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Abstract. The Instruction-Set extension problem has been one of the
major topics in the last years and it is the addition of a set of new com-
plex instructions to a given Instruction-Set. This problem in its general
formulation requires an exhaustive search of the design space to identify
the candidate instructions. This search turns into an exponential com-
plexity of the solution. In this paper we propose an algorithm for the
generation of Multiple Input Single Output instructions of variable size
which can be directly selected or combined for Instruction-Set extension.
Additionally, the algorithm is suitable for inclusion in a design flow for
automatic generation of MIMO instructions. The proposed algorithm is
not restricted to basic-block level and has linear complexity with the
number of processed elements.

1 Introduction

The use of electronic devices has became a routine in our everyday life. Just
consider the devices we are using in the daily basis such as mobile phones,
digital cameras, electronic protection systems in the cars, etc. This great vari-
ety of devices can be implemented using different approaches and technologies.
Usually these functionalities are implemented using either General Purpose Pro-
cessors (GPPs), or Application-Specific Integrated Circuits (ASICs), or
Application-Specific Instruction-Set Processors (ASIPs). GPPs can be used in
many different applications in contrast to ASICs which are processors designed
for a specific application such as the processor in a TV set top box.

Last years, processors with a customizable architecture, also known as Appli-
cation-Specific Instruction-Set Processors (ASIPs), have became more and more
popular. ASIPs are situated in between GPPs and ASICs: they have a partially
customizable Instruction Set and perform only a limited number of tasks so giv-
ing a tradeoff between flexibility, performance and cost. Although performance
of an ASIP is usually lower than an ASIC, the design time and non-recurring en-
gineering costs (the one-time charge for photomask development, test, prototype
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tooling, and associated engineering costs) can be amortized with the multiple
addressable applications tuning the processor characteristics toward the require-
ments of the specific application.

Maximizing the performance of the ASIP is crucial. One of the key issues
involves the choice of an optimal instruction-set for the specific application given.
Optimality can refer to power consumption, chip area, code size, cycle count
and/or operating frequency. A computable solution is not always feasible due to
many subproblems such as design space exploration or combinatorial problems.
In those cases heuristics are used to find a close-to-optimal solution.

Basically there are two types of Instruction-Set customizations which can be
pursued: the first and most radical one is to generate a complete instruction set
for the specific applications [1,2,3]. The second and less drastic one extends an
existing instruction set with instructions specialized for a given domain [4,5,6,7].
In both cases the goal is to design an instruction set containing the most impor-
tant operations needed by the application to maximize the performance.

The first step in this process is the identification of the operations that should
be implemented in hardware and the ones that will be executed in software. The
operations implemented in hardware are implemented as peripheral devices or
they can be incorporated in the processor as new instructions and/or special
functional units integrated on the processor.

In this paper we present a linear complexity algorithm for the generation of
Multiple Input Single Output (MISO) instructions which can directly undergo
a selection process for hardware-software partitioning or can be clustered with
different policies for the generation of MIMO instructions [7,8]. More specifically,
the main contributions of this paper are:

• an overall linear complexity of the proposed algorithm. The generation of com-
plex instructions is a well known NP problem and its solution requires, in
the worst case, an exhaustive search of the design space which turns into an
exponential complexity of the solution. Our algorithms generate MISO in-
structions of variable size suitable for inclusion in a design flow for automatic
generation of MIMO instructions as the ones proposed in [7,8]. Our approach
springs from the notion of MAXMISO introduced by [9] and, in a similar
way, it requires linear complexity in the number of processed elements as
proven in Section 4.

• the proposed approach is not restricted to basic-block level analysis and can
be applied directly to large kernels.

The paper is structured as follows. In Section 2, background information and
related works are provided. In Section 3 and 4, the basic definitions and the
algorithm for MISO instruction generation are presented. Concluding remarks
and an outline of research conducted are given in Section 5.

