Static Cache Partitioning Robustness Analysis
for Embedded On-Chip Multi-Processors

Anca M. Molnos', Sorin D. Cotofana?,
Marc J.M. Heijligers', Jos T.J. van Eijndhoven’

! NXP Semiconductors, HTC 31, Eindhoven, The Netherlands
2 Technical University of Delft, Mekelweg 4, Delft, The Netherlands

Abstract. In this paper we propose a method to analyze the robustness
of multi-tasking media applications when mapped on an on-chip multi-
processor platform. We assume a multiprocessor structure which embeds
a cache hierarchy with two levels: an L1 that each processor may have
and an L2 shared among the processors. To enable compositionality,
i.e, to be able to evaluate the system performance out of the individual
tasks performance, this shared L2 is partitioned per task basis. In this
paper we first introduce two metrics to quantify the robustness. The in-
ternal robustness is estimated by a sensitivity function which measures
the performance variations induced by the inter-task cache interference.
The external robustness is quantified by a stability function which re-
flects the variations induced by different input data on the partitioned
L2 behavior. Subsequently, we exercise our method on a set of multi-
media applications running on a CAKE multi-processor platform. Our
experiments indicate that, if the cache is partitioned, the sensitivity is
on average 4%. whereas for the shared cache it is 25%. Over the inves-
tigated workloads the stability is at least 90% therefore, for the those
applications, we can conclude that the static cache partitioning is quite
robust to input stimuli.

1 Introduction

State-of-the-art media applications are characterized by high requirements with
respect to computation and memory bandwidth. On the computation side, the
embedded domain low power and low cost demands make the use of general
purpose architectures with clock frequencies in the order of several GHz inap-
propriate. Instead, on-chip multi-processor architectures are preferred. On the
memory side, media applications process large amounts of data residing off-chip.
The availability of these data at the right moments in time is critical for the
application performance, therefore a common practice is to buffer parts of the
data on an on-chip memory.

A possible organization of the on-chip memory which alleviates the data
availability problem is based on hierarchical caches. In such a context each and
every processor core has associated its private cache memory (called L1 cache in
this paper). As these L1 caches cannot provide the required application band-
width [1], shared level two (L2) caches are used [9], [10]. The advantage of an L2

is that large part of the data is kept on chip, where the access is at least 10 times
faster than an off chip access [12]. The disadvantage of such a shared L2 cache
is that different tasks may flush each others data out of the cache, leading to an
unpredictable number of L2 misses. As a consequence, the system performance
cannot any longer be derived from the individual tasks performance (property
addressed as compositionality).

For media applications guaranteeing the completions of tasks before their
deadlines is of crucial importance. Therefore, predictability and robustness are
among the main required properties in this domain. A solution for the pre-
dictability problem is to use static partitioning of the cache as proposed in [14].
In this approach, the compositionality is induced by allocating parts of the L2
cache, exclusively, to each individual task in the application. However, the com-
positionality is not 100% ensured because the L1 cache is assumed to be private
to each and every task during its execution and only the L2 is partitioned. Thus,
in order to guarantee performance, one should be able to estimate the variations
induced by the L1 inter-task sharing.

Moreover, static cache partitioning is utilized, thus the application may use
only one partitioning ratio during its entire execution. This cache partitioning
ratio is computed utilizing the application’s statistics for a given input data
set [13]. However, during the application execution different other input data
might have to be processed. It is quite probable that for these new data sets the
partitioning ratio for which the application has its best performance is different
than the one which is in use. To be able to guarantee performance, the designer
should be able to estimate these deviations too.

In the view of previously mentioned phenomena two robustness aspects are
relevant in our context: (1) the variations introduced by the inter-task L1 inter-
ference (2) the variations induced in the L2 behavior by various input data sets.
The first robustness type is addressed as ”intern” because instabilities are caused
by the tasks comprising the application. The second robustness type is addressed
as ”extern” because variations in performance are caused by the extern input
stimuli.

In this paper we propose an approach to assess the robustness of an appli-
cation running on a multi-processor system with statically partitioned L2. The
present article is an extension of the work in [17]. As previously mentioned, for
this type of systems the internal robustness is determined by inter-task interfer-
ence in the L1 cache. This interference strongly depends on the task switching
rate. To estimate the internal robustness we introduce a sensitivity metric which
reflects the variation in L2 misses number for different task switching rates. To
assess the external robustness, we introduce the stability metric. It measures
the performance deviations for the case when the application processes another
input data set than the one utilized to determine the static partitioning ratio.
An application is considered to be stable if its number of misses obtained with a
certain input data is close to the least number of misses possible for that input
data.

To demonstrate our approach we analyze two types of parallel applications:
(1) applications consisting of communicating tasks and (2) applications consist-
ing of independent tasks. From the first category we exercise two applications:
a picture-in-picture (PiPTV) video decoder and an H.264 decoder. From the
second category we analyzed six applications composed by different multimedia
tasks. We utilize a CAKE multi-processor instance [10] as simulation platform.
For these applications, we evaluate the sensitivity function (internal robustness)
and the stability function (external robustness). Our experiments indicate that,
if the cache is partitioned, the sensitivity is on average 4% whereas if the cache
is shared the sensitivity is 6 times larger. Thus, as expected, cache partitioning
drastically reduces the inter-tasks conflicts. Most important, for our applications,
this small percentage of variations suggests that partitioning the L2 is enough
to achieve compositionality in a large degree. The variations induced in the L2
behavior by various input data sets are at most 10% over all the application
range that we tried. This accounts for an average stability of 92%, therefore, for
the investigated applications, we can conclude that the static cache partitioning
is quite robust with respect to input stimuli variations.

