Similar to the previous chapter, the Cell SPE is used in this evalua-

tion to represent the SARC Worker core.

5.2.1 Large-Data-Type Methodology

The Large-Data-Type (LDT) promotes 32-bit integers to 128-bit quadwords

vectors to avoid shuffles/shift instructions, the main SIMD-only overheads

when processing scalar data. Without these instructions, the behavior of the

architecture would be equivalent to a processor with support for scalar opera-

tions. The LDT methodology highlights the differences between a SIMD-only

core with and without support for scalar and unaligned operations. No influ-

ence from the DMA transfers will be considered in the performance measure-

ments. The main microarchitectural resources focused by this methodology

are the register file, its communication with the Local Store (LS), and the exe-

cution datapath. To allow this, the workload should fit in the SPE LS.

To implement the LDT methodology and simulate the behavior of a

scalar unit, the kernels have been modified as follows. First, the processed

data types are modified to 128-bit wide vectors. In order to avoid shuffles and

shifts, the actual data is stored in the preferred slot by manually modifying the

input. SPE instrinsics are used to handle comparisons, as the compiler cannot

generate them directly.

The methodology is illustrated using the function depicted in Figure 5.1.

This function adds the vector A to the reversed vector B and stores the re-

sult in vector C . The regular SPE implementation requires that every element

of the vectors A and B are moved to the preferred slot before they are pro-

cessed. This is performed by the rotqby and shufb instructions and causes

considerable overhead. The assembly code generated by the compiler for

C[i] = A[i] + B[size − 1 − i]; is depicted in Figure 5.3. The assembly code

that implements the loop is not depicted because, as mentioned in Section 4.3

of the previous chapter, local variables are allocated in the preferred slot by

the compiler and thus do not cause overhead. The resulting code of applying

the LDT methodology to the function shown in Figure 5.1 is depicted in Fig-

ure 5.2. The types of the function arguments have been changed to vector int

so that each element of the arrays is now an 128-bit wide vector. The spu add
intrinsic adds two aligned vectors. This way, the compiler generates only the

core instructions without any shuffling, with the same behavior as an SPE with

scalar support would have. The assembly generated after the LDT methodol-

ogy has been applied is depicted in Figure 5.4. This assembly code is similar

to the assembly code for the PPE, in terms of functionality. The spu-gcc com-
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Scalar_Implementation(int A[], int B[], int C[],

int size)

{

for (i=0; i < size; i++)

C[i] = A[i] + B[size - 1 - i];

}

Figure 5.1: Example of function requiring scalar operations.

LDT_Implementation(vector int A[], vector int B[],

vector int C[], int size)

{

for (i=0; i < size; i++)

C[i] = spu_add(A[i],B[size - 1 - i]);

}

Figure 5.2: C code of the example kernel after the Large-Data-Type methodology has

been applied.

piler version 4.1.1 with the -O3 optimization flag is used for both versions of

the code.

The LDT methodology, however, increases the data footprints of the

kernels, as the scalars are now four times larger. This increases the amount

of data transferred between the LS and the register file. This effect will be

verified using the number of load/store stalls. The LDT methodology could

also increase the pressure on the register file because it reduces the register

file capacity from 512 scalar elements to 128 elements. Increasing the register

pressure could mean that more variables need to be spilled to memory, while

this would not be needed in an SPE with scalar support. To analyze this effect,

we will compare the number of registers used in the LDT-emulated versions of

the kernels to the number of registers needed in the original kernels.

5.2.2 SPE-vs-PPE

The purpose of the SPE-vs-PPE methodology is to evaluate the effects of

compiler-managed scalar operations on large kernels and applications by com-
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// $8 : i

// $11: address of A[i]

// $4 : address of B[size - 1 - i]

// $5 : address of C[i]

a $2,$8,$11 //Add i to A to calc

distance from pref slot

lqx $3,$8,$11 //Load A[i]

lqd $10,0($4) //Load B[size - 1 - i]

lqx $7,$8,$5 //Load C[i]

cwx $9,$8,$5 //Generate control word for

inserting C[i]

rotqby $3,$3,$2 //Rotate A[i] to preferred slot

rotqby $2,$10,$4 //Rotate B[size - 1 - i]

to preferred slot

a $3,$3,$2 //Add A[i] and B[size - 1 - i]

shufb $7,$3,$7,$9 //Shuffle result into

final position of C

stqx $7,$8,$5 //Store C[i]

Figure 5.3: Assembly generated from the example function.

// $7 : i

// $8 : address of A

// $4 : address of B + size - 1 - i

// $5 : address of C

lqx $2,$7,$8 // Load A[i]

lqd $3,0($4) // Load B[size - 1 - i ]

a $2,$2,$3 // Add A and B

stqx $2,$7,$5 // Store result in C[i]

Figure 5.4: Assembly generated after the Large-Data-Type methodology has been ap-

plied to the example function.
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paring their performance on the SPE to the their performance on a similar core

with support to scalar operations. While the LDT methodology focuses on

specific overheads, this methodology focuses on the overall scenario.

To compare the SPE to a processor with scalar instructions, a natural

choice is the Cell PPE. The PPE runs at the same clock frequency and has

several microarchitectural similarities with the SPE, such as in-order, dual-

issue execution and a 23-stage pipeline that commits fixed point operations

every two cycles. There are, however, fundamental architectural differences

between the PPE and the SPE. The PPE is a general purpose core, while the

SPE is designed specifically for multimedia and game processing. The PPE has

a traditional memory hierarchy with a first and second level caches, while the

SPE accesses data and code in its LS. Comparing the performance of the SPE

with the PPE on large kernels reveals the scalar (in)efficiency of the processors.

To concentrate the comparison on the computational part of the processor, the

data set size of the kernels is limited to 32KB, corresponding to the size of the

L1 data cache.

5.3 Kernels

This section describes the kernels used in this study. The selection criteria

for the kernels are that they should contain scalar, hard to vectorize sections,

but be parallelizable at the same time. These criteria are to match the type of

applications likely to be ported to a many-core processor. There are two sets of

kernels, “Small Kernels” and “Large Kernels”. Small Kernels are the kernels

used to highlight a particular characteristic of the SIMD-only core that causes

scalar processing overhead, using the LDT methodology. Large Kernels are

used to compare the performance of the SPE with that of the PPE, using the

SPE-vs-PPE methodology.

5.3.1 Small Kernels

The small kernels highlight specific characteristics of SIMD-only cores that

introduce scalar computation overhead. They access unaligned data, process

scattered data, or make use of indirect addressing. As described in Section 4.3,

unaligned data refers to data vectors that do not start in the first slot and scalars

that are not in the preferred slot. For each of these characteristics two kernels

were selected. For ease of reference, pseudo-C codes are listed for each kernel.
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saxpy(int x[], int y[], int scalar, int size){

for (i = 0; i < size; i++)

y[i] = scalar*x[i] + y[i];

}

Figure 5.5: Pseudocode for SAXPY.

for (i = ORDER-1; i < SIZE+ORDER-1; i++){

accum=0;

for (j = 0; j < ORDER; j++)

accum += coefficients[j] * input[i-j];

output[i-(ORDER-1)] = accum;

}

Figure 5.6: Pseudocode for the FIR filter.

5.3.1.1 Kernels that Access Unaligned Data.

Saxpy. Basic Linear Algebra Subprograms (BLAS) is a linear algebra appli-

cation programming interface. It is used for scientific computations and is a

part of the LINPACK benchmark. BLAS level 1 provides functionality of the

form y = α × x + y, where x and y are vectors and α is a scalar, and it is

called the SAXPY kernel. This kernel was chosen to determine the overhead

of shuffle/rotate instructions needed to move the data to the preferred slot. Its

pseudocode is listed in Figure 5.5. A SIMD implementation of this kernel is

possible, but requires some programming effort, because the vectors may not

be aligned in memory.

FIR. Finite Impulse Response (FIR) filters are implemented by a convolution

of the signal with the coefficients. It requires accesses to vector elements that

are not quadword aligned, both the coefficient and input values, which requires

more shuffle/rotate instructions than the previous kernel. Its pseudocode is

listed in Figure 5.6.
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quickSort (int a[], int lo, int hi) {

int i=lo, j=hi, h;

int x=a[(lo+hi)/2];

do{

while (a[i]<x) i++;

while (a[j]>x) j--;

if (i<=j) {

h=a[i];

a[i]=a[j];

a[j]=h;

i++; j--;

}

} while (i<=j);

// recursion

if (lo<j) quickSort(a, lo, j);

if (i<hi) quickSort(a, i, hi);

}

Figure 5.7: Pseudocode for Quick Sort.

5.3.1.2 Kernels that Process Scattered Data.

QuickSort. Sorting algorithms are an important class of algorithms that are

part of many applications. Sorting requires many comparisons, and aligned

data accesses are hard to guarantee. QuickSort is one of the best known sorting

algorithms. It works by choosing an element from the unsorted list, called

the pivot, and moving the elements that are smaller to positions before the

pivot and the elements larger to positions after the pivot. This procedure is

recursively applied to the resulting lists until all elements of the lists are sorted.

QuickSort pseudocode is listed in Figure 5.7.

Merge Sort. Conceptually, merge sort works as follows. The unsorted list

is divided into two sublists of about half the size. Thereof, each sublist is

sorted recursively by re-applying merge sort. Finally, the two sorted sublists

are merged into one sorted list. Figure 5.8 depicts pseudocode for Merge Sort.
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void Merge( int a[], int b[], int c[],

int m, int n ){

int i = 0, j = 0, k = 0;

while (i < m && j < n){

if (a[i] < b[j])c[k++] = a[i++];

else c[k++] = b[j++];

}

while (i < m) c[k++] = a[i++];

while (j < n) c[k++] = b[j++];

}

void merge_sort( int key[], int n ){

int *w;

for(i = 1; i < n; i *= 2 ){

for(j = 0; j < (n - i); j += 2 * i )

Merge(key + j, key + j + i,

w + j, i, i);

for (j = 0; j < n; j++) key[j] = w[j];

}

}

Figure 5.8: Pseudocode for Merge Sort.

for (i=0; i < img_height; i++)

for (j=0; j < img_width; j++)

histogram[ img[i][j] ]++;

Figure 5.9: Pseudocode for Image Histogram.

5.3.1.3 Kernels that Require Indirect Addressing.

Image Histogram. An image histogram is a histogram which graphically

represents the tonal distribution in a digital image. It plots the number of pix-

els for each tonal value. The horizontal axis of the graph represents the tonal

variations, while the vertical axis represents the number of pixels in that partic-

ular tone. This kernel highlights the overhead for indirect address calculation.

The pseudocode is depicted in Figure 5.9.



92 CHAPTER 5. SCALAR PROCESSING ON SIMD-ONLY ARCHITECTURES

for(i=1; i < img_height-1; i++)

for (j=1; j < img_width-1; j++)

{

GLCM[ img[i][j] ][ img[i-1][j-1] ]++;

GLCM[ img[i][j] ][ img[i-1][j] ]++;

GLCM[ img[i][j] ][ img[i-1][j+1] ]++;

GLCM[ img[i][j] ][ img[i][j-1] ]++;

GLCM[ img[i][j] ][ img[i][j+1] ]++;

GLCM[ img[i][j] ][ img[i+1][j-1] ]++;

GLCM[ img[i][j] ][ img[i+1][j] ]++;

GLCM[ img[i][j] ][ img[i+1][j+1] ]++;

}

Figure 5.10: Pseudocode for GLCM.

Gray-Level Co-occurrence Matrices. Gray-Level Co-occurrence Matrices

(GLCM) is a tabulation of how often different combinations of pixel brightness

values (gray levels) occur in an image. Second order GLCM considers the re-

lationship between groups of two (usually neighboring) pixels in the original

image. It considers the relation between two pixels at a time, called the refer-

ence and the neighbor pixel. The GLCM is used to extract statistical charac-

teristics of the image and is used in medical imaging as well as content based

image retrieval [88]. In this study, all 8 neighboring pixels are examined, as

depicted in the pseudo-code in Figure 5.10. This kernel exposes the indirect

address calculation overhead.

5.3.2 Large Kernels

The Large Kernels are evaluated by comparing the performance of the SPE to

the performance of the PPE. The chosen kernels are the Deblocking Filter of

the H.264 video decoder, which was also considered in the previous chapter,

as well as the Viterbi decoder. These kernels have a more general behavior

than the small kernels, mixing control and computation. They are used to

analyze the impact of scalar processing overhead on SIMD-only cores to entire

applications.
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5.3.2.1 Deblocking Filter

As presented in detail in the previous chapter, the H.264 Deblocking Filter

(DF) improves the appearance of the decoded pictures by smoothing the block

edges. The DF is highly adaptive and has different filter strengths depending

on the block type. The DF kernel consists of almost 400 lines of C-code and

15 functions. First, it filters the left edges of the macroblock (MB) and then it

filters the vertical internal edges of its 16 4×4 blocks. This process is repeated

for the horizontal edges.

The strength of the filter is determined dynamically and depends on the

current quantizer, the coding of the neighboring blocks, and the gradient of the

image samples across the boundary. There are five Boundary Strengths (BS)

which the filter can apply, ranging from 0 (no filtering) to 4 (strongest one).

5.3.2.2 Viterbi Decoder

The Viterbi Algorithm (VA) [96] is an error-correction scheme for transmission

through a noisy channel. It is used for decoding convolutional codes used in

both CDMA and GSM digital cellular, dial-up modems, satellite, deep-space

communications, and 802.11 wireless LANs. It is also commonly used in

speech recognition, keyword spotting, computational linguistics, and bioinfor-

matics.

A formal description of the VA is that given a sequence Z of observa-

tions of a discrete-time finite-state Markov process in memoryless noise (the

interference does not depends on previous values), the VA finds the state se-

quence X for which the posteriori probability P (X/Z) is maximal, and thus

it is optimal in that sense. Therefore, the VA is a solution to the problem of

Maximum A Posteriori (MAP) estimation, which tracks the state of a stochas-

tic process with a recursive method. The MAP sequence estimation problem is

formally identical to the problem of finding the shortest route through a graph.

In this study the Zero-Tail (ZT) technique [62] is used. It begins the

encoding with the contents of the shift register initialized to all zeros. The

Zero Tail technique works as follows. For a positive integer L, we take as the

code words in our block code all sequences of length (L + m)n produced by

feeding the encoder with a binary sequence of length L followed by m zeros.

The resultant code is an ((L+m)n,L) block code of rate (1/n)(L/(L+m)) =
(1/n)(1 − (m)/(L + m)). The term m/(L + m) is called the rate loss and is

due to the zero tail.
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5.4 Experimental Results

In this section, the experimental results are presented and analyzed. First, the

results obtained using the LDT methodology are presented. It is followed by

the results obtained using the SPE-vs-PPE methodology.

5.4.1 Large-Data-Type

As argued before, the LDT methodology highlights specific kernel charac-

teristics that are known to introduce scalar processing overheads. The Small

Kernels evaluated with the LDT methodology spend a significant part of their

execution time on operations that require compiler-generated shuffles. Because

of this, the effects of the overhead required to process scalar data can be mea-

sured. To obtain the results, the IBM Cell cycle-accurate simulator was used

as it provides kernels execution details, such as the number of cycles spent

in a specific area of the code, the number of single- and double-issue instruc-

tion cycles, and the number of stalls. This detailed information is necessary to

evaluate all effects of the proposed methodology.

Figure 5.11 depicts the execution times of the LDT-emulated kernels

normalized to the execution times of the original kernels. It also breaks down

the execution time into cycles spent on actual computation, NOPs, and stalls.

Stalls are further divided into load/store (L/S) stalls, stalls waiting for the shuf-

fle unit to become available, and stalls waiting for other functional units.

Overall, the LDT-emulated versions are 19% (Merge Sort) to 57% (FIR)

faster than the original versions. This performance increase comes from sev-

eral sources. Without the shuffle instructions, the kernels have less operations

to perform and less stalls due to structural hazards on the shuffle unit. This

is represented by the decrease in computation cycles and by the elimination

of shuffle stalls. The LDT methodology sometimes also affects the number

of branch miss prediction stalls and other stalls, as will be discussed in more

detail below.