2 Background and Related Works

The algorithms for Instruction Set Extensions usually select clusters of op-
erations which can be implemented in hardware as single instructions while
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providing maximal performance improvement. Basically, there are two types
of clusters that can be selected, based on the number of output values: MISO
or MIMO. Accordingly, there are two types of algorithms for Instruction Set
Extensions that are briefly presented in this section.

Concerning the first category, a representative example is introduced in [9]
which addresses the generation of MISO instructions of maximal size, called
MAXMISO. The proposed algorithm exhaustively enumerates all MAXMISOs.
Its complexity is linear with the number of nodes. The reported performance im-
provement is of few processor cycles per newly added instruction. The approach
presented in [10] targets the generation of general MISO instructions. The expo-
nential number of candidate instructions turns into an exponential complexity
of the solution in the general case. As a consequence, heuristic and additional
area constraints are introduced to allow an efficient generation. The difference
between the complexity of the two approaches is due to the properties of MISOs
and MAXMISOs: while the enumeration of the first is similar to the subgraph
enumeration problem (which is exponential) the intersection of MAXMISOs is
empty and then once a MAXMISO is identified, its nodes are removed from the
set of nodes that have to be successively analyzed. In this way the MAXMISOs
are enumerated with linear complexity in the number of nodes.

The algorithms included in the second category are more general and pro-
vide more significant performance improvement. However, they have exponen-
tial complexity. For example, in [5] the identification algorithm detects optimal
convex MIMO subgraphs but the computational complexity is exponential. A
similar approach described in [11] proposes the enumeration of all the instruc-
tions based on the number of inputs, outputs, area and convexity. The selection
problem is not addressed. In [6] the authors target the identification of convex
clusters of operations under given input and output constraints. The clusters are
identified with a ILP based methodology similar to the one proposed in [7]. The
main difference is that in [6] the authors iteratively solve ILP problems for each
basic block, while in [7] the authors have one global ILP problem for the entire
procedure. Additionally, the convexity is addressed differently: in [6], the con-
vexity is verified at each iteration, while in [7] it is guaranteed by construction.
Other approaches cluster operations by considering the frequency of execution
or the occurrence of specific nodes [4,12] or regularity [13]. Still others impose
limitation on the number of operands [14,15,16,17] and use heuristics to generate
sets of custom instructions which therefore can not be globally optimal.

In this paper we propose a linear complexity algorithm based on the notion
of MAXMISO introduced by [9]. Although the algorithm for the generation of
MAXMISOs instructions requires linear complexity in the number of processed
elements, it is not always possible to implement MAXMISOs directly in hardware
due to a relatively high number of inputs. A way to address this problem is
the use of the MAXMISO algorithm for the generation of MISO instructions
of reduced size as described in Section 4. Moreover the generated instructions
can be directly selected for hardware implementation as well as clustered with
different policies for the generation of MIMO instructions [7,8].
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3 Theoretical Background

3.1 MISO and MIMO Graphs

In order to formally present the approach previously presented, we first intro-
duce the necessary definitions and the theoretical foundation of our solution. We
assume that the input dataflow graph is a DAG G = (V, E), where V is the set
of nodes and E is the set of edges. The nodes represent primitive operations,
more specifically assembler-like operations, and the edges represent the data de-
pendencies. The nodes can have two inputs at most and their single output can
be input to multiple nodes.

Basically, there are two types of subgraphs that can be identified inside a
graph: Multiple Input Single Output (MISO) and Multiple Input Multiple Out-
put (MIMO).

Definition 1. Let G∗ ⊆ G be a subgraph of G with V ∗ ⊆ V set of nodes and
E∗ ⊆ E set of edges. G∗ is a MISO of root r ∈ V ∗ provided that ∀ vi ∈ V ∗ there
exists a path1 [vi → r], and every path [vi → r] is entirely contained in G∗.