The remainder of the paper is organized as follows. Background information
over the considered multi-processor platform and the cache partitioning method
is introduced in Sect. 2. The robustness evaluation method is described in Sect.
3. Sect. 4 presents practical experiments and results, and Sect. 5 concludes the

paper.

2 Background

This section introduces briefly the targeted system and the application model,
and then details our task centric cache management scheme.

2.1 Target Architecture

The envisaged multi-processor architecture consists of a homogeneous network
of computing tiles on a chip [10]. Each tile contains a number of CPUs, a router
(for out of tile communication), and memory banks. The processors are con-
nected to memory by a fast, high-bandwidth interconnection network. Each of
the processor cores has its own L1 cache. The on-tile memory is actually used
as a large, unified L2 cache, shared between processors, facilitating a fast access
to the main memory which resides outside the chip. In case a task doesn’t find
its required data in the corresponding L1, a coherence protocol is executed to
determine if the data are located in another processor L1 cache. If the data are
not present in none of the L1 caches, the L2 is accessed. In this paper we use
one tile of the multi-processor like the one depicted in Fig. 1.

An application executed on this architecture consists of multiple tasks. These
tasks may exchange data among each other, or they may be independent. If
inter-task communication is present, we assume that it is performed through the
memory hierarchy, thus through the shared L2.

CPU CPU CPU
L1 cache L1 cache L L1 cache
[interconnection network]
i memory memory memory L2 i
| bank bank bank cache
ON CHIP

DRAM MEMORY

Fig. 1. Multi-processor target architecture.

Each task can be regarded as a process consuming input data and producing
output data. For an application formed by communicating tasks, these tasks are
naturally synchronized based on data availability. In this case a task temporarily
stops its execution (is swapped out) in two cases: (1) when task’s input data
buffers are empty or its output buffers are full, (2) when an interrupt occurs. In
the case an application is formed by independent tasks, these tasks may stop their
execution when the task scheduler policy dictates. Between two executions of the
same task, a processor can execute other tasks. Moreover, in order to support
a natural load balancing, the tasks may freely migrate from one processor to
another, depending on the processors availability.

2.2 Cache Partitioning

We assume a conventional cache to be a rectangular array of memory elements
arranged in ”sets” (rows) and ”ways” (columns). The accessed address is logically
split in three fields: tag, index, and offset. The offset part of the address identifies
the required data word inside a cache line. The set where a data item can be
placed is uniquely identified by the indexr part of the address. Inside that set,
the data may reside in one of the ways. In case some data item is required, all
the ways are searched to determine if and in which one of them it is cached. In
a traditional cache, neither the index addressing, nor the replacement policy are
aware of the internal, task-based, structure of the application. This unawareness
may cause unpredictable inter-task misses which should be avoided in order to
ensure compositionality.

We assume that in a CAKE-like organization, the L2 is likely to be largely
affected by inter-task cache conflicts, as it is shared among the processors. Al-
though the L1s are also shared among task, this sharing is different than the L2
sharing. Tasks can successively execute on the same processor, but on a given
moment in time only one task can evict data out of the processor L1. Thus we
assume the L1 as private to each task during its execution. As a results, our we
focus on isolating tasks in the L2 (assign a L2 part to each one of them), such

that their number of misses are independent of each other. For this we utilize a
cache partitioning scheme.

Based on the conventional cache organization, there are two main natural
partitioning manners: (1) based on associativity and (2) based on sets. In the
remainder of this subsection we describe in detail these main options, their po-
tential implementation in the context of the CAKE multiprocessor architecture
and in the end of this section we detail the manner we use them to enhance
compositionality.

Associativity Based Partitioning. The associativity based partitioning scheme
is depicted in Figure 2. As one can observe, each and every task gets a number
of ways from every set of the cache. In case the required data item is present in
the cache, it is accessed, just like in a conventional cache. However, in case of a
miss, when a cache line has to be replaced, one task can flush out only its own
cache ways. In this manner, different tasks do not interfere unpredictably.

WAYO WAYM

SET N EES2gRE=

for for
Task 0 Task 1

Fig. 2. Associativity based cache partitioning (logic organization).

This type of partitioning is implemented by changing the cache replacement
policy as suggested in [2]. This require a small table that specifies which task
owns which cache ways, and some extra logic to restrict the victim lines that
can be flushed. This logic is not on the critical path, as the line to be victimize
does not have to be known before the data are actually loaded from a lower
memory level. On our CAKE platform, loading an L2 line from the main memory
takes at least 90 cycles, thus we can consider that there is no time penalty
involved in associativity based partitioning. From the area point of view, all the
necessary hardware represents a negligible fraction of the size of a L2 cache.
This negligible penalty, together with the fact that the implementation doesn’t
require modifications in the structure of the cache or in the addressing mode [2],
leads to a common use of variations of this partitioning type [7] [11] [15] for the
purpose of reducing the number of misses and speeding up the application.

In the context of compositionality, the main shortcoming of associativity
based partitioning is that the number of allocable resources is restricted to the
number of ways in a set (cache organization). A state-of-the art L2 cache typ-
ically has only up to 16 ways. Every extra way present in a cache requires and

WAYOWAYM

SETO for Task 0
SET 1 =2 =3

. for Task 1
SETN

Fig. 3. Set based cache partitioning (logic organization).

extra comparator on the critical path [12]. Thus the reason for supporting just
few ways is that extra circuitry involved in implementing associativity slows
down the cache and burns a lot of power at each lookup. In media applica-
tions there is a trend in adding new features, so increasing the number of tasks.
Consequently, for such an application there might be not enough ways for every
task, therefore multiple tasks would share the same way, leading to unforeseeable
cache interference.