Analyzing only the variation in computation cycles (represented by the

black areas of the bars in Figure 5.11), all emulated kernels had a reduction

in the number of computation cycles. For the sorting kernels, QuickSort and

Merge Sort, the number of computation cycles are reduced by 21% and 27%,

respectively. SAXPY present a reduction of about 40% and the remaining ker-

nels approximately 50%. This reduction in computation cycles is mainly due

to the elimination of shuffle operations. The stall breakdown shows that the
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Figure 5.11: Execution times of the LDT-emulated kernels normalized to the execu-

tion times of the original kernels.

LDT methodology eliminates the shuffle stalls, as it eliminates shuffle instruc-

tions, but increases the load/store stalls, i.e., the stalls on the shuffle pipeline

are transferred to the Load/Store pipeline when going from the original to the

emulated version of the kernels. On average, for the original versions, the

shuffle stalls account for 19% of the total number of stalls, while the Load/S-

tore stalls account for 12%. For the emulated versions, the Load/Store stalls

account for 30% of the total number of stalls. The relative increase in the num-

ber of Load/Store stalls is caused by two factors. The first is the increase in

performance of the kernel. As the kernel spends less time performing arith-

metic and shuffle operations, the proportion of loads and stores increases. The

second effect is the increased number of loads and stores. As data are not

compacted in quardwords, there are more loads and stores.

While for most kernels the percentage of branch miss prediction stall

cycles does not change significantly, for the sorting kernels there is a consid-

erable variation. For QuickSort, the number of branch miss prediction stall

cycles decreases by 49% while for Merge Sort it increases by 37%. The com-

piler was able to increase the number of branch hints for the LDT version of

QuickSort in comparison with the regular version. This explains the decrease

in branch miss prediction rate for that kernel. For Merge Sort the opposite

happened. The number of branch hint instructions decreased. Hint instruc-

tions have to be placed at least 8 instructions before the branch to make it

useful, and more than 17 instruction to be penalty free. With the decrease of

code size, due to the elimination of shuffles, the compiler has less opportunities

to meet all the requirements for placing hint instructions. A vectorizable sort-
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ing algorithm in tune with the characteristics of the Cell processor is presented

in [41]. However, details of its performance are not presented.

Because of the small number of computations performed in each ker-

nel, there are less than 36 live registers at any moment. For all kernels, except

Merge Sort, the number of used registers decreases in the LDT version. This

decrease is the result of reducing the number of intermediate steps necessary

to calculate the result. Merge Sort has the same number of registers in both

versions, FIR decreases the number of live registers by 14%, and the other ker-

nels by 33%. These results show that the LDT methodology does not increase

the pressure on the register file.

These results show the importance of scalar support for SIMD-only pro-

cessors. The performance of every kernel increases when applying the Large-

Data-Type methodology, which reveals the overhead of scalar processing on

SIMD-only cores.

5.4.2 SPE-vs-PPE

In this section, the results for the SPE-vs-PPE methodology are presented and

analyzed. Each kernel is executed ten times and the first run is discarded as

it is used to warm-up the cache. Ten runs are performed to minimize external

influences on the execution time, such as operating system context switching.

The average execution time of the last 9 runs is reported.

To evaluate the performance of the kernels, the real Cell processor has

been used, because the IBM Simulator does not accurately model the PPE.

Execution time is measured using the hardware counters. Hardware counters

have a precision of approximately one microsecond and the execution times of

the kernels are considerably larger than this precision.

5.4.2.1 Deblocking Filter

The input used for testing the DF consists of the first eight frames of the Lake

Wave video sequence in the QVGA (320×240 pixels) resolution. Only the

8×8 upper left MBs are filtered as a larger area would not fit in the L1 data

cache. Because of this, the results differ from the ones presented in the previ-

ous chapter. Here, the presented results are the average of the runs with eight

frames each. As previously mentioned, the PPE version only takes into consid-

eration the measurements with the input data already present in L1 data cache.

For the SPE version, the DMA transfer time is not included.
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The scalar version running on the SPE takes on average 300 µs to filter

the frame area. The scalar version running on the PPE is 12% faster; the

required time to filter a frame area is on average 265 µs.

The DF has several of the typical characteristics of multimedia kernels,

such as predictable data set and loops with constant number of iterations. The

kernel operates on a predictable data set, which simplifies the data transfer to

the Local Store. Also, the loops have static loop iteration counters, reducing

loop overhead and making branch hints more effective. On the other hand,

the DF is highly adaptive, featuring 4 to 6 branches in the main body of the

filtering functions. Because the branch prediction in the Cell processor use

simple prediction structures, as presented in Section 4.3, it has a higher miss

prediction rate than high end general purpose processors. Moreover, a miss

predicted branch incurs up to 18 cycles penalty. The compiler-managed over-

head is masked by the miss prediction penalty, and therefore the overhead

determined with the SPE-vs-PPE methodology is smaller than that found with

the LDT methodology.

5.4.2.2 Viterbi Decoder

The execution time of the used Viterbi decoder is not dependent on the input

data. Because of this characteristic and to avoid data transfer impact on per-

formance, a constant input is used. The input consists of 100 blocks of 160

symbols each.

The required computation time for the SPE was 10.6 ms, while the

PPE spent 6.5 ms for the same calculation. This result shows that the PPU

is 39% faster than the SPE for this application. Although the Viterbi has a

mix of control and computation and a large code than the Small Kernels, it

is dominated by an add-compare-select structure. This structure operates on

different elements of different vectors that requires them to be shifted to the

preferred slot and then merged with the original data. In other words, it greatly

suffers from the addressed scalar overhead. Because the add-compare-select

structure is relatively small, consisting of few operations, the resulting scalar

overhead is similar with the overhead found with the LDT methodology, that

used relatively small kernels.
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5.5 Instructions for Scalar Processing on SIMD-only

Cores

To support scalar operations without sacrificing area, we propose special

Scalar Load and Scalar Store instructions. These new instructions would load-

/store data directly into/from the preferred slot.

For the Scalar Load an extra 4-to-1 multiplexer would be necessary to

select the right word. Such an instruction was presented in [67] for acceler-

ating table lookups. This work did not study scalar overhead but multimedia

kernel acceleration in general and proposed several instructions for different

bottlenecks in multimedia kernels. The instruction was applied only to table

lookups in the DF kernel. It resulted in a 12% speedup for the kernel. This

instruction could be used more broadly if integrated in the compiler.

For the Scalar Store a 1-to-4 demultiplexer would be necessary together

with a masked write to the Local Store. The demultiplexer would not alter the

store latency, since the SPE ISA includes an indexed store that adds two 32-bit

words to compute the LS address. The demultiplexer is applied to the data

to be stored and can operate in parallel with the address calculation. Because

the Scalar Load would load the data to the preferred slot, the demultiplexer

only needs to read from the preferred slot. A masked write is necessary to

store only the correct word of the quadword in its final slot. For that, the write

enable signal of the LS would need to be split in four individual ones, one for

each word. This would require minor changes in the control logic with only

the Scalar Store requiring to activate only one of the signals based on the LS

address.

To fully evaluate these new instructions, the compiler would need to be

modified. It is possible to write code using intrinsics to use the instructions.

It would require, however, time-consuming assembly coding of kernels and

applications. In spite of that, if the Scalar Load and Scalar Store instructions

have the same latency as the other load and store instructions, the results should

be the same as the ones acquired with the LDT methodology.

5.6 Conclusions

In this chapter, the overhead caused by scalar operations on SIMD-only archi-

tectures was analyzed. Two methodologies were presented for this analysis,

the Large-Data-Type and SPU-vs-PPE methodologies. The first simulated the
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behavior of a scalar unit by replacing all data types by the quadword data type,

thereby eliminating the scalar processing overhead. This methodology was

used to evaluate small kernels. The second methodology compared the perfor-

mance of the SPE to the performance of the PPE for large kernels.

The experimental results showed that scalar support would provide con-

siderable performance improvement for scalar, non vectorizable data kernels.

Results of the LDT methodology showed that the scalar processing overhead

on SIMD-only architectures ranges from 19% to 57%. For the considered large

kernels, the Deblocking Filter and the Viterbi decoder, the overhead was 12%

and 39%, respectively. The overhead is mainly caused by the additional shuf-

fle instructions that need to be executed to move the scalar to the preferred slot

and stalls waiting for the shuffle unit to become available.

To reduce the scalar processing overhead, a scalar unit could be added

to the SPE. This, however, would require a complete re-engineering of the core

including a separate register file and control logic to support many additional

instructions. The resulting area and power overhead goes against the reasons

given in [45] for power efficient processors. Furthermore, adding a scalar unit

would be beneficial only if the area increase would be less than the perfor-

mance improvement. For example, if adding a scalar unit would double the

area requirements, then it would be profitable only if single-core performance

more than doubles the performance, since half as many cores can be placed

on a single chip. Another approach would be to add scalar instructions but to

execute them on the SIMD units. This could also reduce power consumption,

since the SIMD units are used to execute the scalar instructions, the unused

parts can be turned off to reduce switching activity. It is reported in [43], how-

ever, that this approach was attempted during the development phase of the

processor without consistent results.

To support scalar operations without sacrificing area, we proposed

scalar Load and Store instructions. These new instructions would load/store

data directly into/from the preferred slot and would require minimal area over-

head.





6
The Multidimensional Software Cache

T
he next two chapters will deal with the third objective of this thesis,

the improvement of the efficiency of scratchpad memories for unpre-

dictable memory accesses. In this chapter, we propose a new type of

software cache (SC) that enables the exploitation of the access behavior to

reduce the traditional SC overhead. This is demonstrated by the Motion Com-

pensation kernel from the H.264. It is also demonstrated that the proposed

cache design also benefits kernels where it is not possible to exploit access

behavior.

The chapter is organized as follows. Section 6.1 motivates the use of a

SC for unpredictable memory accesses. Related works are presented in Sec-

tion 6.2. Section 6.3 evaluates the latency and throughput of DMA opera-

tions. The MDSC implementation, properties, and its Application Program-

ming Interface (API) are presented in Section 6.4. Section 6.5 describes the

benchmarks utilized in the experiments and the MDSC optimizations for MC.

Section 6.6 presents the methodology used to evaluate the proposed SC and

the experimental results are presented and discussed in Section 6.7. Finally,

conclusions are drawn in Section 6.8.
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6.1 Introduction

Most processors use a cache to overcome the memory latency. Some proces-

sors, however, employ software-controlled high-speed internal memories or

scratchpad memories to exploit locality, as argued in Chapter 4. Processors

based on scratchpad memories are very efficient in terms of power and per-

formance for applications with predictable memory access patterns [12]. The

power efficiency is due to the simple structure of the memory compared to

caches. Additionally, scratchpad memories have predictable latencies.

Many kernels, in particular multimedia kernels, have a predictable

working set, which makes it possible to transfer data before the computation.

Often, it is also possible to overlap computations with data transfers by means

of a double buffering technique. The data in one buffer is processed while the

data for the next processing stage is fetched in another buffer. In scratchpad-

based systems, these data transfers usually need to be explicitly programmed

using Direct Memory Access (DMA) requests. There are also many multime-

dia kernels, however, that process data which address is known just before it

is needed. This is the case, for instance, in the Motion Compensation (MC)

kernel of H.264 video decoding: Only after Motion Vector Prediction it is

possible to fetch the data necessary to reconstruct the frame. Other kernels

potentially have working sets that exceed the capacity of the scratchpad mem-

ory. This is the case, for example, in the Gray Level Co-occurrence Matrix

(GLCM) kernel, previously described in Section 5.3.1.3 and further detailed in

Section 6.5.1. It features indirect addressing and using DMA requests for each

individual access is inefficient. MC is a representative kernel as its memory

access pattern is similar to other important multimedia kernels, such as texture

mapping. GLCM features indirect addressing that is representative of other

tabulation algorithms, such as histogram calculation.

Both the MC and the GLCM kernels, however, exhibit data locality that

could be exploited by a cache. In MC, the motion vectors of neighboring mac-

roblocks (MBs) often have similar values, so their reference areas are close to

each other and may even overlap. In GLCM, the difference of adjacent pixels

is often small so that the kernel accesses small parts of the GLCM matrix.

In a scratchpad memory, a cache can be emulated. This is often referred

to as a software cache (SC). SCs, however, incur high overhead, representing

up to approximately 50% of the total application execution time [42]. Such

high overheads could reduce performance compared to hand-programmed,

just-in-time DMA transfers. It is therefore necessary to reduce the number of
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SC lookups as much as possible. An additional feature of these kernels, as well

as many other multimedia kernels, is that they access 2- or higher-dimensional

data structures, and adjacent sub-rows are not stored consecutively in memory.

For such kernels that exhibit data locality which is hard to exploit with

DMA transfers, we propose a Multidimensional Software Cache (MDSC).

The MDSC stores 1- to 4-dimensional blocks (sub-matrices) and the cache

is indexed by the matrix indices rather than a linear memory address. This

approach minimizes both the DMA transfer time and the number of cache

accesses. Reducing the DMA transfer time is achieved by grouping several

DMA requests, thereby reducing DMA startup latency. Reducing the number

of cache access is achieved by exploiting the multidimensional access behavior

of the application.

6.2 Related Work

In this section, related work is discussed. First, works targeted at exploit-

ing the multidimensional data structures used in multimedia applications are

discussed. After that, works on software caches for the Cell architecture are

discussed.

Cache prefeching of bi-dimensional areas to exploit the vertical local-

ity found in multimedia applications such as video processing is proposed

in several works. Cucchiara et al. [24] propose a cache prefetching strategy

designed specifically to exploit the data locality found in video applications.

The experimental evaluation of the technique shows that the proposed tech-

nique reduces the number of cache misses by almost half compared to the

same cache configuration without prefeching. El-Mahdy et al. [35] propose

an instruction for regular hardware caches to access the cache and prefetch bi-

dimensional reference areas in case of a miss. It achieves speedups of almost

1.9 for MPEG2 [98] decoding and encoding applications when 7 additional

cache lines are prefetched. Zatt et al. [103] show that caching the MC refer-

ence area can save up to 60% bandwidth and more than 75% of the memory

cycles compared to issuing a new request for each reference area. These works

show the advantages of adapting the cache to the data access patterns of the ap-

plications. In this chapter, we extend SC to higher data structure dimensions,

up to 4, and exploit the multidimensionality together with known access pat-

terns to reduce SC overhead.

The implementation of a SC for the Cell processor is an active research

topic [11, 58, 18]. SCs for the Cell can be also automatically generate at com-
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pile time to give the illusion of a single shared memory to the programmer [33].

Balart et al. [11] propose a SC generated by the compile that supports asyn-

chronous transfers. The compiler uses these transfers to overlap memory trans-

fers with computation. A speedup of 1.26 to 1.66 over synchronous transfers

is reported. Chen et al. [18] propose a similar approach that supports runtime

prefetching based on the access patterns. These works are complementary to

our work since the MDSC can be automatically generated by the compiler.

The current version of the MDSC does not feature cache coherence.

Currently, it is not needed because either the studied kernels access only read-

only data or can be efficiently implemented using a map-reduce parallelization

model [26] operating only on private copies of the data and thus does not re-

quire cache coherence. Cache coherence, however, is an important feature for

caches in a multi-core environment. Lee et al. [58] and Seo et al. [87] propose

a coherent shared memory interface for the Cell BE by using SCs. It employs a

SC in the Local Store (LS) that caches memory pages, it guarantees coherence

at the page level, and it uses centralized lazy release coherence.

A static analysis tool for finding the best configuration of the SC, for a

given application, is proposed in [86]. The tool uses memory accesses trace

files and bases its analysis on the frequency of cache accesses to each cache

line and the number of accesses between two accesses to the same cache line.

A similar tool for the MDSC would be desirable also as in this chapter we

perform an exhaustive search to find the optimal parameters. The development

of such a tool is future work.

A data movement optimization technique for software-controlled on-

chip memory is presented in [40]. The authors have implemented the algorithm

as an optimizing compiler and applied it to a few applications. The results

reveal that the proposed technique can reduce memory stall cycles and increase

performance.

6.3 Cell DMA Latency

The MDSC groups several DMA requests together in order to reduce the DMA

latency. To be able to analyze this effect in this section the DMA latency is

evaluated and quantified. First, we evaluate the DMA latency as a function of

the DMA size, from 8 bytes to 16KB, for 1 to 6 simultaneously communicat-

ing SPEs, all SPEs available on the PS3. After that, we evaluate the latency

of groups of DMA requests, or DMA lists, and compare it to the latency of

individual requests.
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Figure 6.1: DMA latency as a function of the transfer size, for several simultaneously

communicating SPEs.