By Definition 1, A MISO is a connected graph. A MIMO, defined as the union of
m ≥ 1 MISOs can be either connected or disconnected. Let GMISO and GMIMO

be the sets of subgraphs of G containing all MISOs and MIMOs respectively.
An exhaustive enumeration of the MISOs contained in G gives all the necessary
building blocks to generate all possible MIMOs. This faces with the exponential
order of GMISO, and since GMISO ⊂ GMIMO

2, of GMIMO . A reduction of the
number of the building blocks reduces the total number of MIMOs which it is
possible to generate. Anyhow, it can drastically reduces the overall complexity
of the generation process as well. A trade-off between complexity and quality of
the solution can be achieved considering MISO graphs with specific properties.

3.2 MAXMISO and SUBMAXMISO

Definition 2. A MISO G∗(V ∗, E∗) ⊂ G(V, E) is a MAXMISO (MM) if ∀vi ∈
V \V ∗, G+(V ∗ ∪ {vi}, E+) is not a MISO.

It is known from the set-theory that each MISO is either maximal (a MAX-
MISO) or there exists a maximal element containing it [8,9]. [9] observed that if
A, B are two MAXMISOs, then A ∩ B = ∅. This implies that the MAXMISOs
contained in a graph can be enumerated with linear complexity in the number
of its nodes (see. [9,7,8]).

Let v ∈ V be a node of G and let Lev : V → N be the integer function which
associates a level to each node, defined as follows:

– Lev(v) = 0, if v is an input node of G;

1 A path is a sequence of nodes and edges, where the vertices are all distinct.
2 GMISO = {G∗ ⊂ G, s.t. NOut = 1} ⊂ {G∗ ⊂ G, s.t. NOut ≥ 1} = GMIMO .
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Fig. 1. SMMs of a MAXMISO with different nodes removed: a) a MAXMISO MM, b)
SMMs of MM \ {N2}, c) SMMs of MM \ {N1}

– Lev(v) = α > 0, if there are α nodes on the longest path from v and the
level 0 of the input nodes.

Clearly Lev(·) ∈ [0, +∞) and the maximum level d ∈ N of its nodes is called
the depth of the graph.

Definition 3. The level of a MAXMISO MMi ∈ G is defined as follows:

Lev(MMi) = Lev(f(MMi)). (1)

where f : G → Ĝ is the collapsing function, the function which collapses the
MAXMISOs of G in nodes of the graph Ĝ (see [8]).

Let’s consider a MAXMISO MMi. Each node vj ∈ MMi belongs to level
Lev(vj). Let v ∈ MMi, with 0 �= Lev(v) ≤ d. If we apply the MAXMISO
algorithm to MMi \ {v}, each MAXMISO identified in the graph is called a
SUBMAXMISO (SMM) of MMi \ {v} (or, shortly, of MMi). Clearly the set of
the SMMs tightly depends on the choice of v (see Figure 1). For example v can
be either an exit node (Figure 1c), or an inner node randomly chosen (Figure
1b) or a node with specific properties like area or power consumption below or
above a certain threshold previously defined.

The definition of level of a SMM is the obvious extension to SMM of the
definition of level of a MAXMISO.

4 The Algorithm for MISO Instruction Generation

In Figure 2 and 3 we present the FIX SMM algorithm and the VARIABLE
SMM algorithm respectively. The main difference between the two algorithms
is represented by the choice of the node selected for the generation of the SUB-
MAXMISOs, as outlined in Section 3.2.



288 C. Galuzzi, K. Bertels, and S. Vassiliadis

Input:= MM1, ..., MMn

Output:= SMM1, ...SMMk

—
SET1, SET2, SET3 = ∅
for i = 1..n do

{
Choose vi ∈ MMi

Generate MAXMISO of MMi \ {vi}
SET1 := SET1 ∪ {MAXMISOs of MMi \ {vi}}
SET2 := SET2 ∪ {vi}
SET3 := SET1 ∪ SET2

}

Fig. 2. FIX SMM Algorithm

a) FIX SMM Algorithm

The main steps of this algorithm are described in Figure 2 and depicted in
Figure 4:

a) Given the DAG G of an application, the graph is partitioned in MAXMISOs;
b) For each MAXMISO MMi we select a node vi ∈ MMi;
c) MMi \ vi is partitioned in MAXMISOs;
d) Generate the set SET1 of the SMMs, the set SET2 of the nodes selected and

the set SET3 union of SET1 and SET2.