Set Based Partitioning. The set based partitioning scheme is illustrated in
Figure 3. In this case, each and every task gets a different amount of sets from the
cache. As already mentioned, in a conventional set associative cache organization
the address splits into three parts: tag, index, and offset. Set based partitioning
implies that the addresses a task accesses may have only some restricted indexes,
pointing to the task’s cache sets. This is equivalent with an address space par-
titioning. To our knowledge, there are two previous approaches to implement
this address space partitioning. One implements the partitioning at compiler
and linker level [8] and the other at operating system level [4]. In the scheme
proposed in [8] the compiler and the linker allocate variables and instructions
addresses such that the cache partitioning is achieved. In our case the platforms
may contain standard processor cores, thus the compilers are developed by ex-
ternal parties. A platform specific change of the compiler would be costly or time
consuming. The cache partitioning method controlled by the operating system
proposed in [4] has also drawbacks as it is limited to physically indexed caches
and requires a virtual memory model. In our approach, we would like to support
all types of caches on platforms with or without memory paging. Consequently,
none of the existing method are suitable for our purpose, thus in the following
we propose a new technique to implement set based cache partitioning.

We achieve the cache partitioning through a level of indirection, without
interfering with the memory space. This is somewhat similar with the mechanism
in [4], but the address translation is not at memory page level, but directly at
cache level. In this manner there is no restriction in the type of cache supported,
nor in the underlying memory model. Our scheme modifies the index bits of an
address into new index bits, before cache lookup (Fig. 4), taking into account
who initiates the access. The purpose of the index translation is to send all the

access of a task T3, and only the accesses of task T3, in a cache region decided at
design time.

To avoid expensive index calculation, the partition sizes are limited to power
of two number or sets. We propose to use a table (indexed by the task id) that
provides the information needed for the index translation (MASK and BASE
bits). To clarify the mechanism, let us assume that an access to data A belonging
to task T; has the index idz4, in a conventional cache case. We denote by 2*
the size of the partition for 7; and by 2¢ the size of the total cache (both size
values are considered in number of sets). The M ASK 4 bits actually select the
k least representative bits of idz 4 (instead of doing modulo with the cache size
2¢ we do only modulo with the partition size 2¥). BASFE, fills the rest of the
C — k index bits such that different tasks accesses are routed in disjoint parts of
the cache.

After index translation, two addresses that didn’t have the same old index
might end up having the same new index. In this case the system is not able to
distinguishes among such two addresses, leading to data corruption. To prevent
data corruption, the index bits changed by the translation process still have to
identify somehow the associated memory access. The easiest way to achieve this
is to augment the tag part of the address with those changed index bits. For
our example, task T; has 2% cache sets thus the C' — k most representative are
changed, and have to be included in the tag. Because it is not beneficial to have a
tag with variable length (k varies with the task’s allocated cache size) we choose
to augment the tag with all index bits. In this case, for instance, for 2MBytes
L2, 8 ways associative, 512Bytes block size, the tag has 9 extra bits, representing
less that 0.5% of the total L2 area, so the implied area penalty can be considered
negligible.

In this work we assume a multiprocessor platform with cache coherence
among the L1 caches of each processor core, as described in the beginning of
this section. In case a task doesn’t find its data in the corresponding L1, a co-
herence protocol is executed to determine if the data are located in another
processor L1 cache. The execution of the coherence protocol is always launched
before of an L2 access, and takes few cycles. Consequently, the index translation
for L2 accesses can be performed in parallel with the cache coherence resulting
in no additional delay penalty associated to the extra index translation.

As one could see, the implementation of set base partitioning is more ”in-
trusive” into the cache organization than associativity based partitioning, in the
sense that it requires the alteration of addressing scheme. However, the advan-
tage of this partitioning type comes form the fact that typically, a cache like
the L2 we target, may have thousands of sets and only few ways. The number
of resources (cache sets in this case) is large, thus set based partitioning per-
mits every task to have its own exclusive part, hence it is a good candidate for
achieving compositionality.

ADDR: [tag [index [block |
.

index & MASK, | BASE,

. Ty
N [tag] index | index [block |

id | MASK | BASE
.) o [o011 | 11000
Common {id—st1 | 00111 | 10000 |

reg . | 00011 | 01100

Task

B > .

L2 cache lookup

Fig. 4. Set based cache partitioning (implementation).

2.3 Task Centric Cache Management

As aforementioned, we consider that an application can be formed by commu-
nicating or independent tasks. In the following we briefly present our cache
management strategy for both these types of applications.

In the case of independent tasks compositionality is realized by assigning a
part of cache to each task. The experiments in [6] suggest that for static parti-
tioning, the set based strategy performs better that the associativity based one.
The reason for this is that associativity based cache partitioning is decreasing
the number of ways a task can use. It is known that, having a fixed cache size, a
cache organization with a large associativity (and a small number of sets) per-
forms most of the times better than one with less associativity (but more sets)
[12,7?]. In addition, as we already mentioned, the set based method offers, for the
same cache dimensions, more allocable cache units than the associativity based
one, as in a state-of-the-art cache the number of sets is few orders of magnitude
larger than the number of ways. Therefore, in the case of independent task we
opt for set based partitioning.