Figure 6.1 depicts the DMA latency as a function of the DMA transfer

size. As shown in the figure, the DMA latencies are approximately identical up

to 1024 bytes for the Cell processor. After that, there is a significant increase

for the 2KB and then the latencies increase linearly with the DMA transfer

size. This figure also depicts the DMA latency in case of several simultane-

ously communicating SPUs. As the Cell processor features a dual channel

memory controller, there is no difference when 1 or 2 SPUs are fetching data

simultaneously. A single SPU, however, cannot simultaneously make use of

both channels. Full bandwidth is achieved only when several SPUs are simul-

taneously accessing the external memory.

Several DMA operations can be grouped in a single DMA list operation

in order to reduce the DMA startup cost. Figure 6.2 depicts the latency of

DMA list operations for several numbers of requests and request sizes. We

refer to the size of each individual DMA operation as the line size. For clarity,

the results for 32- and 64-byte lines have been omitted, as they are very similar

to the results for 16- and 128-byte lines. The latency for requesting the same

data using sequential DMA requests is depicted for comparison.

The results show that requesting multiple lines using a single DMA list

operation considerably reduces the request overhead. By using DMA list, the

average request time is reduced by 50% when compared to the use of sequen-

tial DMA requests. The performance improvement ranges from 27%, when

fetching 2 lines, to 69%, when fetching 64 lines.
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Figure 6.2: Latency of DMA list operation compared with a sequence of individual

DMAs requests for the same 2D block configuration.

6.4 Multidimensional Software Cache

In this section, the Multidimensional Software Cache (MDSC) is described in

detail. We start by highlighting the differences between hardware caches and

SCs. After that, we present the reasons for using the data structure indices to

access the cache instead of the memory address of the accessed data structure

element. Next, the arguments for a multidimensional SC are given. After the

motivation has been given, the proposed MDSC structure is presented.

As argued before, scratchpad memories are more efficient in terms of

area and power than hardware caches [12]. They require, however, additional

programming effort as explicit commands are needed to fetch data from the

main memory. These commands can be automatically generated by compil-

ers, but they are usually handled by the programmer for better performance or

because of the lack of tools.

One option to increase the efficacy of scratchpad based systems is to

employ a SC. SCs increase the programmability and the limited size of the LS

becomes less of a concern. To access a SCs, however, incurs overhead, which
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can be prohibitive. This overhead is further increased if the organization of the

SC does not match the application’s data access pattern. This is the case when

using a generic cache for MC and for other image processing applications,

such as texture mapping.

Regular hardware caches provide the abstraction of a large, fast local

memory to the programmer. They capture all data and instructions used in the

program. Because of its generality, the indexing by memory address becomes

a natural choice. However, due to this generality and the fact that every access

has to be done through the caches, it is difficult to employ application-specific

techniques to reduce SC overhead.

SCs for scratchpad based processors, such as the IBM SC [101], how-

ever, capture accesses to specific data structures. Only the data structures that

do not fit in the LS are likely to be accessed through the SC. In the same way as

hardware caches, the IBM SC uses the memory addresses of the data to index

the cache. Once again, it loses the opportunity to use the SC parameters infor-

mation to exploit data locality. In this case, it becomes critical, as the access

to the cache implies runtime overhead. It is possible to exploit data locality

to reduce SC access overhead, due to its characteristics. These characteristics

include the parameters that are known at compile time, such as data structures

boundaries, and that SC accesses only few specific data structures.

To address these shortcomings of conventional SCs, the MDSC uses the

indices of the accessed data structure to index the cache. So, instead of con-

sulting the cache with a function such as read SC(&datastructure[i][j]) we

propose read MDSC(&datastructure, i, j), where the operation & returns

a the element datastructure[i][j]. This is required to ease the calculation of data

elements and cache block positions in the MDSC. Another characteristic of the

MDSC is the ability to mimic in the SC the logical organization of the accessed

data structure in the main memory. Replicating the memory organization in the

cache set improves the performance of the cache by increasing spatial data lo-

cality. Specifically, cache blocks are 1- to 4-dimensional. Figure 6.3 illustrates

1D, 2D, and 3D cache blocks using video sequence composed of the Lena im-

age. A 1D MDSC is similar to a conventional hardware cache as its stores

a number of consecutive bytes (from external memory) in each block, as de-

picted in Figure 6.3(b). A 2D cache can be used to store rectangular image

areas, as depicted in Figure 6.3(c). In this example, four vertically consecutive

segments of the image lines are allocated per MDSC block. 3D MDSC blocks

are a set of consecutive (in the third dimension), co-located (i.e., with the same

vertical and horizontal coordinates) 2D blocks. A 3D MDSC can be used to
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(a) Original image being cached.

(b) Eight 1D MDSC blocks. (c) Two 2D MDSC blocks,

four lines high.

(d) Two 3D MDSC blocks,

four lines high and 2 images

deep.

Figure 6.3: Examples of 1D, 2D, and 3D MDSC blocks.

store areas of a sequence of video frames, as depicted in Figure 6.3(d). Sim-

ilarly, a 4D MDSC, not depicted, can be used in Multiview video processing

or animated 3D representations as its blocks are sets of 3D blocks. Because of

the SIMD instructions set of the SPE, 4D cache blocks are as efficient as 2D

and 3D cache blocks.

The MDSC differs from a regular SC in two ways. First, it differs in the

tag and index functions. In the MDSC, the tag is given by the concatenation

of each index and the set is a mask operation based on the indices. The second
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difference is that it employs multidimensional cache blocks instead of one-

dimensional cache blocks, which allows using DMA list to read from and write

to memory. A strided access to the main memory is performed by a DMA list

to load the multidimensional block data.

The MDSC presents two advantages over regular SCs. First, it reduces

the DMA latency by grouping several memory requests. As shown in the pre-

vious section, a single DMA list operation has a lower latency than several

sequential DMAs that achieves the same effect. For conventional SCs, the ac-

cess of a new image area would result in a new DMA request for each line

of the new area being accessed. The second advantage is that the MDSC can

be used to reduce the number of accesses to the SC. As the shape of the cache

block is known, it can be used to access the data of a cache set without actually

checking if the data is present in the cache. This can be done by simple pointer

arithmetic. In other words, a single cache lockup is necessary for accessing an

entire block. This is depicted in an example further in this section.

The associativity of the MDSC can be configured. It allows to fully or a

set associative configuration and a static or dynamic implementation. A fully

associative cache is possible when the number of cache blocks is small. For

the fully associative and the set associative configurations, the MDSC uses a

First-In-First-Out (FIFO) policy to replace the blocks when the cache or the

set, respectively is fully utilized. The FIFO policy was selected due its low

implementation complexity. In the static implementation, the MDSC parame-

ters, such as block dimensions and the indices range of the data structure being

cached, are constants and thus known at compile time, while the dynamic im-

plementation allows modifying the MDSC parameters at runtime. The static

implementation is more efficient than the dynamic implementation as it allows

optimization of the code for several parameter options. A dynamic configu-

ration, however, is necessary when the data to be cached can have different

characteristics, such as the resolution of the video being decoded. As a result,

the MDSC needs to adapt to these characteristics.

Similar to a one-dimensional SC, the MDSC performs the following

steps to access an element. The flow chart of the operations is depicted in

Figure 6.4.

1. Tag Calculation. The first operation when accessing the cache for read

or write is to calculate the tag. The tag is formed by concatenating the

up to 4 indices of the data element that is being accessed after dividing

each index by the size of its respective block dimension.
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Figure 6.4: Flow chart for accessing an element from the MDSC.

2. Indexing. In the case of a set associative cache, a hash function is used

to define in which set the block referred to by the indices is/should be

stored. The difference from a regular cache hash, is that the MDSC

hashes the data structure indices instead of the address of the data struc-

ture element being accessed. For a fully associative implementation, this

step is not required.

3. Lookup. The lookup function for the MDSC is similar to the ones in

regular caches. For a set associative cache, lookup checks if the tag is

present in the elements of the tag array corresponding to the set produced

by the indexing function. For a fully associative cache it scans the whole

tag array to check if the tag is present or not. In both cases, it returns

the cache block number in which the requested data is located or a flag

indicating a miss.

4. Select New Block Position. In case of a miss, a place for the new block

should be selected. For a set associative cache, the new block should be

placed in one of the ways that belongs to the set computed by the index-

ing function. The next free block position is selected for the new block.
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As described above, the MDSC uses the FIFO replacement policy to

select which block should be evicted in case there is no space available.

5. Write Back. If the cache is not read-only and the contents of the block to

be evicted was modified (marked as dirty), it should be written back to

memory. The address of the block in the external memory is recovered

using the base address of the data structure (passed as parameter), the

tag of the block, and the size of the block dimensions. A DMA putlist
command is issued to write back the contents of the block.

6. Request Block. Similarly to the previous operation, the address of the

block in the external memory is recovered using the base address of the

data structure (passed as parameter), the tag of the block, and the size of

the block dimensions. A DMA getlist command is issued to read the

block from the external memory. After that, the tag array is updated.

7. Element Address Calculation. The position of the requested data in the

cached block is calculated using the data structure indices passed as pa-

rameters.

The MDSC API features three main functions:

read MDSC(&datastructure, i, j), write MDSC(&datastructure, i, j, data),

and pointer MDSC(&datastructure, i, j). The function read MDSC returns

the data stored at position (i, j), while write MDSC writes the data at position

(i, j). The function pointer MDSC returns the data address (memory pointer)

in the LS and marks the cache block as dirty, if it is not a read-only cache.

These functions check if the 2D block, which contains datastructure[i][j]

is present in the SC. If it is, these function return immediately. If not, these

function block until the 2D block containing the datastructure[i][j] is fetched

from the main memory to the SC and then returns to the caller. The MDSC

API also includes functions for modifying the parameters of the dynamic

implementation.

As the MDSC uses matrix indices to index the cache, the boundaries

of the data structure need to be specified to calculate the memory address of

the cache blocks. This can be done via macros in the static configuration,

thus increasing the performance, or dynamically at runtime, when using the

dynamic configuration. Figure 6.5 depicts how the MDSC can be configured.

In this figure, the configuration for a three dimensional static MDSC for Full

High Definition (1080×1920) resolution is presented.

Figure 6.6 depicts a pseudo C code for a matrix multiplication as an

example of use for the MDSC. The algorithm multiplies matrices MA and MB
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CACHE_NAME gsc_y

CACHED_TYPE unsigned char

CACHE_TYPE 0 // 0=read-only, 1=read-write

CACHE_STATS // Activates statistic collection

CACHE_FULL_ASSOC 0 // 1=cache is fully associative

CACHE_LOG2NWAY 2 // Log 2 number of ways

CACHE_LOG2NSETS 5 // Log 2 number of sets

CACHE_DIM 3 // Number of block dimensions

CACHE_X_LOG2SIZE 9 // Log 2 first dimension (line size)

// When accessing the MDSC, the first index must be

// between 0 and CACHE_X_RANGE

CACHE_X_RANGE 1920

CACHE_LOG2_X_RANGE 11 // Log2(CACHE_X_RANGE)

CACHE_Y_LOG2SIZE 4 // Log 2 second dimension

// (number of lines)

CACHE_Y_RANGE 1088

CACHE_LOG2_Y_RANGE 11 // Log2(CACHE_Y_RANGE)

CACHE_Z_LOG2SIZE 1 // Log 2 third dimension

CACHE_Z_RANGE 256

CACHE_LOG2_Z_RANGE 8 // Log2(CACHE_Z_RANGE)

#include <mdsc-api.h>

Figure 6.5: The MDSC configuration interface.

and saves the result in matrix MR. The three matrices are square and their high

and width are determined by Matrix size. Matrices MA and MB do not fit in

the LS and are cached by a bi-dimensional MDSC with square cache blocks of

2CACHE X LOG2SIZE×2CACHE X LOG2SIZE , where Matrix size is divisible

by 2CACHE X LOG2SIZE. For brevity, and because it can be easily transfered

by DMAs (not depicted), MR is not cached. Matrices local MA and local MB

have the same size as the MDSC block and are used to point to the cache

blocks. These matrices are used instead of pointers to avoid pointer arithmetic

and improve code readability.

The matrix multiplication is performed as follows. The for loops in

lines 21 and 22 iterate over all the elements of the matrix MR. The for loop in

line 26 divides MA and MB into partitions of local size size. The objective of

this partitioning is, as argued before, to have only one cache access per cache

block. To accomplish this, first the top leftmost element of the partitions in

which elements MA[i][k] and MB[k][j] needs to be determined, as it gives the

base address of the bi-dimensional MDSC block in the LS. The top leftmost

element of the partition is calculated by lines 31 and 32. k always points to the

first column or row in a partition/cache block, as stated in line 26. With [li][k]
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and [k][lj] pointing to the top leftmost element in a partition, they are used

to get a pointer to the base address of the bi-dimensional MDSC blocks that

contain the elements to be accessed. The function pointer MDSC(&MA,li,k)

checks if the element MA[li]][k] is currently being cached, request the data

if necessary, and returns the pointer to the element, that in this case is also

the base address of the cache block. In lines 36 and 37, the base address of the

matrices local MA and local MB are set to the base address of the blocks in the

MDSC that contain the desired elements. Finally, in lines 40 to 46, the actual

matrix multiplication can be performed for the element MR[i,j] without any

further access to the cache while in the same partition. The modulo operations

for i and j map their coordinates to the current partitions.

6.5 Studied Kernels and MDSC Enhancements

In this section, we present the kernels used for the case study. Addition-

ally, qualitative reasons are given why the studied kernels could profit from

a MDSC. First, the GLCM algorithm described once more to explain the is-

sues related to DMA transfers when the dataset does not fit in the LS. After

that, a description of MC is presented. For the MC kernel, it is possible to ex-

ploit the cache access pattern, as the MC kernel operates on rectangular areas

of images. This property will used to describe several MDSC enhancements.

6.5.1 GLCM Kernel

As previously described in Section 5.3.1.3, the GLCM is a tabulation of how

often different combinations of pixel brightness values (gray levels) occur in an

image. The second order GLCM considers the relationship between groups of

two (usually neighboring) pixels in the original image. It considers the relation

between two pixels at a time. The pseudocode for the GLCM is depicted in

Figure 5.10, page 92.

In this kernel, the source image being processed can be easily accessed

through DMAs. The temporal locality of the image is very low and the spatial

locality can be captured with DMAs. Also the DMA latency can be hidden us-

ing double buffering. Differently from the GLCM kernel used in the previous

chapter, where the pixels of the image were quantitized so the matrix would

fit in the LS, the inputs are now full range. As each pixel is 8-bits, the total

GLCM matrix size is 256×256×4 bytes = 256KB. This is the entire size of

the LS and this is only for one color component of the image. Differently from
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0 /* DATA STRUCTURES IN EXTERNAL MEMORY */

1

2 int Matrix_size; //High and width of matrices

3 int MA[Matrix_size][Matrix_size];//Matrix A in external memory

4 int MB[Matrix_size][Matrix_size];//Matrix B in external memory

5

6 /*Result matrix in external memory. MR is not cached */

7 int MR[Matrix_size][Matrix_size];

8

9 /* DATA STRUCTURES IN LOCAL MEMORY */

10 /* High and width of the local caches is the same as the MDSC*/

11 /* blocks */

12 int local_size = power(2, CACHE_X_LOG2SIZE);

13

14 /* Local arrays. Used for easy address calculation */

15 int local_MA[local_size][local_size];

16 int local_MB[local_size][local_size];

17

18 /* PROCESSING */

19 /* MR[0][0]=MA[0][0]*MB[0][0]+ */

20 /* MA[0][1]*MB[1][0]+MA[0][2]*MB[2][0]; */

21 for(i=0; i < Matrix_size; i++){

22 for(j=0; j < Matrix_size; j++){

23 MR[i][j] = 0;

24

25 /* Iterates over cache blocks */

26 for(k=0; k < Matrix_size; k = k + local_size){

27

28 /* Calculates block borders for i and j. */

29 /* Used to select the top leftmost position */

30 /* of a MDSC cache block, i.e., its base address */

31 int li = i - i%local_size;

32 int lj = j - j%local_size;

33

34 /* Changes the base address of the local matrices */

35 /* to the base address of the MDSC block */

36 &local_MA = pointer_MDSC(&MA,li,k);

37 &local_MB = pointer_MDSC(&MB,k,lj);

38

39 /* The actual matrix multiplication */

40 for(l=0; l < local_size; l++){

41 /* i and j mod local_size to access elements */

42 /* inside the actual cache block */

43

44 MR[i][j] += local_MA[i%local_size][l] *
45 local_MB[l][j%local_size];

46 }

47 }

48 }

49 }

Figure 6.6: Matrix multiplication using 2D MDSC.
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(a) Subblock

of a 3×3

image.

