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Abstract

In this paper we present a novel adder/subtracter arith-

metic unit that combines Binary and Binary Code Decimal

(BCD) operations. The proposed unit uses effective addi-

tion/subtraction operations on unsigned, sign-magnitude,

and various complement representations. Our design over-

comes the limitations of previously reported approaches

that produce some of the results in complement represen-

tation when operating on sign-magnitude numbers. The

proposal can be implemented in ASIC as a run time con-

figurable unit as well as in reconfigurable technology in

form of a run-time reconfigurable engine. When reconfig-

urable technology is considered, a preliminary estimation

indicates that 40 % of the hardware resources are shared

by the different operations. This makes the proposed unit

highly suitable for reconfigurable platforms with partial re-

configuration support. The proposed design together with

some classical adder organizations were compared after

synthesis targeting 4vfx60ff672-12 Xilinx Virtex 4 FPGA.

Our design achieves a throughput of 82.6 MOPS with al-

most equivalent area-time product when compared to the

other proposals.

1 Introduction
Various applications, e.g. commercial and financial elec-

tronic transactions [12], internet [19] and industrial con-

trol [22] require precise arithmetic for different data rep-

resentation formats. Binary arithmetic is not capable of

expressing exactly fractional numbers like, 0.2, and there-

fore, Binary Decimal Arithmetic emerges as a possible so-

lution [9] to avoid binary approximations [13, 3]. When

performing decimal operations on traditional binary based

hardware, excessive delays are introduced due to the soft-

ware emulations, conversions and corrections, typically 100

to 1000 times slower [8]. Therefore, flexible hardware solu-

tions for both decimal and binary processing are considered

in this paper. We assume universal units similar to those

presented in [25] that are capable of performing various re-

lated operations sharing the same hardware. More specifi-

cally, the main contributions of this paper are:

• Twelve related operations were collapsed into a single

Universal Adder (UA) hardware unit using Universal-

Notationi. The proposed structure uses the effective

addition/subtraction approach similar to [24] for both,

binary and BCD notations.

• High hardware utilization: approximately 40% of the

hardware resources implementing the 12 different op-

erations are reused. This makes the unit a good can-

didate for implementation on partially reconfigurable

platforms such as [26].

The remainder of this paper is organized as follows.

Section 2 outlines the background and presents the related

work. Section 3, exhibits with details the Reconfigurable

Universal Adder design. Section 4 presents the experimen-

tal results and introduces the analysis in terms of used area

and delay. Finally, Section 5 concludes the paper.

2 Background

Decimal digits are usually converted to binary represen-

tation as follows: the 8421 BCD code uses only the first

ten combinations of a 4-bit binary code to represent each

decimal digit. The remaining encodings (1010 to 1111)

corresponding to decimal (10 to 15) are left unused when

decimal computing is considered. Assuming addition of

two decimal numbers N1 and N2 their SUM can exceed

10012 (SUM > 9). When such a situation occurs, correct-

ing addition using 01102 (6) is required, so the complete

operation becomes SUM = N1 + N2 + 01102. Please

note that in case of subtraction N2 can be the complement

representation of the original operand. In other words, dec-

imal subtraction introduces additional processing. Recall

iIn the context of this article, we assume operands and results to be

in unsigned, sign-magnitude or complement (two’s complement for binary

and ten’s complement for decimal) notations.
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that a complement (CN ) of an n-bit number N is computed

by: CN = rn − N ; where r is the radix of the number

(r = 2 for binary, and r = 10 for decimal). Thus, the

ten’s complement of an x-digit number N , is expressed by

CNN = 10x − N . When we consider only a single digit

D (as in the case with BCD), the computation is simplified

to CND = 10 − D. Nevertheless, BCD encoding do not

include a code for 10 and for this reason a nine’s comple-

ment representation is used. In this case the computation

becomes: CND = 10 − D = 9 − D + 1.

Some helpful techniques used to compute a nine’s com-

plement of a digit are [21]: Pre-complement. In this ap-

proach the subtrahend is one-complemented, a 10102 value

is added for correction, and finally the generated carries are

discarded. Post-complement. In this case, a binary 01102

value is added to the subtrahend operand, the result is one-

complemented and the generated carries are used.