In the case of application consisting of communicating tasks, the problem that
arise is where to cache the shared data. To solve this problem we proposed in [14]
a mixed set and associativity based partitioning. First, each task and each inter-
task communication buffer gets an exclusive part of the cache sets. Second, inside
the cache sets of a communication buffer each task accessing it gets a number of
ways. In this manner tasks may compositionally share data or instructions. As
there is no principial difference between sharing data or instructions, we use the
term ”common region” to denote both these shared parts.

The partitioning ratio is determined such that the overall application num-
ber of misses is minimized. Let us assume that in the general case an applica-
tion A is composed out of N tasks, T = {T;}—1,~), and M common regions
CR = {CR;}(j—1,m) (for the particular case of an application composed out of
independent tasks M = 0). The process of finding this optimized ratio requires
first an information gathering phase during which every task 7; is individually

simulated having different amounts of cache. Subsequently, the best partitioning
ratio is computed such that the sum of all task misses is minimized, under the
constraint that all allocated cache cannot be larger than the available cache.
This best partitioning ratio BPR is a set of cache sizes {ci}(izl, N+ M), Where ¢;
is the cache allocated to task Tj, or to common region C'R; (we consider that the
indexes j of the common regions actually run from N 41 to N + M). Using these
notation, in the following section we introduce the two metrics for assessing the
application robustness.

3 Robustness Evaluation Method

This section presents the proposed approach to assess the robustness of an ap-
plication running on a multi-processor as the one described in Subsection 2.1.
We consider two aspects of robustness: (1) internal robustness defined as the
sensitivity of the L2 misses of a task on the other tasks’ behavior, (2) external
robustness defined as the variations induced in the L2 behavior by various input
data sets.

3.1 Internal Robustness

In a memory organization like the one we consider, the internal variations in
task performance are due to the fact that task switching pollutes the L1 caches.
When, on a processor Py, a task T; is swapped out by a task T}, T;’s data are
gradually flushed out of P;’s L1 by T; memory accesses. The amount of data
that T; might still find in the cache on its next execution on P, depends on how
long T; was executed and on whether other tasks were executed in the mean
time on Pj. High task switch rates are likely to pollute L1 caches less at a time,
but for many times. Low task switch rates are likely to pollute the L1 cache
more at a time, but rarely. The exact amount of L1 pollution depends on the
application. For a picture-in-picture video decoder our experiments indicate that
when the average task switching rate almost doubles (from 24K times/second to
41K times/second) the number of accesses to the L2 cache increase with 60%.
Under these conditions, if a certain off-chip bandwidth has to be guaranteed,
the robustness of the system to task switching rate has to be investigated.

For internal robustness analysis we propose to use the L2 sensitivity func-
tion. In order to define it, let us assume that the application is composed out of
N tasks, T = {T;}(i—1,~) and that SWR = {swr; }—1,r) is the set of investi-
gated task switching rates. The number of L2 misses of task T; depends on T;’s
allocated cache size ¢;, and on the task switching rate swr,.. We denote these
T;’s misses with miss;(c;, swr,). The L2 sensitivity corresponding to a task T; is
defined as being the maximum difference in the number of L2 misses among the
investigated task switching rates, when a given L2 cache size c; is allocated to
T;. To give an idea about the impact of this variation on the application perfor-
mance, we define the task sensitivity relative to the number of misses obtained
when the tasks switch at a reference rate, swr:

max{miss;(c;, swry)} — min {miss;(c;, swr,)}
sensi(c;) = VB ~ SWh x 100%. (1)
> miss;(ci, swr)
i=1

For a relevant estimation, the reference task switching rate swr should be
the most probable, real life task switching rate. If this value is not know or it is
variable, the designer might choose to relate to the application misses obtained
for one of the swr,., or to an average over them.

In the same way as the task’s sensitivity, we define the application’s sensitiv-
ity sensy4 as being the relative maximum difference in overall number of misses
over the investigated task switching rates, when a certain L2 partitioning ratio
is applied:

senss = grr'lgﬁg{sensi(c,-)}. (2)

The smaller sens4 the more robust is the application. Ideally, we would like
to get sensg = 0, but this cannot be achieved for the case when only L2 is
partitioned. The platform we target has also a level of L1 caches which are not
considered subject to inter-task interference. In reality this is not the case, but,
due to typical small sizes, L1 is unsuited for static partitioning. In a multi-
processor system, if L1 is statically partitioned the application’s tasks should be
statically assigned to processors (it makes no sense to allocate cache for a task
on a processor where that task might never run). This is not a preferred option
because it restricts the run-time processors’ load balancing options. For example
in a video decoder where all tasks concur for processing frames at a certain rate,
restricting run-time load balancing can diminish the performance. Even in the
case that L1 is dynamically partitioned, the application’s sensitivity sens 4 still
cannot be zero because the variation may occur due to repartitioning.

3.2 External Robustness

This subsection presents a method to determine the performance deviations for
the case when the application processes another input data set than the one
utilized to determine the static cache partitioning ratio. First we illustrate the
analysis of external robustness by using a small example, and after that we
present the general formulation of this analysis.

Let us assume that the investigated application has three tasks (N = 3)
and two relevant sets of input data in; and ins are considered in the cache
partitioning process. Let us assume that when the application uses in; (ins) as
input data its best performance is achieved if tasks have as partitioning ratio
BPR; = {c},c},c}} (BPRy = {c3,c3,c3}), as depicted in Fig. 5. BPR; and
BPR, are calculated such that the application’s L2 misses is minimum, under
the constraint that the allocated cache is smaller that the available cache (14
units in our case).