(b) Access to the

GLCM matrix.

Figure 6.7: Second order GLCM of a 3×3 image.

the source image, it is not possible to determine in advance which element of

the matrix will be accessed to make use of the DMAs.

Photos usually exhibit large amounts of spatial redundancy, which is ex-

ploited by image compression algorithms. The same type of redundancy can

be exploited here by caches. Because the change of color is usually smooth,

two-dimensional portions of the GLCM matrix are likely to be accessed close

in time. In other words, the spatial redundancy of photos is translated into

spatial or even temporal locality, when updating the GLCM matrix. Figure 6.7

illustrates this. Considering the top leftmost pixel, with value 12, in the im-

age depicted in Figure 6.7(a), it access the following elements of the GLCM

matrix, depicted in Figure 6.7(b): [12,13], [12,13], and [12,14].

As depicted in Figure 6.7(b), and in the pseudocode depicted in Fig-

ure 5.10, page 92, we fix the first pixel while visiting all its neighbors, i.e.,

for a given pixel only its GLCM matrix line will be updated while visiting

its neighbor pixels. This property can be used to implement the GLCM us-

ing DMAs. For that, the entire line of the GLCM matrix corresponding to the

value of the first pixel is copied to the LS, where each GLCM matrix line size

is 1KB. With the GLCM matrix line in the LS, each neighbor pixel is visited

and its corresponding position in the GLCM matrix line updated. After all

neighbor pixels are visited, the GLCM matrix line is stored back to the main

memory via DMA.

6.5.2 H.264 Motion Compensation

Motion Compensation [9] is the process of copying an area of the reference

frame to reconstruct the current frame. It is depicted in Figure 6.8. The figure



116 CHAPTER 6. THE MULTIDIMENSIONAL SOFTWARE CACHE

Figure 6.8: Motion Compensation of two macroblocks with respective motion vectors

and reference areas.

depicts the MC for two neighbor MBs. Each MB has a Motion Vector (MV)

that points to an area in the reference frame, this area is called reference area.

Because of the MC applies a filtering process on the reference area to achieve

quarter-sample accuracy, the reference area is larger than the MB. In H.264, a

MB can be partitioned in two 16×8 or two 8×16 or even four 8×8 partitions.

Each 8×8 partition can be further partitioned in up to four 4×4 partitions.

Each of these partitions, also called MB partition, have its own MV. Because

of MVs are usually related with its neighbors MB MVs and because of the

extra data required for quarter-sample processing, reference areas of neighbor

MB partitions overlaps, as depicted in Figure 6.8.

For advanced video codecs such as H.264, both the reference frame and

the MVs need to be calculated. In H.264, this process is known as Motion

Vector Prediction (MVP) and is part of the MC. Only after MVP it is possible

to request the data necessary to reconstruct the frame. In H.264, MVs can

span half of the vertical frame size and it is possible to have up to 16 frames as

reference frame candidates. This makes it impossible to speculatively load all

possible areas in advance.

In our vectorized SPE implementation of macroblock (MB) decoding,

the MC kernel is the most time consuming, representing 62% of the total exe-

cution time. It fetches the reference area using DMA transfers and waits until

the data is present in the LS. The remaining execution time is spent in DMA

transfer other than the reference area (14%); deblocking filter (17%); and In-

verse Discrete Cosine Transform (7%). Furthermore, the memory requests

represent 75% of the execution time of the MC kernel. These numbers show

how important it is to improve the performance of MC.

The unpredictability of the data accesses in MC causes two significant
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problems for scratchpad memory-based processors. The first problem is that

the data transfer cannot be overlapped with the computation. The process has

to wait for the data to be transferred to the scratchpad memory. Because H.264

allows very fine grained area to be motion compensated, up to 4x4 pixels, the

waiting time for the data can be significant. The second problem is that the

data locality cannot easily be exploited. In order to do so, one has to keep

track of areas present in the LS. This, however, is difficult and new data must

be requested for each MB partition. Because the MVs are usually small and

not randomly distributed, the same area can be copied several times. Zatt et

al. [103] show that caching the reference area can save up to 60% bandwidth

and more than 75% of the memory cycles.

In the next section, we investigated the data locality exhibited by the

H.264 MC. After that, in Section 6.5.4, we introduce the enhancement to the

MDSC for the MC kernel. These enhancements exploit the multidimensional-

ity and the use of the indices of the data structure to index the MDSC.

6.5.3 Data Locality in MC

To evaluate the data locality, the number of bytes transferred from memory to a

conventional cache is measured. H.264 sequences from HDVideoBench [7] are

used as input for the experiments. As previously mentioned in Section 2.4.2,

each video sequence consists of 100 frames in standard (SD), high-definition

(HD), and full high-definition (FHD) resolutions at 25 frames per second. For

this measurement, the motion vectors and reference indices have been ex-

tracted from the encoded sequences for each MB partition. Because of the

MC quarter-pixel precision, adjacent additional areas need to be fetched from

the memory. For vertical filtering, five extra pixels are required for each line,

while for horizontal filtering, five extra lines are required. Details on the MC

implementation can be found in [10].

A tool was developed to translate the extracted MVs to memory re-

quests in the DineroIV [32] cache simulator input format. DineroIV was used

to report the requested number of bytes for each sequence. Three simulations

were performed and the results are reported in Figure 6.9. The first simulates a

1-byte cache to depict the temporal data reuse of MC. The second simulation

reports the data traffic for a 16-byte cache with a 16-byte line size. These first

two caches are used to calculate how much data is transfered from external

memory to a scratchpad memory when using a DMA requests. The third sim-

ulation reports the data traffic for a 64KB direct mapped cache with 64-byte

cache lines. The size of the original uncompressed sequence is presented as
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Figure 6.9: Data locality in MC.

file size. Ideally, the total traffic should have the same size as the original file

size, meaning that the same data is not requested twice. The increase in data

traffic, compared with the original file size, means that some of the data is

transfered more than once.

The 1-byte cache assumes that it is possible to transfer individual bytes

from the external memory. Because it caches Y, Cb, and Cr color components,

there are no cache hits. The amount of data traffic for the 1-byte cache depicts

the amount of data that is request more than once from the main memory.

The 16-byte cache consists of a single 16-byte cache line. Its purpose is

to present how much data is actually transferred from the main memory, given

a more realistic 16-byte memory channel. For this cache, spatial locality is

exploited as, differently from the 1-byte cache, the 16-byte cache present hits

as several pixels from a reference area line can be stored in a single memory

word. It presents, however, a larger data traffic than the 1-byte cache as several

elements of the requested memory word do not belong to the reference area.

Finally, the 64KB cache indicates how much data traffic can be saved

by a regular cache. In most of the cases, it presents a lower amount data traf-

fic than the 16-byte cache. This is expected as this cache has space to store

the previous requested reference areas. For the Riverbed sequences in SD,

HD, and FHD resolutions, the amount of data traffic is larger than the 16-byte
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cache. This is caused by the low use of MC in the Riverbed sequence, which

makes the MB featuring MC scattered over the frame with a small number of

overlapping reference areas.

The results show that the sequences exhibit data locality. The MC kernel

references about twice the volume of data of the original sequence. Because

of memory alignment constraints, however, the actual volume of transferred

data is about 3.5 times the volume of the original sequence. The 64KB cache

reduces the volume of data transferred by 34% on average compared to the 16-

byte cache. It reduces the data volume to 2.3 times of the original sequence.

This indicates that the cache is capturing part of the data locality of the MC.

It can be improved as it is an unified cache capturing the accesses to the three

different color components, thus increasing conflicts.

6.5.4 The MC Enhancements

The MDSC uses the frame number and the vertical and horizontal coordinates

of the MV as indices. This access method enables to exploit the access pat-

tern as it exposes pattern specific information. Each block of the MDSC is a

x × y rectangular area of a frame. The x and y values and their ranges are

configurable at runtime in the dynamic implementation.

Because of reference frame areas are only likely to be reused in neigh-

bor MBs, a fully associative configuration was selected, as it reduces the num-

ber of conflicts. A fully associative cache is possible because of the small

number of blocks present in the implementation. To support different video

resolutions, the MC has to use a dynamic configuration of the MDSC.

The first enhancement to the MDSC for MC is the use of a single cache

lookup for the Y, Cb, and Cr caches. In H.264, the video frames are stored

in YCbCr format instead of the RGB format, and each component is stored

in a separated data structure. To increase the compaction, the color compo-

nents (Cb and Cr) are subsampled 1:4 as they are less perceptive to the human

eye. The MVs are the same for all components. Because of the subsampling,

however, they need to be adjusted for the Cb and Cr components. The MDSC

configuration exploits this feature and checks and requests all components at

once. This reduces the number of accesses to the MDSC by a factor of 3 and

overlaps the memory requests, thus reducing the memory latency.

Four additional enhancement strategies employed to reduce the number

of accesses to the MDSC are described below. Each strategy builds upon the

former strategy.
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6.5.4.1 Extended Line

An extended line technique was implemented, based on the technique de-

scribed in [10], to reduce the number of accesses to the SC. In this technique,

for each line of the reference area to be accessed through the MDSC, only the

first element the line is checked in the MDSC. This is made possible by adding

extra columns to the bi-dimensional cache block. These additional columns,

however, are non indexable, i.e., a lookup for these columns would result in a

miss (considering that they are not present in another cache block). By adding

these as extra columns, it is guaranteed that if the first element of the reference

area line is in the cache, all remaining elements of the reference area line area

are present in the same cache block. This reduces to one the required number

of cache accesses per line in the reference area.

Figure 6.10 illustrates this technique. It depicts a 2D MDSC block of

96×32 pixels, or 6×2 MBs (delimited by the dashed lines). The areas labeled

a, b, and c denote reference area requests to the MDSC. The first element of

the reference area lines are marked as black. The extra columns is depicted

by the hashed area. Without the Extended Line technique, a MDSC lookup is

necessary for every first element of each quadword that belongs to the refer-

ence area line, as it can be split across two cache blocks. As indicated by the

reference area c, with the extra columns all elements of a reference area line

are enclosed in a cache block. Therefore, MDSC lookups are necessary only

for the first element of the reference line.

This technique is based on the following observation. The reference

area line to be accessed is at most 21 pixels long. These pixels consist of the 16

pixels of the maximum MB partition width plus 5 extra pixels for quarter-pixel

filtering. These pixels can be located in up to three consecutive quadwords

and requires 32 extra columns for each 2D block. Note that this implies that

these additional columns can be present twice in the MDSC, as they need to

be in another MDSC block to be directly accessed. As only read-only data is

cached, this does not cause inconsistency problems.

6.5.4.2 Extended XY

The Extended XY enhancement reduces to two the required number of MDSC

accesses per MB partition. This technique, which is build upon the Ex-

tended Line technique, can be applied only when the high of the MDSC block

is equal or larger than 21 lines. As the maximum MB partition plus the addi-

tional area is at most 21 lines in the vertical direction, just two accesses to the
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Figure 6.10: A bi-dimensional cache block with the Extended Line enhancement.

Figure 6.11: Example of use of the Extended XY enhancement.

MDSC are sufficient to guarantee that the data are present in the cache. Only

the first and last lines of the partition need to be accessed. The border between

the two cached blocks is found by masking the y coordinate of the MV with

the height of the block.

Figure 6.11 illustrates this concept, the same notation as described in

the previous section apply. In this figure, a vertically contiguous area of the

reference area is stored in MDSC blocks 0 and 1. A single reference area

cannot be split in more than two cache blocks because of the Extended Line

enhancement and because the highest allowed reference area is smaller than

the high of the cache block. Therefore, MDSC lookups are necessary only for

the first elements of the first and last lines of the reference area, marked with

black in the figure.

6.5.4.3 SIMD

The Cell SPE is a SIMD architecture. As a result, a natural step to improve the

performance is to vectorized the tag search with SIMD instructions. Each tag

is a 32-bit integer and the SPE supports vector operations on four 32-bit word
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operands. In this optimization, four positions of the tag array are compared

simultaneously with the searched tag. Once the tag is found, each of the four

positions of the tag array are individually compared to find the block index.

6.5.4.4 Static

As previously stated, in the dynamic implementation the parameters for the

MDSC are configurable at runtime. In this analysis, however, we use the static

MDSC implementation. This means that loop boundaries are known at com-

pile time. This allows certain loop optimizations to be performed, including

the elimination of branches and loop unrolling.

6.6 Experimental Methodology

This research focuses on the performance of the cache access functions. Be-

cause of that, the kernels that access the SC will be measured. For the MC, the

access to the reference area is evaluated. For the GLCM, the whole function is

measured. This is because the GLCM only performs a load, an add and a store

for each element. The images are loaded through explicit DMA transfers and

these are not part of the GLCM calculation. The SPE hardware counters are

used to measure the performance of the kernels.

The measurements were performed on a PS3, which, as described in

Section 4.3, page 4.3, has only 256MB of RAM. This small amount of mem-

ory causes memory swaps with the disk. For this reason, the MC kernel was

modified to access only 5 frames, which corresponds to the number of frames

in the decoder frame buffer. If this would not have been done, the DMA trans-

fer time is doubled due to memory (de)allocation routines by the OS.

The HDVideoBench [7], described in Section 2.4.2, is again used as

benchmark for the experiments. All results were obtained using a single SPE.

The experiments were not performed using several cores because the paral-

lelization strategy would influence the results and the focus of this work is on

single core performance. Both kernels can run in a multi-core environment

without cache coherence. The GLCM kernel could have a separated GLCM

matrix for each core and process a slice of the frame. After finishing the pro-

cessing, the matrices would need to be added together for the final result. For

MC the cache is read-only, thus it does not need cache coherence to work in a

multi-core environment.
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Figure 6.12: Time taken by the GLCM kernel for several MDSC configurations.

6.7 Experimental Results

6.7.1 GLCM Results

To generate input for GLCM, the first frame of each HDVideoBench sequence

was transformed into an RGB image and each component was processed. Sev-

eral configurations of a 4-way set associative 64KB MDSC were tested to de-

termine the optimal configuration. The number of sets was varied from 4 to

64, the number of lines from 1 to 32, and the line size from 128 to 1024 bytes.

Figure 6.12 depicts the results of all possible 64KB configurations. In

this figure each bar is labeled as S ×L×B, where S,L and B are the number

of sets, lines in a 2D block, and line size in bytes, respectively. Thus, the 2D

block size of this MDSC configuration is 8 × 128. As shown in the figure, the

GLCM performs better with a larger number of sets and with a smaller line

size. Because of this behavior, a fully associative MDSC was not evaluated, as

it requires the opposite to perform well.

The best performing MDSC configuration consists of 64 sets and uses

a block size of 1 × 256 bytes. Surprisingly, 1-dimensional blocks yield the
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Figure 6.13: Time taken by the GLCM kernel for several video sequences when using

DMA transfers (DMA), when the optimal IBM SC configuration is em-

ployed (IBM SC), when the optimal MDSC configuration is employed

(MDSC), and when the GLCM matrix would fit in the Local Store.

highest performance. The reason for this is the time saved by reducing miss

rate when increasing the block height is smaller than the extra time spent on

the larger DMA list requests. However, the performance achieved by the con-

figurations that use blocks of 2 × 128 bytes and 8 × 128 is less than 1% lower

than the performance of the best configuration.

Figure 6.13 compares the performance of the optimal MDSC config-

uration to the optimal configuration of the IBM SC. Experimentally, we de-

termined that the optimal 64KB IBM SC configuration for GLCM is 4-way

set-associative, consists of 128 sets, and uses a line size of 128 bytes. For

comparison purposes, the time taken by the GLCM kernel when using DMA

requests, as detailed in Section 6.5.1, and the GLCM matrix fits in the LS are

also depicted. To fit the GLCM in the LS, the image color resolution had to be

quantitized to 6 bits, as in the experiments described in Chapter 5.