We have the following property:

Property 1. The complexity of the algorithm is linear in the number of node
analyzed.

Proof. This follows from the empty intersection of two MAXMISOs. Let A and
B two MAXMISOs, and v1 ∈ A and v2 ∈ B. Therefore A ∩ B = ∅. This means
that:

∀ MMi ∈ A \ v1 and ∀ MMj ∈ B \ v2, MMi ∩ MMj = ∅. (2)

�

b) VARIABLE SMM Algorithm

The main steps of this algorithm are described in Figure 2 and depicted in
Figure 4:

a) Given the DAG G of an application, the graph is partitioned in MAXMISOs;
b) For each MAXMISO MMi a node vi ∈ MMi is selected;
c) MMi \ vi is partitioned in MAXMISOs. If the set of SMMs does not satisfy a

specific property Pi a different node is selected and the SMMs are regenerated
till the property is satisfied.
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Input:= MM1, ..., MMn

Input:= Properties P1, ..., Pn

Output:= SMM1, ...SMMk

—
SET1, SET2, SET3 = ∅
for i = 1..n do
{
repeat
{

Choose vi ∈ MMi

Generate MAXMISO of MMi \ {vi}
}
until Pi is satisfied
SET1 := SET1 ∪ {MAXMISOs of MMi \ {vi}}
SET2 := SET2 ∪ {vi}
SET3 := SET1 ∪ SET2

}

Fig. 3. VARIABLE SMM Algorithm

d) The set SET1 of the SMMs, the set SET2 of the nodes selected and the set
SET3 union of SET1 and SET2 are generated.

We have the following properties:

Property 2. The complexity of the algorithm is linear in the number of nodes an-
alyzed (as well as for the FIX SMM algorithm as a consequence of the properties
of the MAXMISOs).

Property 3. The maximum number of iterations of the algorithm is less than or
equal to the order of G3.

Proof. This follows by the fact that the MAXMISOs are a partition of the graph.
For each MAXMISO MMi is therefore possible to select ni different nodes.
Independently by the value of ni we have that Σini = n. �
Remark 1. The algorithm presented in this paper in its two versions, namely
FIX SMM, and VARIABLE SMM, is suitable for an iterative process for the
generation of MISO instructions of relatively smaller size, when severe input
constraints are applied. This can be obtained using as input of the algorithm(s),
instead of the set of MAXMISOs MM1, ..., MMn, the final set SET1 as described
in Section 4.

4.1 Application

In [7,8] we presented two methods for the automatic generation of convex MIMO
instructions based on the following result:
3 The order of a graph G(V, E) with V set of nodes and E set of edges is the order of

V .
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Fig. 4. Description of the main steps required by the algorithms for the generation
of the SMMs: 1) FIX SMM algorithm and 2) VARIABLE SMM algorithm. The main
steps are A) MM generation, B) selection of the node to remove, and C) SMM gen-
eration. (NB In the figure, each MAXMISO is partitioned in 4 SMMs of random size
for explanatory reasons. As we have seen in Figure 1 the SMMs depend on the node
chosen.)
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Theorem 1. Let G be a DAG and A, B ⊂ G two MAXMISOs. Let Lev(A) ≥
Lev(B) be the levels of A and B respectively. Let C = A ∪ B. If

Lev(A) − Lev(B) ∈ {0, 1} (3)

then C is a convex MIMO. Moreover

– C is disconnected if the difference is 0.
– Any combination of MAXMISOs at the same level or at two consecutive

levels is a convex MIMO.