Allocated cache sinputdata

10 i 5 +inputdata 2
c
5 1 Icz
g T
4 L
2 1 ct
3
5 G)
0 T T
T1 T2 T3 Tasks

Fig. 5. Example: Partitioning ratios corresponding to two input data.

It can be observed that the best partitioning ratio BPR; and BPRy are
different. When using static cache partitioning the application may use just one
single partitioning ratio, BPR = {c¢1,¢a,cs}. This ratio can be BPR;, BPR»,
or any compromise between those two. For instance any partition with ¢; €
[min(ci, c?), max(c}, c?)], ca € [min(cd, c2), max(cd,c3)], and c3 = ¢} = 3 can be
utilized.

If, for example, BPR; is not used as the partitioning ratio, in case the ap-
plication is processing in; as input data, its performance is deviating from the
best achievable one. In this case it is of interest to estimate an upper bound
of the potential performance degradation. For this purpose, we calculate the
worst partitioning ratio, BPRy = {c}, ¢}, cl}, with ¢}, ¢}, and ¢}) bounded by
BPR; and BPRy. BPR, is determined utilizing the same optimization method
as for BPR;, but with the constraints that ¢} € [min(c},c?), max(cl,c?)],
¢} € [min(c}, c2), max(c}, c3)], and ¢} = ¢} = 3. Because we want to estimate
the worst performance, the number of misses is maximized instead of minimized.

Let us assume that, for example, for input data in; the application minimum
number of misses is denoted by M; and it is given by the following:

My = missi(c},iny) +missa(cs,ing) + missz(c3,in). 3)

where missy 2 3 are the number of misses experienced by the three tasks of the
application, when processing data ¢n;. Thus for input in; and any valid partition
BPR the largest number of misses is given by the following;:

My = missy(ct,iny) + missa(ch,ing) + misss(ck,ing). (4)
The same type of investigation can be done for ins also and the values %

and % reflect the robustness of the system to input data.

In media applications, time deadlines are imposed for processing a number
of data units, for example a video decoder might have to decode 25 frames in a
second. Therefore, it is also interesting to evaluate the variations in L2 behavior
caused by different data units belonging to the same input stream. This means
that, for instance, input data in; may be the first frame of a video stream and

ing may be the next frame of the same video stream. Such a stability evaluation
is useful because it gives a bound of the dynamic behavior inside the same input
stream.

For a general application having N tasks T' = {T;};—1,~) and M common
regions CR = {CR;};=1,m, let IN = {ini}q—1,r) be the set of relevant input
data sets. To express the allocated cache size ¢, we use the same index ¢ to refer
to tasks as well as to common regions. For the sake of simplicity we can consider
that the first IV values of ¢; correspond to the application tasks and the next
M (from N 4+ 1 to N + M) correspond to the application common regions. A
task T3’s or a common region CR;’s number of misses miss;(c;,in;) depends
on task’s allocated L2 size ¢; and on the input data ¢n;. When the application
processes the input data in;, its number of misses, is denoted with M; and it is
given by the following:

N
M, = Z missi(ch,ing). (5)
i=1

For every input data in; € IN the best partitioning ratio BPR; is the set
of tasks’ allocated cache sizes {c},c}, ...,cly }. As previously mentioned, it is pos-
sible that the best partitioning ratio BPR; differ among each other. The final
partitioning ratio, BPR = {¢1,¢a,...,cn} can be BPRy, BPR,, ... , BPRy, or
any compromise among them, that respects the following condition:

ci € [min{ci} max{cl}] ©)

In order to estimate an upper bound of the potential performance degradation
in the case of in; we calculate the worst partitioning ratio that respects the

previous condition. We denote this ratio as being BPR; = (c},cb,...,ck). To
determine BPR; we use the same calculation method as for BPR;, with the

constraints that ¢ € [min{c’.}, max{cl-}] and instead of minimizing the number
! IN "IN

of misses, we maximize it (we are looking for the worst behavior). The application
largest number of L2 misses under the previous conditions is denoted with M,
and it is given by the following formula:

N
M, = Z miss;(ck,ing). (7
i=1

We define the application’s stability stab; to in; as being the relative variation
between M; and M;:

M
stab; = — x 100%. (8)
M

The overall application stability is defined as the worst stability over the set
of input data IN:

staba = I?ng{stabl}. 9)

If the stability is close to 100% the application behaves good for all its repre-
sentative input data, so it is externally robust. If the difference between M; and
M; are large, the static cache partitioning is not robust to input data variations
and for better performance a dynamic repartitioning should be considered. In
the next subsection we briefly discuss a number of dynamic cache repartitioning
options.

3.3 Robustness Considerations for Dynamic Cache Repartitioning

An good overview of dynamic cache repartitioning schemes is given in [11]. Sim-
ilar to the static partitioning case, there are mainly two types of dynamic cache
repartitioning. The first is the associativity based repartitioning. The number
of cache ways (cache organization) limits the granularity of this partitioning
type. Repartitioning is cheap because data correctness can be preserved without
flushing the cache. The second is the ”set based” repartitioning. Typically in a
cache there are more sets than ways, thus this method can potentially offer finer
partitioning granularity. However, at repartitioning data correctness cannot be
preserved without flushing parts of the cache. This makes this second type of
cache repartitioning more expensive than the first type.

The existing dynamic cache repartitioning scheme are associativity based [15]
[16]. In these schemes the task that have either high priority [16] or large cache
needs [15] dynamically ”steals” cache ways from the other tasks. The purpose is
to increase the performance of high priority tasks [16] or to improve the overall
hit rate [15].