Both the IBM SC and the MDSC present performance improvement

when compared with the GLCM version implemented using DMAs. The IBM

SC has, on average, a speedup of 1.5 compared with the DMA version for the
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FHD resolution. For the same resolution, the MDSC has an average speedup

of 1.6. While for the SD resolution the speedups are similar with the FHD

speedups, 1.4 and 1.5, for IBM SC and MDSC, respectively, for the HD res-

olution the speedups are lower, 1.2 and 1.3, for IBM SC and MDSC, respec-

tively.

Compared to the IBM SC, the MDSC provides an 8% performance im-

provement on average. This performance improvement is due to the lower miss

rate achieved by the MDSC. For example, for the FHD Blue Sky sequence (de-

noted FHD BS in Figure 6.13), the MDSC incurs a miss rate of 2.4%, while

the IBM SC incurs a miss rate of 2.6%. This 0.2% difference in miss rate

translates to an 8% increase in the number of memory requests by the IBM SC

compared to the MDSC. It also increases the number of times the miss han-

dling code of the SC is executed. The miss handling code is much more time

demanding than the hit handling code, as it has to choose a block to replace,

calculate the block memory address based on the old tag, and issue a request

for the new block.

For GLCM, the MDSC set hash function, based on indices instead of

linear addresses, reduces the number of conflict misses compared to the IBM

SC. The MDSC hash function more equally distributes the number of accesses

over the sets. For example, for FHD Blue Sky, the average deviation of the

number of accesses to each set of the MDSC is reduced by 18%, when com-

pared with the IBM SC with the same configuration. The MDSC features

the same configuration and replacement policies as the IBM SC, the only dif-

ference between them in this particular case is the index calculation. With a

better distribution of the accesses, the number of replacements is lower, which

reduces the miss rate.

Compared to the case when the GLCM matrix fits in the LS, which

is included only for comparison, the MDSC incurs a slowdown of 3.75 on

average. Considering that the GLCM kernel consists of simple processing and

the fact that an access to the MDSC takes around 45 cycles, the MDSC (as

well as the IBM SC) bridge the memory gap quite efficiently.

6.7.2 MC Results

In order to determine the optimal 2D block size of the MDSC for the MC

kernel, first the design space was explored. The MVs from the HDVideoBench

sequences were used as input. MVs and reference indices were extracted from

the encoded sequences for each MB partition. Blocks of size n × m were
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Figure 6.14: Miss rate incurred by the MC kernel for different configurations of a

96KB MDSC.

tested, for n between 1 and 64, and for m between 32 and 256. For each block

size, the miss rate was calculated. The size of the MDSC was fixed at 96KB,

64KB for the Y components and 16KB each for the Cb and Cr components. As

mentioned in Section 6.5.2, the MDSC for MC is fully associative. None of the

enhancements discussed in Section 6.5.4 were considered in this exploration.

Figure 6.14 depicts the miss rate for each design point. It uses the same

labeling style as the previous figures with the number of blocks in the cache,

number of lines per block, and line size in bytes. As expected, the miss rate

decreases when the 2D block size increases even though there are only few 2D

blocks if they are large. The results show that having 8 64×128 blocks exhibits

a miss rate of 0.11%, and that having 8 32×256 and 4 64×256 blocks exhibit

the same miss rate. The 32×256 block was selected because, as depicted in

Figure 6.1, fetching 256 bytes is as efficient as fetching fewer bytes. 2D blocks

with 32 rows also allow to use the Extended XY enhancement methodology.

A similar exploration was performed for the IBM SC. The IBM SC was

configured to be 4-way set associative and the line size was varied from 16 to

256 bytes. As for the MDSC, a 64KB cache was used for the Y components
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and two 16KB caches for both the Cb and Cr components. It should be noted

that unlike the MDSC the IBM SC uses three separate caches, one for each

component to avoid conflicts. The IBM SC uses the FIFO replacement policy.

The best performing IBM SC configuration uses 256-byte lines and has a miss

rate of 8.6% for the Y component. As the IBM SC can use only 1-dimensional

blocks while the kernel processes 2-dimensional blocks, the IBM SC miss rate

is much higher that the miss rate of the MDSC.

Figure 6.15 breaks down the time taken by the MC kernel when the

baseline MDSC (without enhancements) is employed into the time needed to

access the MDSC and the time required for the DMA transfers. For com-

parison purposes, the time taken by a version that does not use a software

cache but fetches the reference areas from main memory using explicit, hand-

programmed DMA transfers is also included and labeled DMA. The results

include the time for frame border detection, the time to fetch the additional

quarter-pixel area, the time to fetch additional Cb and Cr components, and the

handling of 128-bit alignment constraints. The border detection and the align-

ment calculation are included in the DMA time because they are overlapped

with memory transfers and account for less than 1% of the total DMA time.

The baseline MDSC implementation performs an MDSC access for every 16-

byte quadword. The Figure shows that the majority of the time is spent access-

ing the cache rather than transferring data. This is because for every MDSC

access the index has to be calculated and the tag has to be compared to the tags

stored in the SC. This overhead is relatively time consuming compared to the

time taken by the DMA transfers. Furthermore, for all but one sequence, the

version that uses hand-programmed DMAs is faster than the version that em-

ploys the baseline MDSC. The proposed enhancements exploit the SC access

pattern to reduce this overhead.

Figure 6.16 compares the performance of the direct DMA version of

MC, the IBM SC, the baseline MDSC, and the MDSC extended with the en-

hancements described in Section 6.5.4. It depicts the time in seconds to fetch

the reference area from main memory to the SPE scratchpad. Our baseline for

comparison is the DMA version of MC. The line labeled Real Time depicts the

performance required for real time processing. As in the previous experiment,

the DMA version includes border and alignment handling while the other ver-

sions depict the time required for MC only.

When the number of MDSC accesses is reduced with the Extended Line

technique, an average 25% improvement over the DMA version is achieved.

The Extended Line technique reduces the number of MDSC accesses by a
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Figure 6.15: Breakdown of the time taken by the MC kernel for different input se-

quences when the baseline MDSC is employed and the time taken when

explicit, hand-programmed DMA transfers are used.
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factor of 2, because it ensures that when the first pixel in a line is present in the

MDSC, the entire line is present. By checking only the presence of the first and

last line of the MB partition, as done in the Extended XY technique, only two

MDSC accesses per MB partition are needed. This substantially increases the

efficiency of the MDSC implementation and achieves a 60% execution time

reduction on average compared to the direct DMA version of the code.

The SIMD version of the MDSC does not provide an additional perfor-

mance improvement. Its overhead cancels the benefits because of the small

number of 2-dimensional blocks (eight) in the outlined MDSC configuration.

Fixing the parameters of the MDSC with the static implementation so that

certain compiler optimizations can be performed yields an additional 5% exe-

cution time reduction, leading to a total average performance improvement of

65%, compared to the direct DMA version of the code .

Compared to the IBM SC, the MDSC with the Extended XY enhance-

ment is 37% more efficient. The performance improvement increases to 43%

when comparing the IBM SC to the static implementation of the MDSC. This

improvement is mainly due to the reduction of the number of SC accesses. Be-

cause the MDSC uses 2-dimensional blocks and because the Extended XY

technique ensures that the entire reference area is included in at most two

MDSC blocks, two MDSC accesses are sufficient to determine if the reference

area is in the cache, whereas the IBM SC requires at least one access for every

line in the reference area. Additionally, the MDSC exploits the relationship

between the Y, Cr and Cr components to reduce the number of accesses. If an

area is present in the Y cache, then it is also present in the Cb and Cr caches.

Thus, only the address calculation is required to access Cb and Cr data.

Unlike for the GLCM kernel, the different indexing function does not

bring improvement to the MC kernel. As for the GLCM kernel, the number

of replacements and misses for MC using the IBM SC and the MDSC were

compared, with the same cache block configuration. The decrease in miss rate

for the MDSC compared with the miss rate of the IBM SC is practically zero.

Overall, the results show that SCs can efficiently exploit the data locality

exhibited by MC. To obtain actual performance improvements, however, the

number of accesses needs to be minimized. Furthermore, the MDSC allows to

reduce the number of accesses more than 1-dimensional cache organizations,

such as the IBM SC, thereby yielding higher overall performance.



130 CHAPTER 6. THE MULTIDIMENSIONAL SOFTWARE CACHE

6.8 Conclusions

In this chapter, a Multidimensional Software Cache has been proposed for sys-

tems based on scratchpad memories, such as the Cell processor. The objectives

of the MDSC are to exploit the data locality that cannot easily be exploited by

hand-programmed DMAs, to reduce the DMA startup overhead by employing

DMA lists instead of several sequential DMAs, and to minimize the number

of cache accesses by using large, multidimensional blocks. Furthermore, the

cache is indexed by the indices of the base element of the block rather than the

memory address, which allows to reduce the number of conflict misses. The

proposed SC organization has been evaluated for the GLCM and the H.264

MC kernels, which are representative of many other multimedia kernels.

The GLCM uses indirect addressing but, because the difference be-

tween adjacent pixels is usually small, it exhibits locality between consecutive

accesses to the GLCM matrix. Somewhat surprisingly, the MDSC configura-

tion that yields the highest performance uses 1-dimensional blocks. The per-

formance of two multidimensional configurations, however, was less than 1%

lower. This indicates that, in an organization where the two memory channels

could be used simultaneously by a single core, the benefits of a 2-dimensional

block would be more pronounced. Compared to the heavily optimized IBM

SC, the MDSC improves performance by 8%. The indexing function of the

MDSC reduces the number of conflicts and accounts for the performance im-

provement.

For MC, first the amount of data locality that it exhibits has been ana-

lyzed. This analysis shows that MC exhibits significant amount of data locality

that could be exploited by a (software) cache. Then the data access character-

istics of the MC kernel has been evaluated to design an MDSC that exploits

it. The proposed MDSC stores frame areas instead of blocks of consecutive

memory locations. In other words, it uses 2-dimensional cache blocks instead

of 1D blocks. The combination of the MDSC cache indexing mechanism and

its multidimensionality has been exploited to reduce the SC overhead. En-

hancements that use the mentioned combination have been proposed to reduce

the number of accesses to the MDSC and its associated overhead.

For MC, the experimental results show that without tuning the MDSC

to the kernel, the performance degrades compared to an implementation that

uses explicit hand-programmed DMAs and does not attempt to exploit the data

locality. This performance degradation is the result of the access overhead to

the MDSC to check for the presence of the required data. The enhancements
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proposed in order to reduce the number of accesses to the MDSC achieve an

average 65% performance improvement over the hand-programmed DMA im-

plementation. For only one sequence (Riverbed), the MDSC did not attain a

performance improvement over the DMA version. The reason for this is the

lack of data locality in the Riverbed sequence. The SC overhead can be re-

duced by using information of the kernel’s access characteristics to reduce the

number of cache accesses. Compared to the IBM Cell SC, the MDCS provides

an improvement of 43% on average over all video sequences.





7
Hardware Support for Software Caches

I
n the previous chapter, we demonstrated that exploiting known applica-

tion’s cache access patterns significantly reduces software cache overhead.

In this chapter, we follow on by proposing a hardware module to reduce

software cache access overhead. More specifically, we propose an instruction

to implement the cache lookup and the address calculation parts of the Multi-

dimensional Software Cache (MDSC) access function.

This chapter is organized as follows. Section 7.1 motivates the use of

an instruction to accelerate MDSC accesses. The proposed instruction is de-

scribed in Section 7.2 and the simulation methodology is explained in Sec-

tion 7.3. Results are presented and analyzed in Section 7.4 and conclusions

are drawn in Section 7.5.

7.1 Introduction

As argued in Section 6.4, while traditional hardware caches are area and power

consuming, the disadvantage of software caches (SCs) is that they have high

processing overhead. Our aim in this chapter is to close the performance gap

between software and hardware caches, while keeping the hardware overhead

and power consumption at a minimum.

133
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The previous chapter has shown that the MDSC access time dominates

the execution time of the MC kernel. This is also the case for the GLCM kernel,

as it will be shown in Section 7.4. Because of its impact on the execution

speed, we aim to reduce the MDSC lookup overhead, and propose a dedicated

instruction for that.

In this chapter, we investigate a hardware module to accelerate SCs.

For this purpose, we propose a cache lookup instruction called LookUp SC.

The LookUp SC instruction was specifically designed to improve the MDSC

performance. The instruction is targeted at the MDSC lookup and calculates

the tag and the set, searches for the tag in the tag array, and returns a hit or miss

flag together with a pointer to the address of the requested data (if available).

In case of a miss, it is handled by software functions.

7.2 The LookUp SC Instruction

In this section, we describe the hardware module that implements the MDSC

lookup and its functionality. The proposed hardware module is integrated in

the processor pipeline and accessed through the LookUp SC instruction. This

instruction receives the access parameters and returns if the data is currently

present or not together with a pointer to where the data is stored in the SPE

Local Store (LS). Currently, it only supports a 4-way cache associative organi-

zation. Figure 7.1 depicts the flow chart of the MDSC modified to employ the

operations performed by the LookUp SC instruction. The proposed instruction

performs the following steps:

1. Indexing. This step calculates the set based on the input indices, shifts

and masks;

2. Tag Calculation. In this step the tag is calculated based on the input

indices, shifts and masks;

3. Element Address Calculation. This step calculates the offset of the data

inside the cache block;

4. Lookup. This step checks if the tag is present, update the address of the

cache block, and returns the hit/miss flag, the position of the data, the

tag, the set and the tag position.

In software, these steps take about 45 cycles on the SPE. Since the

lookup needs to be performed to access each data value, even this relatively
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Figure 7.1: LookUp SC instruction operations and its placement in the read MDSC

function.

small cycle count results in a significant performance penalty. The actual read-

ing and writing of data from/to main memory are excluded from the hardware

module to keep the hardware complexity and cost at a minimum level. This is

feasible because the MDSC yields high hit rate compared to regular caches.

The proposed hardware accelerator differs from a regular hardware

cache in two ways. First, there is no need to perform the cache access in

a single or few cycles, since in a cache-based case, the cache access in on

the critical path. Therefore, the high performance cache lookup implementa-

tion that is present in regular hardware caches can be replaced by a pipelined,

more latency tolerant structure integrated in the existing core datapath. Sec-

ond, there is no hardware handling of misses and no expensive replacement

policies. These tradeoffs, while not giving the best cache configuration, aim

at keeping the hardware and power consumption overheads at the minimum

level, while increasing the performance compared to the complete software

implementation.

The instruction has three operands: two input registers and one output

register. The first register contains the at most four 32-bit indices of the multi-
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dimensional cache. 32-bit integers are chosen as this is the most common type

for loop indices, likely to be used to access the cache. The second input regis-

ter is used to pass the cache parameters. These parameters are the base address

of the SC’s tag array in the LS, the size of the cache block, the number of

sets, shifts and masks for each index, and the size in bytes of each dimension.

A 128-bit register is capable of storing this information because of the small

address space of the LS (256KB), corresponding to 18 bits addresses (aligned)

the small range (usually 8 bits) of the parameters in the second registers, and

the wide registers of the SPE. All these parameters only need to be packed

together once, as they do not change throughout the execution.

The parameters of the LookUp SC instruction have to be supplied for

each access to allow multiple caches to be used at the same time. Alterna-

tively, a special register could be used to store the cache parameters. This

approach, however, complicates both software generation and hardware. It

would increase the compiler complexity as it would have to track the accesses

to the different caches to make sure each access has the right parameters set in

the special register. The hardware would become more complex as two con-

secutive LookUp SC instructions in the pipeline would have to access their

respective parameters.

Three design choices were considered for the implementation of the tag

array: using a dedicated register file, using positions in the existing register file,

or using the Local Store. Each of these options is discussed in the following

sections.

7.2.1 Dedicated Register File

The first option for the tag array is to use a special register file which we refer

to as the Tag Array Register File (TARF). The TARF is a separate register file

dedicated to store the MDSC tag array. Because of the additional resources

involved, only a small number of positions would be feasible in the dedicated

register file, e.g, 4 positions of 128 bits each. For this reason we have not

selected this design option. Note that, as in the previous chapter, we assume

that the MDSC will be used in addition to hand programmed DMA requests.