2.1 Related work

Many researchers addressed the problem of decimal

arithmetic in the past. Early solutions proposed customized

decimal adders, like Schmookler et al. [20] and Adiletta

et al. [1]. Combined Binary and BCD adders were de-

signed by Levine et al. [18] and Anderson [2], while true

decimal sign-magnitude adder/substracter was presented

by Grupe [14]. The latter used 3-binary-adders along with

additional logic, achieving similar results as presented in

this paper. An area efficient sign-magnitude adder was

developed by Hwang [17]. In his approach two additional

conversions are introduced before and after the binary

addition. This is somehow similar to other proposals,

e.g. [14]. The novelty in Hwang’s proposal comes with

the separation of the binary and the decimal results, using

a multiplexor to select the correct output as is depicted in

Figure 1.
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Figure 1. Hwang’s proposal [17]

Flora [11] presents an adder that process concurrently

two different results, one assuming the presence of an in-

put carry and the other assuming no carry in available. This

is following the principle of carry select adders [4], an ap-

proach actually used in several state of the art units. To

cope with the area overhead, another compact design em-

ploying a single adder was introduced by Fischer et al. [10]

depicted in Figure 2. This unit encodes (“edits”) the in-

coming operands as well as the adder result to achieve the

desired functionality.
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Figure 2. Fischer’s proposal [10]

During the last decade various binary and BCD

adder/subtracter units for the IBM S/390, G4, G5 and G6

microprocessors [7] were developed. Following this line,

the eServer z900 processor [23] includes a combined bi-

nary/decimal arithmetic unit working with binary-coded

decimal numbers in sign-magnitude representation. The

z900 unit was designed to operate in a single cycle, nev-

ertheless a correction of the results is required in some of

the cases [5]. For example, when an effective subtraction

operation is performed, they need to calculate the comple-

ment value of the result, hence increasing the latency. The

approach used to construct this decimal unit is based on

the work presented in [15], which is shown in Figure 3.

Recently, a similar approach was presented by Haller et

al. [16]. In this work the carry chain is optimized result-

ing in a slight delay improvement with an increased area of

the unit.

DecSubDecAdd
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PRE-SUM-1PRE-SUM-0
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MUX

Partial 
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Figure 3. Haller’s proposal (z900)

The following Table 1, summarizes the fundamental

characteristics of the adders discussed above. The subset

of the proposals aiming at signed arithmetic do not produce

the correct result and need and additional complement op-

eration in the cases when the subtrahend is greater than the

minuend causing an additional cycle. As will be shown in

the text to follow our approach does not have this disadvan-

tage.
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Table 1. Adders - data representation
BCD Binary

Adder Addition Subtraction Addition Subtraction

Schmookler [20] U - - -

Addileta [1] U - - -

Levine [18] U - U -

Anderson [2] U - U -

Grupe [14] S S S S

Hwang [17] S ten’s S two’s

Flora [11] S ten’s S two’s

Fischer [10] S ten’s S two’s

z900 [5] S ten’s S two’s

Haller2006 [16] S ten’s S two’s

U: unsigned; S: sign-magnitude. Two’s and ten’s: for complement representation.
The last two represent the inconsistency to drive the correct result for (N2 > N1).

3 Reconfigurable Universal Adder

The main goal of our work was to create an adder capa-

ble of carrying out decimal operations using effective addi-

tion/subtraction scheme, overcoming the limitations of the

adders presented in the related work section. To achieve this

we used the S/370 sign-magnitude binary adder presented in

[24] as a base. We extend its functionality to perform deci-

mal addition/subtraction operations along with the original

binary ones. Next, we briefly introduce the original binary

adder and focus on our extensions. In the next subsection

we will discuss the specific decimal functionalities of our

design.

Let us assume N1 and N2 being two n-bit sign-magnitude

numbers, such that N1 = [N1n−1N1n−2...N10] and N2 =

[N2n−1N2n−2...N20], with N1n−1 and N2n−1 used as sign

bits of binary or BCD representations. Assuming absolute

values, equation (1) is used to determine the exact opera-

tion, e.g. effective addition either subtraction. The logic

one value of the signal Effective Addition (EAdd) indicates

an effective addition operation, logic zero indicates that an

effective subtraction is carried out.

EAdd = (N1S · N2S · Add)|(N1S · N2S · Add)|

(N1S · N2S · Add)|(N1S · N2S · Add)

= (N1S ⊕ N2S ⊕ Add)

(1)

where the input Add = 0 invokes addition operation, oth-

erwise subtraction is performed. Please note that we use

“|” to represent a logical OR and “+” for addition. Also

observe the use of modified sign bits in (1). This modifica-

tion proposed here is to cope with the cases of unsigned and

complement numbers as will be explained later. The two

modified sign bits are computed as follows:

N1S = N1n−1 · Type (2)

N2S = N2n−1 · Type (3)

where Type = 0 signal, masks both sign bits N1n−1 and

N2n−1 in the case of unsigned and complement representa-

tions. The result of this will be that EAdd is equal to the

Add signal making sure the final effective operation to be

realized by the sign-magnitude adder is always correct. In

addition, we should use N1n−1 and N2n−1 values in the

result (SUM ) computation. How those values participate

into the above operation for all possible cases is stated in

Table 2.