An allocation scheme in which a task will be granted all the requested cache
can lead to cache ”starvation” of some of the tasks. For example, a repartitioning
strategy that attempts to improve the overall hit rate will eventually give a large
part of cache to an erroneous task asking for it. Given this fact, the system will
fail. Therefore, in a robust system, the cache repartitioning cannot be done fully
at tasks requests, like in the existing approaches. The cache manager should have
a global view on the application’s tasks and their allocated cache, to prevent
starvation and system failures. Qur future work will include robust dynamic
cache repartitioning strategies.

4 Experimental Results

For our experiments we use a CAKE multi-processor platform [10] with 4 Trime-
dia processor cores and a 4 ways associative L2 cache of various sizes, depending
on the application. Each and every Trimedia processor core has separate instruc-
tions and data L1 caches. The shared L2 cache is unified (it contains both data
and instructions). To enhance compositionality, we use the mixed L2 partition-
ing previously presented in Sect. 2.3. The experimental workload consists of two
application types: (1) applications composed out of communicating tasks and (2)
application composed out of independent tasks. In the following we introduce
these applications.

From the first category the applications we consider are two video decoders
(an H.264 decoder and a picture-in-picture-TV decoder), each of which consisting
of several communicating tasks. The H.264 decoder consists of 15 tasks [18], as
follows: first an entropy decoder task processes the input stream and passes
the data via a data scheduler to a set of transform decoders and loop filters
tasks doing inverse quantization, transformation, prediction and deblocking on
different parts of the image. The PiPTV application decodes two different video
streams and outputs a raw pictures stream containing both video stream images,
scaled with a given factor. This application consists of the following tasks: video
demultiplexing of transport stream, two MPEG2 decoders (every one having
multiple tasks [19]), two video scalers, video multiplexing the two images, and
output. Both these applications are described in YAPT [20].

In order to build applications formed by independent tasks, we use various
multimedia programs, some of which derive from the MediaBench benchmark
[5]. From this collection of programs we pruned out the ones that are relatively
small and not memory intensive. Moreover, in order to make the benchmark
more representative for emerging technologies, we augmented the MediaBench
suite with two H.264 video processing programs, an encoder and a decoder. For
clarity sake, we emphasize the fact that all these programs are sequential and
different than the H.264 decoder or the MPEG2 decoders introduced in the
previous paragraph. In the experimental framework, an application is formed
by a collection four such programs, each of which representing a task. Table
1 presents the set of 9 tasks exercised. All of these are reasonably memory
intensive workloads. Using different combinations of these 9 tasks, we build 6
different applications (4;, A, ..., Ag).

Table 1. Media workloads.

H.264 |A very low bit-rate video coder (h264enc) and decoder (h264dec)
based on the H.264 standard.

MPEG2|A motion video compression coder (mpeg2enc) and decoder
(mpeg2dec) for high-quality video transmission, based on the
MPEG-2 standard.

EPIC |An image compression coder (epic) and decoder (unepic) based
on wavelets and including run-length /Huffman entropy coding.
Audio |MPEG-1 Layer III (MP3) audio decoder and encoder.

JPEG |A lossy image compression coder for color and gray-scale images,
based on the JPEG standard.

In the remainder of this section the robustness assessment methods we intro-
duced in Sect. 3 are applied. The results obtained for the case of the partitioned
cache are compared with the ones for the shared cache. To our knowledge, no
cache related robustness investigation method exists in the literature, therefore
we cannot compare our proposal with previous work.

4.1 Internal Robustness

As aforementioned, the applications consisting of communicating tasks are de-
scribed in YAPI, thus the data exchange and synchronization among the tasks is
done through blocking FIFOs. A task is blocked (and consequently its processor
switches to other task) when it has no available input data or output buffer
space. On our experimental platform, for the purpose of our investigations, we
induce higher task switching rate by shrinking the FIFOs sizes. For FIFOs larger
than a certain size the task switching rate does not decrease anymore because a
value intrinsic to the application is reached. We consider this lowest value as the
reference task switching rate, as defined in the Sect. 3.1. In our case, both appli-
cations have the least number of misses for the lowest task switching rate. The
internal robustness is relative to this number of misses, therefore the presented
results reflect the largest deviations.

For the communicating tasks, the investigated average task switching rate
values start at 41K and 24K times per second, corresponding to 4KB FIFOs
and 2KB FIFOs for the H.264 and PiPTV, respectively. The task switching rate
range ends at 74K and 41K times per second, corresponding to 0.5KB FIFOs
and 0.4KB FIFOs for the H.264 and PiPTV, respectively. For FIFOs larger
than 4KB and 2KB, for the H.264 and PiPTV respectively, the average task
switching rate does not decrease anymore because the value intrinsic to the
application is reached. For FIFOs smaller than 0.5KB for H.264 and 0.4KB for
PiPTV, the applications deadlock, so the average task switching rate cannot be
increased anymore. These task switching variation account for 30% respectively
66% difference in the number of L2 accesses for the H.264 and PiPTV.

In the case of applications composed from independent tasks, the task switch-
ing rate depends on the task scheduler policy. We enforced a policy that pre-
empts tasks with a rate ranging from 40K times per second to 400 times per
second. This range is chosen to cover a large variety of possibilities. We consider
the reference task switching rate as being the lowest one, therefore the internal
robustness is relative to the number of misses encountered on that case.