If almost all data access will be to the SC, either the MDSC or a regular SC, it

could justify a large TARF.
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7.2.2 General Purpose Register File

It is possible to avoid the hardware overhead of the TARF using the existing

register file to store the tag array. For ease of reference, this approach is called

Tag Array in General Purpose (TAGP). In this design choice, the instruction

accesses two registers with the required inputs of the indexing function. The

calculated set serves then as the register number. This works similarly to an

indirect load on the register file. The Cell SPU register file has 3 read ports,

but only a few instructions use them all. This third read port can be used to

access the calculated set, thus no additional register file port would be neces-

sary. Modifications to the control logic, however, would be necessary to allow

an instruction deeper in the pipeline to access the register file. Also, it re-

quires a conflict detection mechanism for the case an instruction that accesses

the 3 read ports of the register file is being processed in the same cycle as the

LookUp SC is trying to access the register file.

Compared to the TARF, this approach has the advantage of enabling a

larger number of sets. This solution, however, requires the inclusion of some

features in the control logic and reduces the number of registers available for

other computation. Given this extra complexity, this design option was not

selected.

7.2.3 Local Store

A third option is to store the tag array in the local store (TALS). This avoids

the pressure on the register file and the extra area needed for an extra register

file for the tag array. This option, however, has a higher latency than the pre-

vious ones as it requires to access to the LS, instead of registers. The larger

latency is a good tradeoff as it offers an easier pipeline integration and the min-

imum hardware overhead to implement the new instruction, as presented next.

Because of these advantages we chose to store the tag array in the local store.

Figure 7.2 depicts the pseudo-code for the operations performed by the

LookUp SC instruction, following the TALS design option. W , Z , Y , and X
are the 32-bit indices for each of the dimensions. Tag Array Address is the

16-bit address of the tag array in the LS divided by 16 to save bits. This is pos-

sible because accesses to the LS have to be quadword aligned. Each dimension

of the MDSC is associated with a shift, a mask, and a dimensionsize parameter.

Each of these parameters is 8 bits wide. shift is the base-2 logarithm of the size

of the corresponding cache block dimension. mask is the base-2 logarithm of

the dimension range (maximum number of bits of the index) minus the corre-
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sponding shift. To reduce hardware complexity, the mask is then added to the

values of the lower indices. dimensionsize is the base-2 logarithm size of the

cache block dimension added to the lower cache block dimensions sizes, also

to reduce complexity. The address is actually the index in the memory array

that acts as the cache memory. The n sets parameter carries the number of sets

in the MDSC. In practice, n sets is passed decremented by one, so it can be

directly applied.

Despite the number of operations in the LookUp SC instruction, it re-

mains relatively simple due to the reduced size of its operands and the paral-

lelism of the operations. The LookUp SC instruction hardware is composed

by the set calculation, the tag formation logic, a comparator, and the address

calculation logic. The tag formation and the set calculation logic consists of

a series of shifts and masks operations to select the significant bits from the

indices. Similarly, the address calculation logic uses shifts, masks, and addi-

tions to find the position of the data inside the cache block. No multiplication

is necessary, as the cache block dimensions are powers of 2. The quad result

is the resulting quadword to be returned. It consists of four 32-bit integers,

corresponding to the hit flag, the index of the requested data in the data stor-

age array, the tag, and the position of the tag in the tag array, respectively.

quad result is finally updated depending on the position of the tags quadword

where the tag is found. The LS is accessed only once to retrieve the tag array

(tags) vector pointed by set.

Most of the hardware components of the accelerator can execute in par-

allel. The Indexing function, the tag formation, and address calculation can

be performed in parallel. After the indexing function, the logic can also start

calculating quad result. The indexing function is followed by the indices load

and the tag formation, which is followed by the tag comparison. They need to

be performed sequentially.

The SPE pipeline is divided into a front-end and a back-end part [50].

The front end pipeline is the same for all instructions and it performs the in-

struction fetching, instruction decoding, and accesses the register file. There

are five back-end pipelines for branch, permute, load/store, fixed point, and

floating point instructions. The load/store back-end pipeline would have to be

modified to perform the mentioned computations.

The LookUp SC instruction can be easily integrated in the existing

MDSC code with only few modifications. The resulting code for a two-

dimensional MDSC is depicted in Figure 7.3, where x and y are the indices of

the structure to be accessed, ea is the address of the accessed data structure in



7.2. THE LOOKUP SC INSTRUCTION 139

set = ((((W >> shift[w]) ˆ (W >> (shift[w] + 1))) +

((Z >> shift[z]) ˆ (Z >> (shift[z] + 1))) +

((Y >> shift[y]) ˆ (Y >> (shift[y] + 1))) +

((X >> shift[x]) ˆ (X >> (shift[x] + 1))))

& (n_sets-1));

tags = Load((Tag_Array_Address + set) << 4);

tag = 1 + ((((W >> shift[w]) << mask[w]) |

((Z >> shift[z]) << mask[z]) |

((Y >> shift[y]) << mask[y]) |

(X >> shift[x])) << 2);

address =

(W & ˜(0xFFFFFFFF << shift[w])) << dimensionsize[w] |

(Z & ˜(0xFFFFFFFF << shift[z])) << dimensionsize[z] |

(Y & ˜(0xFFFFFFFF << shift[y])) << dimensionsize[y] |

(X & ˜(0xFFFFFFFF << shift[x])) << dimensionsize[x];

quad_result = (0, ((block_size*(set<<2)) << 4) + address,

tag, set<<2);

if (tags[0] == tag)

return quad_result | (1, 0, 0, 0);

else if (tags[1] == tag)

return quad_result | (1, block_size<<4, 0, 1);

else if (tags[2] == tag)

return quad_result | (1, 2*block_size<<4, 0, 2);

else if (tags[3] == tag)

return quad_result | (1, 3*block_size<<4, 0, 3);

else

return quad_result;

Figure 7.2: Pseudo C-code of the LookUp SC instruction.

the external memory, cache mem is the MDSC data array, and parameters
are the parameters of the MDSC instance. The first step is to merge all in-

dices to a single register, as performed by the vec uint4 index = {x, y, x, y};
statement. Second, the lookup function is replaced by the spu LookUp SC
intrinsic that forms the interface to our proposed instruction. The result

of the LookUp SC instruction is then separated into regular integers by the
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CACHED_TYPE read_MDSC( int y, int x, int ea){

vec_uint4 index = {x, y ,x ,y};

quadresult = spu_LookUp_SC(index, parameters);

int address = spu_extract(quadresult, 1);

int tag = spu_extract(quadresult, 2);

int tag_pos = spu_extract(quadresult, 3);

CACHED_TYPE ret = __cache_mem[address];

if (unlikely (spu_extract(tagpos, 0) != 0))

ret=__cache_mem[cache_miss(y, x, tag, tag_pos, ea)];

return ret;

}

Figure 7.3: Resulting C code for the read MDSC function integrated with the

LookUp SC instruction.

spu extract intrinsic. The spu extract shifts a specified word position in

the quadword to the first word of the quadword, where it can be processed

as a regular integer. The unlikely function sets the branch hint to not taken.

The last step is to replace the calculation of the data address with the result of

the LookUp SC instruction. The miss handling function does not need to be

modified.

7.3 Experimental Methodology

We use two separate and complementary approaches to evaluate our proposed

instruction. The first approach uses an actual Cell SPE core and the instruction

is emulated using a load instruction. The second approach uses the CellSim

Simulator [16]. In the simulator, the new instruction is added to the instruction

set of the SPE.

To emulate the LookUp SC instruction on the Cell processor, we pro-

ceed as follows. First, the kernel is profiled and broken down into the following

four parts: Processing, consisting of the basic computational operations of the

kernel without the accesses to the SC; Access, consisting of the accesses to the

SC without considering miss handling or data transfer, i.e., it consists only of
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SC hits; Miss Handling, consisting of the selection of the cache block to be

replaced, the calculation of the memory address, and the update of the cache

status; and DMA, corresponding to the actual transfer of data from the external

memory to the LS.

The SPE hardware counter is used to profile the kernels. As there is

only one hardware counter, an incremental approach is used to break down

the kernel. The Processing time is extracted by commenting out the MDSC

access. In order to isolate the Access time, a run of the application is performed

with the accesses to the SC requesting the same data, thus with only one cold

start miss. This is possible because the evaluated kernel’s processing times are

insensitive to the data being processed. To isolate the Miss Handling time, the

actual data is used to access the MDSC and the DMA request commands are

commented out. The DMA time is extracted by measuring the time it requires

to run the full kernel and subtracting the time taken by the previous stages.

After the kernel has been profiled, the LookUp SC instruction is em-

ulated using an existing instruction. Our proposed instruction is comparable

with an indexed load instruction and thus the LQX (the SPE indexed load in-

struction) is used. The LQX instruction performs a 32-bit addition to calculate

the effective LS address. In our proposed instruction, the address calculation

depends on the set calculation, as depicted in Figure 7.2. Because the set is

8 bits wide and most of the operations of the LookUp SC can be performed

in parallel, we assume that using the same latency as the LQX instruction is

feasible. The LQX instruction is accessed by an SPU intrinsic. The Access

time of the target application is then profiled again using the emulated instruc-

tion. The accelerated Access time is used instead of the Access time of the

original kernel. This new kernel time is used to estimate the performance gain

of the proposed instruction. This approach is valid because the LookUp SC

instruction only changes the MDSC access time with all the remaining stages

intact.

We also evaluate the proposed hardware extension using the CellSim

Simulator. It is not possible to use the IBM Cell Full-System simulator [17]

because the source code is not available to make the necessary modifications.

The CellSim Simulator was used to validate the instruction behavior and to

qualitatively analyze the required hardware complexity.

CellSim is not cycle accurate as it does not distinguish between the odd

and even pipelines of the SPE. To handle this limitation, the instruction fetch

rate parameter can be modified. This parameter defines a constant number of

instructions that the execution unit fetches per cycle. To tune this parameter,
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the profiling results of the kernels are used. In our experiments, the instruction

fetch rate is set so that the simulated execution time approximately matches the

execution times on the actual core. The simulator reported an average runtime

7% smaller than the measurements using the real SPE cores. Because of this

difference we opted to report the results acquired following our first approach,

leaving the second approach only for instruction validation purposes.

In order to evaluate the LookUp SC instruction, the MC and GLCM

kernels described in Section 6.5, are used. The sequences from the HD-

VideoBench, described in Section 2.4.2, are once again used as input.

Unlike in the previous chapter, however, the evaluation of the MC kernel

accesses three separate MDSCs, one for each color component, each one using

a static, 4-way set associative implementation. The main motivation for these

changes in the MDSC for the MC kernel is that, in this chapter, we focus only

on performance improvement that the our proposed instruction yields. Thus,

the co-locality between color components is not exploited and the other listed

enhancements, described in Section 6.5.4, to reduce the number of MDSC ac-

cesses, are not implemented. The choice of a 4-way set associative MDSC

implementation is due to the fact that the LookUp SC instruction currently

does not support fully associative implementations of the MDSC. Finally, to

ensure an unbiased comparison, we use a static MDSC implementation instead

of a dynamic implementation because the IBM SC only supports static imple-

mentations.

7.4 Experimental Results

In this section, experimental results for the LookUp SC instruction acceler-

ating the MDSC are presented. Results for the GLCM and MC kernels are

presented and analyzed. Three baseline versions are presented for each kernel.

Results of an implementation without a SC are to state the need/impact of a SC

for the given kernel. The second baseline is an implementation using a pub-

licly available SC, the IBMSC for the Cell [101]. The third baseline uses the

MDSC implementation of the kernel without the proposed instruction. We note

here that while developing the LookUp SC instruction the MDSC code for the

static 4-way set associative implementation was optimized. The optimization

consisted of rescheduling operations from inside the if-then-else statement that

checks for cache misses to before the statement. This rescheduling increases

the number of operations between the branch hint instruction and its branch

target. As discussed in Section 5.4.1, the hint instruction needs to be placed
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Figure 7.4: GLCM runtime of FHD sequences for No Cache, IBMSC, MDSC, in-

lined MDSC, and AMDSC.

18 cycles before the branch to have a penalty free branch. Because of this op-

timization, the MDSC results of this chapter have a higher performance than

the MDSC results presented in the previous chapter.

7.4.1 GLCM Results

In Figure 7.4, the execution time for the Full High Definition (FHD) inputs

are depicted. The DMA time to fetch the picture data are not included as they

can be overlapped with the computation. The Processing time also depicts the

execution time for the GLCM if the matrix would fit in the LS. Each SC has a

suffix S × X to state its configuration, where S corresponds to the number of

sets and X to the number of columns in the cache block. The number of rows

is not depicted as it is always one. The labeled IMDSC in Figure 7.4 refers to

the MDSC with the read/write functions inlined, as it will be discussed later.

Furthermore, each SC is 4-way set associative. As described in the previous

chapter, we determined the optimal configuration for each SC, cache size is

fixed at 64KB.
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The MDSC and the IBMSC have different configuration and behaviors.

Compared with the IBMSC, the MDSC has higher DMA transfer and miss

handling times. This is caused by the multidimensional handling of the cache

block, even if the block has only one line in this particular case. On the other

hand, the MDSC has a smaller access time that compensates for the time spent

in the other stages.

The SC access time dominates the execution time for the IBMSC and

MDSC with 70% and 54% of the total execution time, respectively. The rea-

son is that the GLCM kernel exhibits a very small amount of computation

per access. On average, the MDSC accelerated with our proposed instruction

(or AMDSC for ease of reference) speeds up the access time by a factor of

3.0, compared to the MDSC. The reduction in access time translates to a total

speedup of 2.1 and 1.6 for the total kernel, when compared to IBMSC and with

the regular MDSC, respectively.

In this particular kernel, the improvement is due to two factors. First,

the number of instructions is reduced. The LookUp SC instruction replaces

several instructions, what leads to a performance gain. A second factor is that

it also reduces the size of the cache access function. With the reduced size,

the access function can be inlined in the GLCM calculation function, which

further increases the speedup. Compared to the IMDSC access function, the

speedups of the LookUp SC instruction for the access time slightly decrease

to 2.8. The speedup of the whole kernel is reduced from 1.6 to 1.5.

7.4.2 MC Results

In this section, the results of MC using different SCs are presented and dis-

cussed. Figure 7.5 depicts the results for the FHD sequences from the HD-

VideoBench. Each MDSC has a suffix S × Y × X to state its configuration,

where S corresponds to the number of sets, Y to the number of rows in the

2-dimensional cache block, and X to the number of columns. For the IBMSC

only the number of sets and number of columns (line size), in S × X format,

are depicted in the suffix.

The results of the MC kernel show that the MDSC is, on average, 9%

faster than the IBMSC. The IBMSC has an average hit rate of 94%, while the

MDSC has an average hit rate of 98%. This explains the shorter DMA times

for the MDSC. On the other hand, the MDSC’s more complex Miss Handling

leads to a higher Miss Handling time than incurred by the IBMSC, even with

significant lower number of misses. The MDSC Access time is also longer
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Figure 7.5: MC runtime of FHD sequences for No Cache, IBMSC, MDSC, and

AMDSC.

than the IBMSC Access time due to the tag calculation using a larger number

of parameters.

For the MC kernel, the LookUp SC instruction yields an average per-

formance improvement of 47% for the AMDSC access time, compared to the

MDSC access time. This relative improvement is lower than in the previous

experiment. The reason for this is that the MC processing function is vector-

ized with SIMD instructions and operates on a temporary array. The cache

access copies the reference area to this temporary array. This is performed

inside a nested loop, which introduces significant overhead due to the diver-

gent branching that implements the loop. Furthermore, the optimization of

the read MDSC function significantly reduces the number of instructions after

the branch instruction of the function, which results in an inefficient branch

hint for the branch that implements the loop structure. As described in Sec-

tion 4.3, even unconditional branches need to be hinted in order to avoid the

miss prediction penalty. On the whole MC kernel, the AMDSC performance

improvements are 108%, 28%, and 16%, on average, compared to the No

Cache, IBMSC, and MDSC implementations, respectively.
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7.5 Conclusions

In this chapter, we presented a new instruction to accelerate software caches.

On cores with scratchpad memories, such as the Cell SPE, software caches are

an efficient way to improve the performance of applications that do not have

a predictable access behavior to make efficient use of DMAs, but do exhibit

locality. On the other hand, software caches incur high overhead.

