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ABSTRACT

The aim of the hArtes project is to facilitate and automate
the rapid design and development of heterogeneous embed-
ded systems, targeting a combination of a general purpose
embedded processor, digital signal processing and reconfig-
urable hardware. In this paper, we evaluate three tools from
the hArtes toolchain supporting profiling, compilation, and
HDL generation. These tools facilitate the HW/SW parti-
tioning, co-design, co-verification, and co-execution of de-
manding embedded applications. The described tools are
provided by the DelftWorkBench framework'. Experimen-
tal results on MJPEG and G721 encoder application case
studies suggest overall performance improvement of 228%
and 36% respectively.

1. INTRODUCTION

The future embedded applications require heterogeneous
platforms combining general- and specific-purpose proces-
sors with reconfigurable hardware. In addition, coordinated
SW and HW development tools are necessary to assist the
designers in the iterative and complex development process.
The main goal of the hArtes project is to address this prob-
lem developing a methodology and a tool-chain support-
ing the entire embedded system design flow. The hArtes
project addresses optimal and rapid design of embedded sys-
tems from high-level descriptions, targeting a combination
of embedded processors, digital signal processing, and re-
configurable hardware. The project builds a general-purpose
toolchain to investigate hardware/software integration for
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embedded systems. To achieve the main goal of hArtes the
following objectives are defined:

e Multiplicity of commercially available languages as
toolchain input.

e Partitioning and code transformation algorithms tar-
geting dynamically reconfigurable real time heteroge-
neous systems.

e “Best fit” mapping onto a heterogeneous reconfig-
urable system of the input application.

e Development of reconfigurable hybrid platform. The
platform, comprising multiplicity of RISCs, DSPs, and
reconfigurable logic blocks, employs the HW/SW in-
terfacing mechanisms [1] developed and utilized within
the Molen polymorphic processor [2].

In this paper, we evaluate three specific tools from the
hArtes toolchain, namely the profiling toolset, the com-
piler and DWARV - the HDL generation tool. All these
tools have been developed within the DelftWorkBench [3]
- a semi-automatic tool platform for integrated hardware-
software co-design, which provides the required support for
the Molen Programming Paradigm [4]. The hardware sup-
port of this paradigm is provided by the Molen machine or-
ganization [5]. In the hArtes context, the DelftWorkBench
tools are further extended to support digital signal proces-
sors and application specific hardware, besides the reconfig-
urable co-processors support. We provide two case study
scenaria on G721 and MJPEG applications. Experimental
results suggest that application speedups in the order of 1.4
to 3.3 can be obtained easily with the automated design tools
being developed in the DelftWorkBench.

This paper is organized as follows. Section 2 provides an
overview of the overall hArtes toolchain. Section 3 presents
the related work. Section 4 gives the description of the pro-
filing, compilation and HDL generation tools. Section 5
presents the case study of G721 and MJPEG along with the
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Fig. 1. hArtes Design Flow

obtained evaluation results. And section 6 concludes the pa-
per.

2. HARTES OBJECTIVES

hArtes is a three year integrated project intended to develop
a methodology and a tool-chain that aims to support the en-
tire design flow for real time, heterogeneous embedded sys-
tems having reconfigurable components. The tool chain is
general purpose as it takes as input applications written in a
variety of commercially available languages and it will pro-
duce semi automatically a best of fit mapping of these appli-
cations on a heterogeneous reconfigurable platform. The tar-
geted hArtes hardware platform consists of both off the shelf
components and proprietary IP kernels. Where the intended
workbench is independent of any particular underlying hard-
ware platform, for prototyping purposes we target the Atmel
Diopsys, containing an Arm processor and a high perfor-
mance DSP and state-of-the-art Xilinx Virtex-4 as key com-
ponents. We are targeting real time systems and applications
but in the context of the hArtes project, we focus specifi-
cally on immersive audio and car information systems.The
hArtes consortium consists of 14 partners equally balanced
between industry and academia. The academic partners are
mostly involved in developing the toolchain and the indus-
trial partners provide the hardware platform as well as the
applications.

An overview of the hArtes toolchain is depicted in Fig 1.