For both application types, the L2 sensitivity of tasks is compared for the
partitioned and the shared cache case (Fig. 6). In Fig. 6 are depicted only the
tasks that have the sensitivity larger than 2% in the partitioned cache case or
larger than 20% in the shared cache case. In this figure it can be observed that,
in general, the shared L2 is more sensitive than the partitioned one or their
sensitivities are pretty close. Among the tasks that are not depicted in Fig. 6,
there are few for which the sensitivity of the partitioned L2 cache is larger than
the one of the shared cache. However, for those few tasks, the sensitivity is smaller
than 0.5%, so they do not influence the general observed trend i.e. the shared
cache is more sensitive that the partitioned one. Fig. 7 presents the application
sensitivity for our eight case. Over all the applications, the shared cache is on
average 6 times more sensitive to task switching than the partitioned one. The
largest sensitivity was observed at the applications H.264 and PiPTV for the
case of partitioned and shared cache, respectively. For a partitioned cache, over
the investigated task switching range, the application sensitivity as defined in

Task sensitivity

M partitioned L2 Oshared L2

60%

50%

40% [{
30%

20%

10% -

0% -

o O A F O D A RX XTI T O™ S>> L2 P2 ®
2 S PR WYY W PP W R P
g (§@0°Q‘\/6Q°/60°/°°¢/@,° &Q \Q{z‘c 4& ?O‘g’ob'?/o?;y./b/'b/b/o9/09/‘1}’/09/0/6/‘15}/69/09/69/
R e/ ¥V sy Y OO o O PRI P L SISO SN
& & s < ¢ &&Q% S TR T PR @
Tasks

Fig. 6. Tasks sensitivity: shared vs. partitioned cache.

Application sensitivit
PP y M partitioned L2 Oshared L2

60%

50%

40%

30%

20%

bg iﬂ
oo I | W | m
H.264 PiPTV Al A2 A3 A4 A5 A6
Applications

Fig. 7. Application sensitivity: shared vs. partitioned cache.

Sect. 3.1 is at most 8%. These results suggest that, for the analyzed applications,
partitioning the L2 is enough to achieve compositionality to a large extent.

4.2 External Robustness

As detailed in section 3.2, the best cache partitioning ratio of an application
varies with its tasks input data. In order to quantify the differences among
the best cache partitioning ratio, we use the maximum variation of the L2 size
allocated to a task, across different input streams. Table 2 depicts (for each
application) the maximum variation of the L2 size allocated to a task, across
different input streams. The values in Table 2 are relative to the total cache size
available to each application. In general we found that the differences among the
best partitioned ratio corresponding to different input data are relatively small.
As one can see in Table 2, over the 8 applications that we exercised, the cache
of a task varies at maximum with 20% from the total cache size.

Table 2. Maximum variation in the L2 size allocated to a task.

application H.264|PiPTV Al A2 A3 A4 A5 Ae
max L2 variation| 2% | 7% [16%|9%|16%|12%|20%|12%

For some input data, the partitioning ratio is non-optimal and this induces
a performance degradation. To quantify this degradation, in Sect. 3.2 we in-
troduced the stability metric. In Table 3 the stabilities corresponding to each
application are illustrated. For all the eight applications we investigated four
different input data streams (these streams are the one required by each appli-
cation task, as some tasks decode video, some process audio, etc.). We would
like to mention that the set of input data corresponding to a task has the same
size and the same ”quality” level for each experiment. In this section we do not
investigate the effects of things like enlarging the resolution or the scaling factor
of a video stream, or changing the encoding quality of an image. These issues
are subject to future work.

Table 3. Application stability for different input data.

input data ny ina ins ing

H.264 96% 96% 100% 98%

PiPTV 92% 100% 93% 98%
Ay 100% 93% 93% 96%
A, 90% 100% 91% 97%
As 97% 93x% 100% 90%
Ay 95% 91% 100% 95%
As 100% 95% 98% 96%
Ag 92% 91% 93% 100%

Fig. 8 presents, for each of the eight applications, the minimum stability over
the set of four input streams. We observe that the minimum stability of each
application is pretty high, ranging over the eight applications from 90% to 96%,
with an average of 92%. Taking these facts into account, we can conclude that
all the eight applications are quite robust to input stimuli in the presence of
static cache partitioning. A stability comparison between the shared and the
partitioned cache is not possible because the stability, as defined in Sect. 3.2, is
linked to the partitioned ratio, thus it cannot be computed for the shared cache
scenario.

5 Conclusions

In this paper we proposed a method to analyze the static cache partitioning ro-
bustness of an application mapped on an on-chip embedded multi-processor. In
this context we considered a memory organization which has two levels of cache:

Stability
100%
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
0% -

H.264 PiPTV A1 A2 A3 A4 A5 A6
Applications

Fig. 8. Minimum application stability.

(1) L1, private to every processor and (2) L2, shared between the processors, but
partitionable per task basis. For applications executed on this multi-processor,
two types of robustness are discussed: internal (determined by inter-task interfer-
ence in the not-partitioned L1 cache) and external (determined by the variations
of the L2 behavior due to various input data sets). For both types of robust-
ness we introduced quantification metrics. For internal robustness we defined
the sensitivity function which measures the deviation of L2 misses caused by
the L1 variations over a spectrum of task switching rates. To assess external
robustness we introduced the stability function which measures the performance
deviation for the case the application processes another input data set than the
one utilized to determine the static L2 partitioning ratio.