The LookUp SC instruction performs several operations and is com-

posed of a number of hardware operations. Because several operations can be

performed in parallel, the overall latency of the instruction is estimated to be

the same as the latency of an indexed load instruction. As a side effect of the

reduction of the number of instructions in the AMDSC access functions, it can

be inlined without increasing the code size significantly. This particularly im-

proves the performance of applications with a high ratio of number of memory

accesses to computational instructions.

Our experimental results showed that the LookUp SC instruction sig-

nificantly accelerates the MDSC access function. The overall performance

improvement depends on the application. For the MC kernel, the access func-

tion is accelerated by 47%, while a speedup of 3.0 is achieved on average for

the GLCM access function, when compared to the MDSC access function. For

the whole kernels, the AMDSC speedups are 1.16 for MC and 1.5 for GLCM,

when compared with the kernels using the MDSC.



8
Conclusions

T
his dissertation presented several contributions to the design of multi-

and many-core processors targeted mainly at video processing appli-

cations. Leveraging many-core processors for video processing is an

important research challenge, as the consumer market demands higher video

quality and new features. The presented contributions range from novel par-

allelization techniques to obtain a parallel video decoder that scales to a large

number of cores, techniques to improve the scalar performance of SIMD-only

cores, to techniques to exploit the data locality in applications that cannot eas-

ily be exploited in scratchpad/local store memory architectures.

This chapter is organized as follows. Section 8.1 presents a summary

of the dissertation chapters and lists its main contributions. Open issues and

future research directions for video processing on multi-core platforms are dis-

cussed in Section 8.2.

8.1 Summary and Contributions

This dissertation focused on many-core architectures composed of SIMD-only

cores with scratchpad memories instead of caches. Furthermore, it focused

on video processing applications. It covers increasing processing and power
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efficiency of many-core systems in general, SIMD-only cores, and scratchpad

memories. Each of these objectives was covered by two chapters. Below we

summarize the dissertation and list its main contributions.

Chapter 2 presented the 3D-Wave parallelization strategy and studied its

scalability to many-core processors. After discussing why the previous tech-

niques do not efficiently scale to many-core architectures, the 3D-Wave strat-

egy was introduced. This strategy breaks frame dependencies in a novel way

by overlapping the decoding of several inter-dependent frames. A static anal-

ysis followed, showing that the technique can harvest sufficient macroblock

(MB)-level parallelism to make use of many-core (64+) cores. It revealed that

up to 2040 MBs can be processed in parallel for Full High Definition (FHD)

sequences. Besides the available amount of MB-level parallelism, the effects

of limiting resources and frame scheduling were also presented.

Taking into account the positive results of the 3D-Wave scalability

study, Chapter 3 described the implementation of the 3D-Wave strategy on

a simulated multi-core processor. The experimental results showed that the

3D-Wave achieves speedup of more than 50 on the 64-core processor for FHD

resolution. Several additional improvements and studies have been presented.

Frame priority and frame scheduling policies have been introduced to decrease

the latency and memory footprint of the parallel H.264 decoder. The effects of

memory latency, cache size, and synchronization latency have been studied, as

well as the requirements for a CABAC accelerator.

The main contributions in Chapters 2 and 3 can be summarized as fol-

lows:

• A new strategy to parallelize H.264 decoding so that it can leverage a

many-core processor.

• A static scalability study of the amount of Thread-Level Parallelism in

the 3D-Wave.

• An implementation of the 3D-Wave parallelization strategy on a simu-

lated embedded many-core system consisting of up to 64 TM3270 pro-

cessors that confirms the static scalability study.

• A frame priority policy that gives priority to the oldest frame and reduces

the latency to the same level as the 2D-Wave.

• A frame scheduling policy that controls the number of frames in flight.
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• An Analysis of the performance requirements of the entropy decoding

accelerator not to harm the 3D-Wave scalability.

Chapters 4 and 5 studied the characteristics of SIMD-only cores. Chap-

ter 4 focused on the applicability of SIMD-only cores to the processing of

video kernels with divergent branching. For this purpose, the H.264 deblock-

ing filter was vectorized with SIMD instructions and its performance was an-

alyzed. Although well-known SIMD overheads were still present, the overall

performance gain was significant, with a speedup of 2.6 over the scalar imple-

mentation.

SIMD processing has a well known overhead but the overhead of scalar

processing in SIMD-only cores has not yet been studied or documented. Chap-

ter 5 performed this analysis. Two techniques are proposed to evaluate the

overhead and to identify its source. The Large-Data-Type technique used 128-

bit quadwords to represent an integer value. The PPE-versus-SPE technique

compared scalar performance of the SPE with the PPE. The techniques showed

a scalar processing overhead ranging form 12% to 57%. New load and store

instructions have been proposed to reduce this overhead.

The main contributions of Chapters 4 and 5 were:

• A vectorization of the H.264 Deblocking Filter with SIMD instructions

to study the effects of divergent branching on vectorization efficiency.

• A quantification of the overhead caused by the lack of scalar instructions

support on SIMD-only architectures such as the Cell SPE.

• The identification of the sources of this overhead.

• New instructions, with minimal area overhead, that loads/stores scalars

directly into/from the preferred slot.

The last part of the dissertation dealt with the memory system. More

specifically, reduction of memory latency for unpredictable memory accesses,

using a software cache featuring a reduced access overhead, was presented.

Chapter 6 evaluated the software cache overhead and proposes a new cache

organization. The Multidimensional Software Cache (MDSC) has been intro-

duced presenting features to exploit known access behavior to reduce the num-

ber of cache lookups. Examples of MDSC enhancements that exploit know

access behavior were presented for the Motion Compensation (MC) kernel.

It was also demonstrated that the proposed cache design also benefits kernels
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where it is not possible to exploit access behavior, such as the GLCM. Im-

provements ranged from 8% for GLCM to 43% for MC when compared with

the IBM software cache.

After identifying the access time as one of the bottlenecks of software

caches, an instruction to accelerate the cache accesses was proposed in Chap-

ter 7. The instruction replaced the lookup function and address calculation

and was composed of a small number of hardware operations. Because several

steps can be performed in parallel,the latency of the instruction was stipulated

to the same as the latency of an indexed load instruction. This instruction was

evaluated using the MDSC and two multimedia kernels, GLCM and H.264

Motion Compensation. The results showed that the proposed instruction ac-

celerates the software cache access time by 2.6 times. This improvement in

cache access translates to a 2.1 speedup for GLCM and 1.28 for MC, when

compared with the IBM software cache.

The main contributions of Chapters 6 and 7 can be summarized as fol-

lows:

• A Multidimensional Software Cache (MDSC) that caches 1- to 4-

dimensional blocks of data that are logically adjacent, thereby reducing

the number of cache accesses and the DMA startup overhead.

• Optimizations to the MDSC that reduce the number of cache accesses

for the MC kernel.

• An instruction that accelerates the MDSC by implementing the MDSC

lookup functionality.

8.2 Open Issues and Future Directions

Because of its the availability, the NXP H.264 decoder was used instead of a

publicly available decoder. The heavy optimizations of the FFMPEG H.264

decoder for single-core processors make it very difficult to implement the 3D-

Wave technique. However, a freely available implementation of the 3D-Wave

is required to enable further research by the research community at large.

The current frame scheduling in the 3D-Wave implementation is done

using a static approach. Because it does not reacts to the variability of the de-

coding time, it can result in a smaller than intended number of frames in flight,

therefore, reducing potential MB-level parallelism. To solve this problem, the
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development of an automatic frame scheduling technique that only starts to

decode a new frame if some cores are idle due to insufficient TLP is desired.

The current 3D-Wave implementation focuses only on the MB decoding

part. The requirements for CABAC decoding to support the 3D-Wave have

been presented. However, the integration of the CABAC decoding with the MB

decoding is desired to comprehensively study the issues of a complete video

processing application on heterogeneous many-core processors. The entropy

decoder can be parallelized in the slice/frame level and entropy decoder cores

could be placed in the same local interconnect as the MB processing cores.

In this dissertation we focus on the H.264 decoder. Another interesting

part of video processing is the encoder. The 3D-Wave could be implemented in

the encoder to speedup this very compute intensive application. Because in the

encoder the dependencies are known a priori, it would be easier to implement

the 3D-Wave in the encoder than it was to implement in the decoder. It could

also task-level parallelism to isolate the Motion Estimation (ME) kernel from

the remaining kernels. That would be possible because ME consumes around

80% of the processing time of the video encoding process. It also would enable

an efficient many-core processor consisting of small cores.

The Multiview Video Coding (MVC) [19] amendment to the H.264

standard significantly increases the number of possible frames per second to

be processed, as the video now has several views for each frame. The 3D-

Wave technique can be applied to this application to exploit the parallelism and

provide the required computational resources from a many-core composed of

power efficient cores.

With regards to SIMD processing, an option not explored in this thesis

is the evaluation of longer SIMD words for multimedia kernels. A 128-bit

SIMD word size was used in the Deblocking Filter kernel. It is shown that

although the data size is 8 bits, a 16-bit data size has to be used to handle

the intermediary results. An evaluation of multimedia kernels using a 256-bit

SIMD word with the extended intermediate data size presented in [49] could

be performed to asses the possible increase in performance.

The increasing presence of control flow behavior in multimedia ker-

nels decreases performance of SIMD computation as multiple computational

paths need to be executed. To reduce this performance loss, a dynamic opera-

tor across the SIMD word could be implemented, in a MIMD fashion similar

to the Imagine processor [51]. A solution to adapt cost-effectively add this

MIMD-like behavior to a regular SIMD datapath is required. One option to be

evaluated is the use a mask and an operator selector in the third source register.
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With regards to the memory hierarchy, the MDSC groups memory re-

quests to decrease latency. However, the performance of the MDSC reflects the

machine organization used for this study. The Cell processor has two memory

channels, but a single SPU cannot use both channels simultaneously. A study

of the MDSC in a processor with dual channel capabilities is desired as it is

expected that this will increase the achieved performance improvement.

One interesting follow up of our instruction to accelerate software cache

is to adapt it to conventional software caches, such the as IBM software cache.

As regular caches access memory positions, the address calculation would not

be accelerated by our proposed instruction. Because of this factor we expect

a lower acceleration than the one achieved in this thesis. On the other hand, it

would result in a smaller area overhead.

Another future work is the evaluation of the power consumption of the

proposed instruction. A power consumption comparison between a hardware

cache and our accelerated MDSC with scratchpad memory would give interest-

ing quantitative results. This evaluation could be used for processor designers

as another evaluation point for future power efficient processors.
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Alexandre E. Eichenberger, Tong Chen, Zehra Sura, Tao Zhang, Kevin

O’Brien, and Kathryn O’Brien. Hybrid Access-Specific Software Cache

Techniques for the Cell BE Architecture. In Proceedings of the Inter-

national Conference on Parallel Architectures and Compilation Tech-

niques (PACT), pages 292–302, New York, NY, USA, 2008. ACM.

[43] M. Gschwind, H.P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and

T. Yamazaki. Synergistic Processing in Cell’s Multicore Architecture.

IEEE Micro, 26(2):10–24, 2006.



158 CHAPTER 8. CONCLUSIONS

[44] Amit Gulati and George Campbell. Efficient Mapping of the H.264

Encoding Algorithm onto Multiprocessor DSPs. Embedded Processors

for Multimedia and Communications II, 5683(1):94–103, March 2005.

[45] HP Hofstee. Power Efficient Processor Architecture and the Cell

Processor. In Proceedings of the International Symposium on High-

Performance Computer Architecture (HPCA), pages 258–262, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[46] Jan Hoogerbrugge and Andrei Terechko. A Multithreaded Multi-

core System for Embedded Media Processing. Transactions on High-

Performance Embedded Architectures and Compilers, 4(2), 2009.

[47] M. Horowitz, A. Joch, and F. Kossentini. H.264/AVC Baseline Pro-

file Decoder Complexity Analyis. IEEE Transactions on Circuits and

Systems for Video Technology, 13(7):704–716, 2003.

[48] Ibm bladecenter qs22. http://www-03.ibm.com/systems/bladecenter/

hardware/servers/qs22/index.html.

[49] B. H. H. Juurlink, A. Shahbahrami, and S. Vassiliadis. Avoiding Data

Conversions in Embedded Media Processors. In Proceedings of the

ACM Symposium on Applied Computing, pages 901–902, March 2005.

[50] JA Kahle, MN Day, HP Hofstee, CR Johns, TR Maeurer, and D. Shippy.

Introduction to the Cell Multiprocessor. IBM Journal of Research and

Development, 49(4):589–604, 2005.

[51] B. Khailany, W.J. Dally, U.J. Kapasi, P. Mattson, J. Namkoong, J.D.

Owens, B. Towles, A. Chang, and S. Rixner. Imagine: Media Process-

ing with Streams. Micro, IEEE, 21(2):35–46, 2002.

[52] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M. Tullsen.

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for

Processor Power Reduction. In Proceedings of the IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), pages 81 – 92, 2003.

[53] R. Kumar, D.M. Tullsen, N.P. Jouppi, and P. Ranganathan. Heteroge-

neous Chip Multiprocessors. IEEE Computer, 38(11):32 – 38, 2005.

[54] N.A. Kurd, S. Bhamidipati, C. Mozak, J.L. Miller, T.M. Wilson, M. Ne-

mani, and M. Chowdhury. Westmere: A Family of 32nm IA Proces-

sors. In Proceedings of the IEEE International Solid-State Circuits



BIBLIOGRAPHY 159

Conference-Digest of Technical Papers (ISSCC), pages 96–97. IEEE,

2010.

[55] V. Lappalainen, A. Hallapuro, and T. D. Hamalainen. Complexity of

Optimized H.26L Video Decoder Implementation. IEEE Transactions

on Circuits and Systems for Video Technology, 13(7):717–725, 2003.

[56] J. Lee, S. Moon, and W. Sung. H.264 Decoder Optimization Exploiting

SIMD Instructions. In Proceedings of the Asia-Pacific Conference on

Circuits and Systems, Dec. 2004.

[57] J. Lee, S. Moon, and W. Sung. H.264 Decoder Optimization Exploiting

SIMD Instructions. In Proceedings of the IEEE Asia-Pacific Conference

on Circuits and Systems, volume 2, 2004.

[58] Jaejin Lee, Sangmin Seo, Chihun Kim, Junghyun Kim, Posung Chun,

Zehra Sura, Jungwon Kim, and SangYong Han. COMIC: A Coherent

Shared Memory Interface for Cell BE. In Proceedings of the Inter-

national Conference on Parallel Architectures and Compilation Tech-

niques (PACT), pages 303–314, New York, NY, USA, 2008. ACM.

[59] P. List, A. Joch, J. Lainema, G. Bjntegaard, and M. Karczewicz. Adap-

tive Deblocking Filter. IEEE Transactions on Circuits and Systems for

Video Technology, 13(7):614–619, 2003.

[60] P. List, A. Joch, J. Lainema, G. Bjntegaard, and M. Karczewicz. Adap-

tive Deblocking Filter. IEEE Transactions on Circuits and Systems for

Video Technology, 13(7):614–619, 2003.

[61] Y. Liu and S. Oraintara. Complexity Comparison of Fast Block-

Matching Motion Estimation Algorithms. In IEEE International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), 2004.

[62] H. Ma and J. Wolf. On Tail Biting Convolutional Codes. IEEE Trans-

actions on Communications, 34(2):104–111, 1986.

[63] HS Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky. Low-

Complexity Transform and Quantization in H. 264/AVC. IEEE Trans-

actions on Circuits and Systems for Video Technology, 13(7):598–603,

2003.



160 CHAPTER 8. CONCLUSIONS

[64] D. Marpe, H. Schwarz, and T. Wiegand. Context-Based Adaptive Bi-

nary Arithmetic Coding in the H.264/AVC Video Compression Stan-

dard. IEEE Transactions on Circuits and Systems for Video Technology,

13(7):620–636, 2003.

[65] M.D. McCool and B. D’Amora. Programming using RapidMind on the

Cell BE. In Proceedings of the ACM/IEEE Conference on Supercom-

puting (ICS), page 222. ACM, 2006.

[66] C. H. Meenderinck, A. Azevedo, B. H. H. Juurlink, M. Alvarez, and

A. Ramirez. Parallel Scalability of Video Decoders. Journal of Signal

Processing Systems, August 2008.