The input to the toolchain are multiple high-level applica-
tion algorithms described in languages such as Matlab or C.
The output of the toolchain is semi automatically generated
“best fit” mapping of such applications onto a heterogeneous
reconfigurable system. The internal representation of the ap-
plication algorithm is C code annotated with pragmas. The
hArtes toolchain is composed of three toolboxes as summa-
rized below:

e The Algorithm exploration and translation ToolBox as-
sists designers to instrument and to translate input al-
gorithms described in different formats and languages
(e.g., Simulink or graphical entry) into a unified inter-
nal description in the C language.

e The Design space exploration ToolBox (DSE) provides
an optimal hardware/software partitioning of the input
algorithm for each reconfigurable heterogeneous sys-
tem considered. It uses a set of profilers and cost esti-
mators to evaluate various parameters (such as perfor-
mance, hardware complexity etc) for particular map-
ping of the kernels onto particular reconfigurable de-
vices.

e The System synthesis ToolBox (SysSyn) receives the op-
timized partitioning of the application algorithm from
DSE ToolBox and processes them. The output com-
prises all generated files, required to map the appli-
cation algorithm onto the components of the consid-
ered reconfigurable heterogeneous system with respect
to its partitioning, i.e., program executables, configura-
tion bitstreams, memory images, etc.

In this paper we focus on three specific tools from the hArtes
toolchain, namely: profiling, C-code compilation, and HDL
generation (shaded blocks on Fig. 1).

3. RELATED WORK

Profiling and Quantitative Model aims to analyze the pro-
gram statically and/or dynamically to determine relevant in-
formation (such as performance, memory bandwidth, power
consumption, etc) for design exploration, hardware/software
partitioning, and optimization. There are several profiling
techniques that can be applied either at compilation time
(using static analysis [6] [7])or at run-time (dynamic pro-
filing [8] [9]). Static analysis is less accurate than dynamic
profiling as it is based on estimation, while dynamic profil-
ing is slow and requires program intervention. In our ap-
proach we combine static and dynamic approaches to de-
velop an efficient profiling and cost estimation tool.

Compilation for reconfigurable architectures can be done
in several ways. One common approach is to use stan-
dard compilers for general purpose processors (GPP) and
impose the programmers to manually modify the assembly



code in order to take into account the reconfigurable hard-
ware. However, this is time consuming and error-prone pro-
cess which requires deep understanding of both hardware
and software features of the target architecture and applica-
tion. Another common approach (Garp [10], Napa [11])
is to use compiler front-ends with high level optimizations
and to generate back C annotated code which is processed by
standard C compilers for the target GPP. In consequence, the
code quality of the generated code is decreasing and specific
low level optimizations cannot be applied. In our approach,
we do not require manual interface between the software and
the hardware. Moreover, we avoid the library calls overhead
and perform low-level specific optimizations.

Automated HDL Generation has been in the research fo-
cus for more than 15 years. Our work is similar to the pre-
vious efforts in the sense that it combines their advantages,
but also differs in several aspects. Unlike Handel-C [12] and
some commercial tools like Catapult-C [13] and Impulse-
C [14], our tool is oriented towards the software design-
ers. Hence, in-depth hardware design knowledge are not
required. We differ from ROCCC [15] and SPARK [16] by
targeting a broader application domain and looking into dif-
ferent levels for optimizations. Moreover, we do not impose
severe limitations on the accepted C-subset and respect the
physical limitations of the available IO bandwidth and ac-
cess times. Under these limitations, the available operation
parallelism is fully exploited. The generated designs have
the MOLEN CCU interface, which allows actual execution
on a real hardware prototype platform.

The Molen Polymorphic Processor is established on
the basis of the tightly coupled co-processor architectural
paradigm [5] [17]. Within the Molen concept, a general pur-
pose core processor controls the execution and reconfigura-
tion of reconfigurable co-processors (RP), tuning the latter
to various application specific algorithms. An operation, ex-
ecuted by the RP, is divided into two distinct phases: set and
execute. The detailed explanation of these instruction is pre-
sented in [5]. Generally speaking, the Molen co-processors
are not limited to be only reconfigurable implementations,
they can actually be various types of augmenting hardware
units. For example, in the context of hArtes, a digital signal
processor (DSP) and reconfigurable hardware units are con-
sidered as Molen co-processors identically. The Molen ma-
chine organization and the Molen programming paradigm
are targeted by the DelftWorkBench and hArtes toolchains.