To demonstrate our approach we analyzed two types of parallel applications:
(1) applications consisting of communicating tasks and (2) applications consist-
ing of independent tasks. In the first category we analyzed two applications: a
picture-in-picture video decoder and an H.264 decoder. In the second category
we analyzed six applications each of which composed by different multimedia
tasks. These tasks were chosen from the MediaBench suite, augmented with two
more programs, an H.264 encoder and an H.264 decoder. The simulation plat-
form is a CAKE multi-processor instance. Concerning the internal robustness,
if the cache is partitioned, the application sensitivity is at most 8% with an av-
erage of 4%. This small sensitivity suggests that partitioning the L2 is enough
to achieve compositionality in a large degree, for these applications. Compar-
ing the internal robustness of the shared and partitioned cache cases, we found
that the shared cache is on average 6 times more sensitive than the partitioned
one. Moreover, the large difference among the shared cache and the partitioned
cache sensitivity is an interesting fact on itself. It suggests that the optimiza-
tions processes for L1 and L2 caches can be decoupled if the L2 is managed
on a task centric manner. Concerning the external robustness, the variations

induced in the L2 behavior by various input data sets are at most 10% over all
the application range that we tried. This accounts for an average stability of
92%, therefore, for the investigated applications, we can conclude that the static
cache partitioning is quite robust with respect to input stimuli variations.

References

1. A. Stevens, ”Level 2 Cache for High-performance ARM Core-based SoC Systems”,
ARM white paper, 2004

2. D. T. Chiou, "Extending the Reach of Microprocessors: Column and Curious
Caching”, PhD thesis Department of EECS, MIT, Cambridge, MA, 1999

3. Allan Hartstein, Viji Srinivasan, Thomas R. Puzak, Philip G. Emma, ” Cache miss
behavior: is it sqrt(2)?”, Conf. Computing Frontiers, pages 313-320, 2006

4. Jochen Liedtke, Hermann Hértig, Michael Hohmuth, ” OS-Controlled Cache PRe-
dictability for Real-Time Systems”, 3rd IEEE Real-Time Technology and Applica-
tions Symposium, 1997

5. L. Chunho, M. Potkonjak, W.H. Mangione-Smith. ”MediaBench: A Tool for Eval-
uating and Synthesizing Multimedia and Communicatons Systems” In International
Symposium on Microarchitecture, 1997.

6. A. M. Molnos, Marc J.M. Heijligers, Sorin D. Cotofana, Jos T.J. van Eijndhoven,
” Compositional Memory Systems for Data Intensive Applications”, Proceedings, De-
sign, Automation and Test in Europe, 2004

7. Harald S. Stone, John Truek, Joel L. Wolf, ”Optimal Partitioning of Cache Mem-
ory”, IEEE Transactions on computers, volume 41, number 9, pages 1054-1068, 1992

8. F. Mueller, ”Compiler Support for Software-Based Cache Partitioning”, In ACM
SIGPLAN Notice, 1995.

9. B.A. Nayfeh and K. Olukotun, ”Exploring the Design Space for a Shared-Cache
Multiprocessor”, In Proceedings, ISCA, pages 166-175, 1994

10. J.T.J. van Eijndhoven, J. Hoogerbrugge, M.N. Jayram, P. Stravers, and A.
Terechko, ” Cache-Coherent Heterogeneous Multiprocessing as Basis for Streaming
Applications”, In "Dynamic and robust streaming between connected CE-devices”,
Kluwer Academic Publishers, 2005

11. P. Ranganathan, S. Adve, and N.P. Jouppi, ”Reconfigurable caches and their appli-
cation to media processing”, In Proceedings, 27th Annual International Symposium
on Computer Architecture, pages 214-224, 2000

12. J.L. Hennesy and D.A. Patterson, ”Computer Architecture: A Quantitative Ap-
proach”, Morgan Kaufmann Publishers, 2003

13. A.M. Molnos, M.J.M. Heijligers, S.D. Cotofana, and J.T.J. van Eijndhoven, ” Com-
positional memory systems for multimedia communicating tasks”, In Proceedings,
Design, Automation and Test in Europe, pages 932-937, 2005

14. A.M. Molnos, M.J.M. Heijligers, S.D. Cotofana, and J.T.J. van Eijndhoven, ” Com-
positional, efficient caches for a chip multi-processor”, In Proceedings, Design, Au-
tomation and Test in Europe, to appear in 2006

15. G.E. Suh, L. Rudolph, and S. Devadas, " Dynamic Partitioning of Shared Cache
Memory”, The Journal of Supercomputing, volume 28, number 1, pages 7-26, 2004

16. Y. Tan and V.J. Mooney, ” A Prioritized Cache for Multi-tasking Real-Time Sys-
tems”, In Proceedings of the 11th Workshop on Synthesis And System Integration
of Mixed Information Technologies, pages 168-175, 2003

17. A.M. Molnos, S.D. Cotofana, M.J.M. Heijligers, and J.T.J. van Eijndhoven, ” Static
cache partitioning robustness analysis for embedded on-chip multi-processors”, In
Proceeding of the ACM International Conference on Computing Frontiers, 2006

18. E.B. van der Tol, E.G. Jaspers, and R.H. Gelderblom, ” Mapping of H.264 decoding
on a multiprocessor architecture”, In Proceedings, SPIE Conference on Image and
Video Communications and Processing, 2003

19. P. van der Wolf, P. Lieverse, M. Goel, D. La Hei, K.A. Vissers ”An MPEG-2
Decoder Case Study as a Driver for a System Level Design Methodology”, In Pro-
ceedings, 7th International Workshop on Hardware/Software Co-Design, pages 33-37,
1999

20. E. A. de Kock, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. M. Kruijtzer,
P. Lieverse, K. A. Vissers, and G. Essink "YAPI: application modeling for signal
processing systems”, In Proceedings, 37th conference on Design Automation, pages
402-405, 2000