We note that a subgraph G� ⊂ G is convex if there exists no path between two
nodes of G� which involves a node of G\G�. Convexity guarantees a proper and
feasible scheduling of the new instructions which respects the dependencies.

This theorem can be extended to SMMs.

Corollary 1. Any combination of SMMs at the same level or at two consecutive
levels is a convex MIMO.

Proof. This follows by the definition of SMM: given a graph G, a MAXMISO
MM ⊂ G and a node v ∈ MM the SMMs of MM are the MAXMISOs of
G \ v. This means that if A and B are SMMs, then A ∩ B = ∅. Therefore all the
hypothesis of Theorem 1 are satisfied. �

Basically the two approaches cluster optimally MAXMISOs at the same level [7],
or heuristically at different levels [8], in convex MIMOs to implement in hardware
reducing the execution time. Both approaches target the Molen organization [18]
which allows for a virtually unlimited number of new instructions to be executed
on the reconfigurable hardware, without limiting the number of input/output
values.

Although the speed-up achieved by the two approaches is similar to the speed-
up achieved for state-of-the-art algorithms for automatic instruction-set exten-
sion, the main limitation is represented by the MAXMISOs. The MAXMISOs
are used as building block to generate convex MIMO instructions since they can
be enumerated linearly with the number of nodes and they represent a trade off
between quality of the solution and complexity of the approach. Nevertheless
the speed-up is limited by a high number of inputs and outputs, on average, of
the clusters selected for hardware implementation.

Every time a cluster undergoes a check to verify if a specific property is
verified, the complexity of the approach increases. A limitation on the number
of inputs and outputs of the clusters keeping a linear complexity, can then be
obtained using SMMs instead of MMs. By Property 1 and 2 we know that SMMs
can be enumerated with linear complexity in the number of nodes. This means
that the complexity of the two approaches does not increase if we use SMMs
instead of MMs as building blocks to generate convex MIMO instructions.

We can observe the following:

Remark 2. The partitioning of a graph in MAXMISOs generate a MMs-cover
of the graph. Since every SUBMAXMISO is contained in a MAXMISO the
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SMMs-cover is a refinement of the MMs-cover4 [19]. This implies that the num-
ber of convex MIMO instructions which is possible to generate increases. More
detailed, if there are n1 MAXMISOs and n2 SUBMAXMISOs with n2 = n1 + α
and α > 0, the additional MIMOs that is possible to generate are:

2n1(2α − 1). (4)

5 Conclusions

In this paper, we have introduced an algorithm which enumerates with linear
complexity in the number of processed elements, MISO instructions of variable
size, and more specifically SUBMAXMISOs. These instructions can directly un-
dergo a selection process for hardware-software partitioning or can be clustered
with different policies for the generation of MIMO instructions. The algorithms
can be included in an automatic design flow for the automatic generation of
MIMO instructions as the ones proposed in [7,8]. In our future work we in-
tend to verify with experimental results the benefit of the insertion of the SUB-
MAXMISOs generation algorithm in such a design flow. Moreover we aim to
design and test additional algorithms for the generation of (convex) MIMO in-
structions.

References

1. Holmer, B.: Automatic Design of Computer Instruction Sets. PhD thesis, Univer-
sity of California, Berkeley (1993)

2. Huang, I., Despain, A.: Generating instruction sets and microarchitectures from
applications. In: Proceedings of ICCAD ’94 (1994)

3. Van Praet, J., Goossens, G., Lanneer, D., Man, H.D.: Instruction set definition and
instruction selection for asips. In: Proceedings of ISSS ’94 (1994)

4. Kastner, R., Kaplan, A., Memik, S.O., Bozorgzadeh, E.: Instruction generation
for hybrid reconfigurable systems. ACM Trans. Des. Autom. Electron. Syst. 7(4),
605–627 (2002)

5. Atasu, K., Pozzi, L., Ienne, P.: Automatic application-specific instruction-set ex-
tensions under microarchitectural constraints. In: Proceedings of DAC ’03 (2003)
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