4. TOOLS DESCRIPTION

4.1. Profiling and Quantitative Model

The profiling and quantitative model determines relevant in-
formation for design exploration, hw/sw partitioning, and
optimization. It identifies core kernels and estimates po-
tential speedup that can be achieved when these kernels are

executed on particular reconfigurable hardware. In our ap-
proach, we combine both static and dynamic profiling for
program analysis. Additionally, we estimate initial cost of
hardware mapping and predict upper and lower bounds of
speed up possible for the whole application.

Profiling: The main goal of the dynamic code analysis is to
determine which parts of an application are computationally
intensive when executed on a GPP. The coarse grain pro-
filing inspects the application at function level and gathers
information such as CPU time or the execution frequency of
these functions. The result of such analysis can be a large
list of kernel functions for complex applications. Based on
the selection criteria provided (such as performance, area,
power consumption, memory etc.), the profiler identifies the
core kernels and constructs the candidate function lists for
hardware mapping. These candidate functions can be ana-
lyzed further at fine-grain level (such as basic block or state-
ment level) to gather detailed information such as number of
memory accesses, loop nesting level, etc. The output of the
profiler is included in the architecture description file and
in the C code, where candidate functions are annotated with
the profiling information.

Quantitative Model: The static profiling information is fed
into a quantitative prediction model for hardware/software
partitioning [18]. This linear model predicts area and de-
lay using software complexity metrics, which are values that
represent application structure. An example is the Cyclo-
matic Complexity [19], which stands for the number of de-
cisions in the code and thus gives some indication of the
control intensity of the code.

4.2. Compilation

The role of the compiler is to allow an easy integration while
maintaining the best performance for a specific reconfig-
urable architecture. The Architecture Description File pro-
vides the compiler with profile information, area require-
ment by the kernels and the other specific features of the ar-
chitecture. Using this information and specific optimization
algorithms it generates code for the GPP, extended to accom-
modate the Molen Programming Paradigm. The compiler is
based on GNU C compiler infrastructure 4.1 and it uses a
modified version of the PowerPC backend. The compiler
identifies the functions that are candidate for hardware exe-
cution based on pragmas present in the source file. Using the
information available in the Architecture Description File,
compiler applied optimizations and scheduling algorithms
(see [20] [21]). For the C code in Figure 2 the generated
code is presented in Figure 3.

4.3. VHDL Generation

The automated HDL generation within the DelftWorkBench
is provided by the DWARYV toolset [22]. This toolset accepts



#pragma call_fpga IntArithDct_In
int DCT_in(int block_i, int cl_1i,
int c2_1i, int c3_1i) {

}
int DCT (int *block, int *outdata) {
return DCT_in(block, &(cl1[0][01),
&(c2[0][0]),&(c3[0][0]));

Fig. 2. Application Code

mtdcr 0x0056,29
mtder 0x0058,11
mtdcr 0x0059,9
creqv 6,6,6
sync
nop
nop
nop
bl .L42

L42:
.long 436207665 # encoding for EXECUTE
nop
1wz 0,28(1)
mfdcr 3,0x0056

Fig. 3. Assembly Code

as input pragma annotated C code. The annotation specifies
the code segments to be implemented in the hardware. Cur-
rently, there are syntax restrictions imposed on the accepted
input code. Nevertheless, these restrictions do not lead to
semantic limitations. The toolset consists of two modules,
DFG Builder and VHDL Generator. The DFG Builder cur-
rently only transforms the input C-code into intermediate
representation (IR), suitable for hardware mapping. The se-
lected intermediate representation is a hierarchical data flow
graph. This graph is further processed by the VHDL Gener-
ator. Currently, the tool performs only ASAP scheduling
on the input graph. The memory bandwidth and access
times are provided to the VHDL Generator as additional
input. The currently selected computation model is FSM-
based. The generated design is with the MOLEN CCU in-
terface [23], which allows actual execution of the generated
designs on a real prototyping hardware platform.