[67] C. H. Meenderinck and B. H. H. Juurlink. Specialization of the Cell

SPE for Media Applications. In Proceedings of the EEE International

Conference on Application-Specific Systems, Architectures and Proces-

sors (ASAP), July 2009.

[68] Philipp Merkle, Karsten Müller, and Thomas Wiegand. 3D Video Cod-

ing: An Overview of Present and Upcoming Standards. Visual Commu-

nications and Image Processing, 7744(1):77440D, 2010.

[69] Ross Miller. Toshiba Regza GL1 3D Preview: No Frills,

No Glasses, Some Issues. http://www.engadget.com/2010/10/05/

toshiba-regza-gl1-3d-preview-no-frills-no-glasses-some-issues/.

[70] Nokia Europe - Nokia N8 - New Touch Screen Phone with Free Nav-

igation and HD Video. http://europe.nokia.com/find-products/devices/

nokia-n8.

[71] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-Vectorization of In-

terleaved Data for SIMD. In Proceedings of the ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, pages

132–143, New York, NY, USA, 2006. ACM.

[72] T. Oelbaum, V. Baroncini, T.K. Tan, and C. Fenimore. Subjective Qual-

ity Assessment of the Emerging AVC/H.264 Video Coding Standard. In

Proceedings of the International Broadcast Conference (IBC), 2004.

[73] F. Okano, M. Kanazawa, K. Mitani, K. Hamasaki, M. Sugawara,

M. Seino, A. Mochimaru, and K. Doi. Ultrahigh-Definition Television

System With 4000 Scanning Lines. In Proceedings NAB Broadcast En-

gineering Conference, pages 437–440, 2004.



BIBLIOGRAPHY 161

[74] The OpenMP API specification for parallel programming. http://

openmp.org/.

[75] R. R. Osorio and J. D. Bruguera. An FPGA Architecture for

CABAC Decoding in Manycore Systems. In Proceedings of the IEEE

Application-Specific Systems, Architectures and Processors, pages 293–

298, July 2008.

[76] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,

T. Stockhammer, and T. Wedi. Video Coding with H.264/AVC: Tools,

Performance, and Complexity. IEEE Circuits and Systems Magazine,

4(1):7–28, 2004.

[77] J. Planas, R.M. Badia, E. Ayguadé, and J. Labarta. Hierarchical task-

based programming with StarSs. International Journal of High Perfor-

mance Computing Applications, 23(3):284, 2009.

[78] A. Ramirez, F. Cabarcas, B. H. H. Juurlink, M. Alvarez Mesa,

F. Sanchez, A. Azevedo, C. Meenderinck, C. Ciobanu, S. Isaza, and

G. Gaydadjiev. The SARC Architecture. IEEE Micro, 30:16–29, 2010.

[79] Parthasarathy Ranganathan, Sarita Adve, and Norman Jouppi. Perfor-

mance of Image and Video Processing with General-Purpose Processors

and Media ISA Extensions. SIGARCH Computer Architecture News,

27(2):124–135, 1999.

[80] Gang Ren, Peng Wu, and David Padua. Optimizing Data Permutations

for SIMD Devices. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 118–131,

New York, NY, USA, 2006. ACM.

[81] A. Rodriguez, A. Gonzalez, and M. P. Malumbres. Hierarchical Par-

allelization of an H.264/AVC Video Encoder. In Proceedings Inter-

national Symposium on Parallel Computing in Electrical Engineering,

pages 363–368, 2006.

[82] M. Roitzsch. Slice-Balancing H.264 Video Encoding for Improved

Scalability of Multicore Decoding. In Proceedings of the IEEE Real-

Time Systems Symposium, 2006.

[83] SARC Project. http://www.sarc-ip.org.



162 CHAPTER 8. CONCLUSIONS

[84] Ramesh Sarukkai. What’s Bigger than 1080p? 4K Video

Comes to YouTube. http://youtube-global.blogspot.com/2010/07/

whats-bigger-than-1080p-4k-video-comes.html.

[85] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael

Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Suger-

man, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat

Hanrahan. Larrabee: A Many-core X86 Architecture for Visual Com-

puting. ACM Transactions on Graphics, 27(3):1–15, 2008.

[86] Ganapathy Senthil, Sasikanth Gudla, and Pallav Kumar Baruah. Ex-

ploring Software Cache on the Cell BE Processor. In Proceedings of

the International Conference on High Performance Computing (HiPC),

page 5, 2008.

[87] Sangmin Seo, Jaejin Lee, and Z. Sura. Design and Implementation of

Software-Managed Caches for Multicores With Local Memory. In Pro-

ceedings of the IEEE International Symposium on High-Performance

Computer Architecture (HPCA), pages 55–66, Feb. 2009.

[88] A. Shahbahrami and B. H. H. Juurlink. Optimization of Content-Based

Image Retrieval Functions. In Proceedings of the IEEE International

Symposium on Multimedia, pages 607–612, December 2008.

[89] Asadollah Shahbahrami, B. H. H. Juurlink, Demid Borodin, and Stama-

tis Vassiliadis. Avoiding Conversion and Rearrangement Overhead in

SIMD Architectures. International Journal of Parallel Programming,

34(3):237–260, 2006.

[90] H. Shojania, S. Sudharsanan, and Chan Wai-Yip. Performance Improve-

ment of the H.264/AVC Deblocking Filter Using SIMD Instructions. In

Proceedings of the IEEE International Symposium on Circuits and Sys-

tems (ISCAS), May 2006.

[91] P. Stenström. Chip-multiprocessing and Beyond. In Proceedings of the

International Symposium on High-Performance Computer Architecture

(HPCA), pages 109–109, 2006.

[92] G.J. Sullivan, P.N. Topiwala, and A. Luthra. The H.264/AVC Ad-

vanced Video Coding Standard: Overview and Introduction to the Fi-

delity Range Extensions. In Proceedings SPIE Conference on Applica-

tions of Digital Image Processing, pages 454–474, 2004.



BIBLIOGRAPHY 163

[93] A. Tamhankar and KR Rao. An Overview of H.264/MPEG-4 Part 10.

In Proceedings of the EURASIP Conference on Video/Image Processing

and Multimedia Communications, page 1, 2003.

[94] J. van de Waerdt, S. Vassiliadis, S. Das, S. Mirolo, C. Yen, B. Zhong,

C. Basto, J. van Itegem, D. Amirtharaj, K. Kalra, et al. The TM3270

Media-Processor. In Proceedings of the International Symposium on

Microarchitecture (MICRO), pages 331–342, 2005.

[95] E.B. van der Tol, E.G. Jaspers, and R.H. Gelderblom. Mapping of

H.264 Decoding on a Multiprocessor Architecture. In Proceedings of

the SPIE Conference on Image and Video Communications and Pro-

cessing, 2003.

[96] A. J. Viterbi. A Personal History of the Viterbi Algorithm. IEEE Signal

Processing Magazine, 23(4):120–142, 2006.

[97] S. Warrington, H. Shojania, and S. Sudharsanan. Performance Improve-

ment of the H.264/AVC Deblocking Filter Using SIMD Instructions. In

Proceedings of the IEEE International Symposium on Circuits and Sys-

tems (ISCAS), page 4, 2006.

[98] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G.J. Sullivan. Rate-

Constrained Coder Control and Comparison of Video Coding Stan-

dards. IEEE Transactions on Circuits and Systems for Video Technol-

ogy, 13(7):688 – 703, 2003.

[99] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A.Luthra. Overview of

the H.264/AVC Video Coding Standard. IEEE Transactions on Circuits

and Systems for Video Technology, 13(7):560–576, July 2003.

[100] M. Wien. Variable Block-Size Transforms for H. 264/AVC. IEEE

Transactions on Circuits and Systems for Video Technology, 13(7):604–

613, 2003.

[101] Example Library API Reference. https://

www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

3B6ED257EE6235D900257353006E0F6A/$file/SDK Example

Library API v3.0.pdf.

[102] X264. A Free H.264/AVC Encoder. http://developers.videolan.org/

x264.html.



164 CHAPTER 8. CONCLUSIONS

[103] B. Zatt, A. Azevedo, L. Agostini, A. Susin, and S. Bampi. Memory Hi-

erarchy Targeting Bi-Predictive Motion Compensation for H.264/AVC

Decoder. In Proceedings of the IEEE Symposium on VLSI, pages 445–

446. IEEE Computer Society Washington, DC, USA, 2007.

[104] X. Zhou, E. Q. Li, and Y.-K. Chen. Implementation of H.264 Decoder

on General-Purpose Processors with Media Instructions. In Proceedings

SPIE Conference on Image and Video Communications and Processing,

2003.



List of Publications

International Journals

1. A. Ramirez, F. Cabarcas, B.H.H Juurlink, M. Alvarez, A. Azevedo, C.

Meenderinck, G. Gaydajiev, C. Ciobanu, S. Isaza, F. Sanchez, The SARC

Architecture, IEEE Micro, Volume 30, Issue 5, 2010

2. A. Azevedo, B.H.H. Juurlink, A Multidimensional Software Cache

for Scratchpad-Based Systems, International Journal of Embedded and

Real-Time Communication Systems (IJERTCS), Volume 1, Issue 4,

2010

3. A. Azevedo, B.H.H. Juurlink, C.H. Meenderinck, A. Terechko, J.

Hoogerbrugge, M. Alvarez, A. Ramirez, M. Valero, A Highly Scalable

Parallel Implementation of H.264, Transactions on High-Performance

Embedded Architectures and Compilers (HiPEAC), Volume 4, Issue 2,

2009.

4. C.H. Meenderinck, A. Azevedo, B.H.H. Juurlink, M. Alvarez, A.

Ramirez, Parallel Scalability of Video Decoders, Journal of Signal Pro-

cessing Systems, pp. 173-194, Volume 57, Issue 2, 2009.

5. M. Alvarez, A. Ramirez, M. Valero, A. Azevedo, C.H. Meenderinck,

B.H.H. Juurlink, Performance Evaluation of Macroblock-level Paral-

lelization of H.264 Decoding on a cc-NUMA Multiprocessor Architec-

ture, Avances en Sistemas e Informatica, Volume 6, Number 1, 2009,

ISSN 1657-7663.

International Conferences

6. A. Azevedo, B.H.H. Juurlink, An Instruction to Accelerate Software

Caches, Proceedings of the Conference on Architecture of Computing

Systems (ARCS), 2011

165



166 CHAPTER 8. LIST OF PUBLICATIONS

7. A. Azevedo, B.H.H. Juurlink, An Efficient Software Cache for H.264

Motion Compensation, Proceedings of IEEE International Symposium

on System-on-Chip (SOC), 2009.

8. A. Azevedo, B.H.H. Juurlink, Scalar Processing Overhead on SIMD-

Only Architectures, Proceedings of the IEEE International Conference

on Application-Specific Systems, Architectures and Processors (ASAP),

2009.

9. A. Azevedo, C.H. Meenderinck, B.H.H. Juurlink, A. Terechko, J.

Hoogerbrugge, M. Alvarez, A. Ramirez, M. Valero, Parallel H.264

Decoding on an Embedded Multicore Processor, Proceedings of

High-Performance Embedded Architectures and Compilers Conference

(HiPEAC), 2009.

10. M. Alvarez, A. Ramirez, M. Valero, C.H. Meenderinck, A. Azevedo,

B.H.H. Juurlink, Performance Evaluation of Macroblock-level Paral-

lelization of H.264 Decoding on a cc-NUMA Multiprocessor Architec-

ture, Proceedings of the 4th Colombian Computing Conference (4CCC),

2009.

11. M. Alvarez, A. Ramirez, A. Azevedo, C.H. Meenderinck, B.H.H. Ju-

urlink, M. Valero, Scalability of Macroblock-level Parallelism for H.264

Decoding, Proceedings of International Conference on Parallel and Dis-

tributed Systems (ICPADS), 2009.

12. A. Azevedo, C.H. Meenderinck, B.H.H. Juurlink, M. Alvarez, A.

Ramirez, Analysis of Video Filtering on the Cell Processor, Proceedings

of International Symposium on Circuits and Systems (ISCAS), 2008.

13. C.H. Meenderinck, A. Azevedo, M. Alvarez, B.H.H. Juurlink, A.

Ramirez, Parallel Scalability of H.264, Proceedings of Workshop on

Programmability Issues for Multi-Core Computers (MULTIPROG),

2008.

14. M. Alvarez, A. Azevedo, C.H. Meenderinck, B.H.H. Juurlink, A.

Terechko, J. Hoogerbrugge, A. Ramirez, Analyzing scalability limits of

H.264 decoding due to TLP overhead, HiPEAC Industrial Workshop,

2008.

15. Z. Popovic, R. Giorgi, N. Puzovic, B.H.H. Juurlink, A. Azevedo, An-

alyzing Scalability of Deblocking Filter of H.264 via TLP exploitation



LIST OF PUBLICATIONS 167

in a new Many-Core Architecture, Proceedings of 11th EUROMICRO

Conference on Digital System Design (DSD), 2008.

Local Conferences

16. R. Giorgi, Z. Popovic, N. Puzovic, A. Azevedo, B.H.H. Juurlink, Ex-

ploiting Parallelism of Deblocking Filter of H.264 on DTA Architecture,

ACACES Poster Abstracts, 2008.

17. A. Azevedo, C.H. Meenderinck, B.H.H. Juurlink, M. Alvarez, A.

Ramirez, Analysis of Video Filtering on the Cell Processor, Proceed-

ings Workshop on Circuits, Systems and Signal Processing (ProRISC),

2007.

Reports

17. C.H. Meenderinck, A. Azevedo, B.H.H. Juurlink, M. Alvarez, A.

Ramirez, Parallel Scalability of Video Decoders, CE technical report,

2008, CE-TR-2008-03.





169

Samenvatting

I
n dit proefschrift presenteren wij methodes en evaluaties met het doel om

de efficiëntie van videocoderingsapplicaties te verbeteren voor heterogene

veelkernige processoren die bestaan uit enkel-SIMD kernen met scratch-

pad geheugen. Onze bijdrage is drieledig: thread-level parallellisme voor

veelkernige processoren, detectie van het knelpunt voor enkel-SIMD kernen,

en een software cache voor kernen met scratchpad geheugen.

Eerst presenteren wij de 3D-Golf parallellisatiestrategie voor video

decodering, welke schaalt naar veelkernige processoren. Deze strategie is

gebaseerd op de observatie dat de afhankelijk tussen frames zich bevindt in

de motion compensation kernel en dat de motion vectoren meestal een korte

spanne hebben. De 3D-Golf strategie combineert macroblok-niveau parallel-

lisme met frame- en slice-niveau parallellisme door het decoderen van frames

te overlappen, terwijl de afhankelijkheden tussen macroblokken dynamisch

gemanaged worden. De 3D-Golf was geı̈mplementeerd en geëvalueerd op

een gesimuleerde meerkernige embedded processor, bestaande uit 64 kernen.

Wij presenteren methodes om het geheugengebruik en wachttijd te reduceren.

De effecten van geheugenwachttijd, cache-grootte, en synchronisatiewachttijd

worden bestudeerd.

Het beoordelen van de geschiktheid van enkel-SIMD kernen voor de

steeds complexer wordende multimedia applicaties is onze tweede bijdrage.

We evalueren de geschiktheid van enkel-SIMD kernen met betrekking tot de

divergerende branches in video bewerkingsalgoritmes. Het anti-blok filter van

H.264 wordt gebruikt als test. Ook wordt het meerwerk, veroorzaakt door de

afwezigheid van een scalar-bewerkingsunit in enkel-SIMD kernen, gemeten

met twee methodes. Om scalar-ondersteuning toe te voegen aan enkel-SIMD

kernen worden oplossing voorgedragen welke weinig oppervlak innemen.

Ten slotte richten we ons op de geheugen hirarchie en stellen wij

een nieuwe software cache organisatie voor, welke de efficiëntie en doeltre-

ffendheid van scratchpad geheugen verbeterd voor niet-voorspelbare en indi-

recte geheugen raadplegingen. De voorgestelde Multi-Dimensionale Software

Cache reduceert het software cache meerwerk doordat het de programmeur

in staat stelt om kennis van het raadpleeggedrag te benutten en zo het aantal

raadplegingen van de software cache te reduceren, en door het groeperen van

raadplegingen. Een instructie om een MDSC raadpleging te versnellen wordt

gepresenteerd en geanalyseerd.
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