5. CASE STUDY

5.1. Evaluation Setup

To evaluate the proposed tool chain, we have selected two
applications from the multimedia and DSP domains. The
MIJPEG application performs image compression and it
exhibits the characteristics of the streaming applications,
namely regular processing of the input data. The G721 en-
coder performs audio compression. Although, this applica-

Table 1. Resource Estimates for Selected Kernels

Name Slices Flip-Flops LUTs
fmult 2055 2021 3219
update 8806 6376 14448
DCT 2335 2735 3197
Virtex-1I- 13676 27392 27392
Pro(XC2Vp30)

tion also operates on a streaming input, the performed pro-
cessing has irregular and control dominated characteristics.
To identify the application kernels, dynamic profiling was
performed under Montavista Linux 2.4.20 on Xilinx ML 310
board (PowerPC 405). The identified kernel set was further
analyzed statically for a final selection of the most profitable
code segments to be made. After the application partition-
ing, the software part was compiled by the MOLEN com-
piler and the hardware segments were translated by DWARV
into VHDL designs. The designs were further synthesized
for Xilinx Virtex II Pro (XC2VP30-7FF896) in the Xilinx
ISE 8.1 design environment. The hybrid application exe-
cution was performed on the MOLEN prototype with Pow-
erPC as GPP, operating on 300MHz. The application kernels
implemented as CCUs were executed on 100 MHz.

5.2. Evaluation Results

Profiling and Quantitative Model: For this experiment we
used GNU gprof [9] as a profiling tool. We profiled the
benchmark applications with optimization level O3, which
resulted with a set of kernels for hardware mapping. For
G721 application, we identified two functions fmult and
update as candidate kernels and for MJIPEG we identified
DC'T as a candidate kernel. Furthermore, we used our quan-
titative model to verify if the hardware mapping of these
functions satisfies the given constraints on the hardware.
The software metric values were determined using our met-
rication tool and served as input to the quantitative model.
The predictions and limitations are shown in Table 1. Com-
pared with the synthesis results in Table 3, the estimates
show a considerable error, i.e. 29%-170%. Despite the rel-
atively large error of the model, we can predict which func-
tions fit in the FPGA. Table 1 suggests the candidate kernels
identified from profiling can easily fit on the FPGA. Also,
fmult and update can fit together on the FPGA, which
might reduce the reconfiguration latency of the G721 ap-
plication.

After the kernel selection, the applications were executed
on the target platform without operating system. In addi-
tion, hardware timers were used to record the correspond-
ing execution times. In such way, more precise profile of
the applications and the selected kernels was derived. The
profile data is reported in Table 2. The first column shows
the percentage of the application execution time spent in the



Table 2. Profiling of Selected Functions

Name Time (%) Cycles Potential
Speedup
fmult 39.67 59684832 1.65
update 38.03 57608874 1.61
DCT 82.15 27819000 5.60

corresponding kernel. The second column shows the total
processor cycles for each kernel execution. The last column
shows the maximum overall application speedup that can
be achieved by speeding up the corresponding kernel. This
maximum is the theoretical speedup limit as constituted by
the Amdahl’s law [24].

Compilation: After hardware/software partitioning, the
MOLEN compiler processes the code to be executed on the
GPP, placing the necessary configuration and hardware exe-
cution instructions. For this evaluation, we used the com-
piler based on GNU C compiler infrastructure 4.1 which
uses modified version of PowerPC backend generation for
GPP code generation. The optimization level used for the
compilation was O3 which provided the best performance
of the application in software.

VHDL Generation and Synthesis: The automated HDL
generation was performed by the DWARV toolset, running
under Fedora Core 2.6 Linux on AMD Athlon 64 3200+
Processor. The generation time of each kernel is measured
using the Linux ¢¢me utility and reported in seconds. The
generated designs were further synthesized for Xilinx Vir-
tex II Pro (XC2VP30) in the Xilinx ISE 8.1 design envi-
ronment. The generation time and synthesis estimations are
reported in Table 3. As it can be observed, although the
designs are generated automatically, they are small enough,
hence more than one design can reside simultaneously on
the device. Another observation that can be made, is that the
generated designs can operate on a higher frequency than
the one used in the current experiments.

Table 3. HDL Generation Time & Synthesis Estimation

Kernel HDL.Gen.Time [sec] Synthesis.Est

SUIF2DFG | DFG2VHD | Slices Freq(Mhz)
fmult 0.495 0.111 1049 (7%) 129.659
update 5.930 0.586 3259 (23%) 164.36
DCT 2.330 0.150 3307 (24%) 100.197
Device N/A N/A 13696(100%) | N/A
Capacity

Execution: The software part of the applications is com-
piled with O3 optimization level and is executed on a Pow-
erPC (PPC), which operates at 300MHz. The hardware ex-
ecution time of the kernels, presented in Table 4, are in
PPC cycles for a single run of the kernel. These times are

recorded through actual execution on a real hardware plat-
form. As the execution times of fmult and update func-
tions depend on the input data, the reported cycles are the
average of the cycles for each kernel execution.

Table 4. Kernels Execution Time

Kernel SW execution | HW execution | Speedup
cycles cycles

fmult 481 378 1.27

update 3714 1218 3.05

DCT 386375 59519 6.49

The modest kernel speedup for fmult is mainly due to the
differences in the optimization efforts between the DWARV
toolset and the GCC compiler. In its current development
stage, DWARV only offers a limited set of optimizations
(e.g. scalar replacement etc.). On the other hand, GCC is
used with O3 optimization level, which translates to aggres-
sive optimizations applied on the source code. Additionally,
the function is static, hence inlining as well as parameter
transfer optimizations are possible. The use of static array
also allows loop unrolling. Moreover, the encoded function-
ality is sequential, which offers very small amount of oper-
ation level parallelism to be exploited in the hardware. The
update function offers higher amount of operation level par-
allelism, exposed by DWARYV if-conversion. The speedup
for the DC'T kernel is the highest mainly due to the fact that
the hardware implementation uses temporary arrays mapped
to logic cells, while the software version is forced to use
memory mapped arrays as the number of GPP registers is
limited. Another reason is the different function call over-
head. The static functions allow GCC to optimize the in-
vocation overhead, through inlining and parameters transfer
optimizations. Those optimizations, however are not possi-
ble to be applied for the hardware version of the functions,
which leads to bigger invocation overhead.

Table 5. Overall Application Speedup

Application | Cycles Speedup Potential | Efficiency
Speedup

SW G721 151344663
HW fmult 152349759 | 0.99 (-1%) | 1.65 -1.5%
HW update 111673665 | 1.36 (36%) 1.61 59.01%
SW MIJPEG | 33859626
HW DCT 10326096 3.28 (228%) | 5.60 49.56%

Although the hardware implementation of these functions
was automatically generated without aggressive optimiza-
tions, the obtained overall application performance improve-
ment is 36% for G721 and 228% for MJPEG, respectively.
These results are presented in Table 5. The last column indi-
cates how close to the theoretical maximum, is the achieved
speedup. It is calculated as (S —1)/(S, — 1) * 100%, where



S is the measured speedup and .S, is the potential maximum
speedup as constituted by the Amdahl’s law [24].

Due to slow hardware implementation and different call-
ing convention for the software and hardware execution, the
fmult does not offer any performance improvement. There-
fore, the fmult kernel is not considered for automatic hard-
ware systhesis. There are two options for this kernel either
leave it as software one or manually design a supporting
hardware accelerator and include it as a library HDL ele-
ment in the toolchain. The update kernel offers 36% appli-
cation improvement, which however constitutes more than
80% of the theoretically achievable speedup. As this kernel
comprises 38% of the application, speedup higher than 1.61
cannot be achieved. The DCT kernel offers the higher ap-
plication improvement due to the larger kernel speedup as
well as the higher percentage of the application time spent
in the kernel.

The presented case study shows that the Hartes toolchain
can be used to achieve significant speedup with minor de-
sign efforts. Currently, the programmer is required only to
guide the kernel selection in the profiling phase, while the
compilation of the whole application and the hardware im-
plementations of the selected kernels are automatically gen-
erated by the presented tools.

6. CONCLUSIONS

In this paper, we evaluated the profiling, compilation and
HDL generation tools from the DelftWorkBench project.
The dynamic profiling unit identified fmult and update
as kernel sets for G721 and DCT as a kernel function for
MJPEG for HW mapping. With the quantitative model, we
predicted that these kernels can fit onto the given FPGA. The
compiler compiled the code segments for GPP and it ap-
plied a set of optimizations on the application. Finally, HDL
generation unit provided VHDL designs of the above men-
tioned kernels. The obtained results showed that the overall
improvement of 36% for the G721 and 228% speedup for
MIPEG application.

In our future work, we will introduce new profiling criteria
(such as power, memory access) and extend the quantitative
model with additional targets(such as delay, interconnect,
power). In the compilation phase, we will add new compiler
optimizations that will fully exploit the available parallelism
in each application, while aggressive optimizations will be
introduced in the VHDL generation tool along with design
patterns and hardware grammar.
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