Table 2. Adder setting up considerations

Rep. EAdd SUM Type

S.Mag. N1n−1,N2n−1 N1n−1 = N2n−1 = 0 1

Uns. N1n−1 = N2n−1 = 0 N1n−1 = N2n−1 = 0 0

Comp. N1n−1 = N2n−1 = 0 N1n−1,N2n−1 0

The binary sign-magnitude addition is performed using

the absolute values of the input addends as is stated by

equation (4):

∑
= |N1| + |N2|∗ (4)

where |N2|∗ is equal to |N2| for effective addition and

|N2|∗ equals to |N2| in case of effective substractionii. In

order to generate a correct sign-magnitude result, an addi-

tional correction step ⊕△ is used. The final magnitude re-

sult becomes:

|SUM | =
∑

k

⊕△ ∀ 0 < k < n − 2 (5)

The △ is computed as follows:

△ = Co · EAdd (6)

where the carry output (Co) is equal to:

Co = Gn−2
0 [|N1|, |N2|∗]

= G0|(P0 · G1|...(P0 · P1... · Pi−1 · Gi

|...|(P0 · P1... · Pi−3 · Gn−2))

(7)

where Gi and Pi are the generate and propagate signals of

the single bit adders. Finally, the sign bit of the result is

updated as shown in equation 8 (see [24] for details):

SUMn−1 = [N1n−1 ⊕ (Co · EAdd)] · (SUM ≡ 0) (8)

All of the different cases of the original adder are pre-

sented in the table shown in Figure 4.
N1(n-1...0)

Add

  N1(n-1) N2(n-1) Add   EAdd      Result Operation

        0 0             0    1           + (|N1| + |N2|)

        0  0             1     0           + (|N1| - |N2|)

        0 1             0    0           + (|N1| + |N2|)

        0  1             1     1           + (|N1| - |N2|)

        1 0             0   0           -  (|N1| + |N2|)

        1  0             1     1         -  (|N1| - |N2|)

        1 1             0    1          -  (|N1| + |N2|)

        1 1             1    0           -  (|N1| - |N2|)

SUM

N2(n-1...0)

Type

Bin

Figure 4. Sign Magnitude Adder
iiEAdd signal is used to control the complement operation of N2.
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For decimal operation we reuse the EAdd and Add

signals and introduce the two additional control signals (Bin

and Type). Bin = 1 causes a binary operation, otherwise

a BCD operation is performed. The Type signal has the

functionality as explained earlier.

3.1 Decimal Arithmetic Additions

In this section we describe in more details the specific ad-

ditions to the original binary adder needed for decimal addi-

tion/subtraction operations. As already indicated, previous

proposals use ±6 correction terms for the input operands

and the result of the addition. Furthermore, when the sub-

trahend is greater than the minuend the result of the addi-

tion is in its complement representation and an extra cycle

for result correction is required [10, 15, 16]. In our pro-

posal the Co signal stated in equation (7) is used to detect

the case when N2 > N1 and decimal subtraction opera-

tions is performed. Its value in combination with the Dec-

imal Carry signals determine the specific correction of the

result, e.g. the additional ten’s complement operation. A

simple example of such a case is presented in Figure 5,

which depicts all operations involved in a subtraction op-

eration (when N2 > N1).

Decimal Subtraction Ten’s Complement BCD addition

 Complement

Ten’s Complement

Correct result

Irregular
representation of 
a sign-magnitude 

adder result

Complement
operation
required

Figure 5. Decimal subtraction: N2 > N1

In the proposed adder depicted in Figure 6, the nine’s

complement computation for the subtrahend is performed

using a “DigitWise-6” (DW) hardwired logic as used in

many previous designs [15]. The DW value ND = N−610

is obtained with the following equations that modify each

bit of the BCD nibble as follows:

ND(3) = N2(3) · N2(2)|N2(3) · N2(1)|N2(3) · N2(2) · N2(1)

ND(2) = N2(2) ⊕ N2(1)

ND(1) = N2(1)

ND(0) = N2(0)

The digit carry logic (DC) [5] signals for decimal oper-

ations are obtained as follows:

DC = X | Y · CI (10)

where
X = G3 | P3 · P2 | P3 · P1 | G2 · P1

Y = P3 | G3 | P1 · G1

CI = G1 | P1 · Cin

All necessary correction cases for decimal data arith-

metic, proposed here are summarized in Table 3. Our

slightly more complex coder enables effective addition-

subtraction characteristics for our universal adder. Please

note that in the post-complement operation case, two nec-

essary correction operations are required, both using 01102

value (one on the subtrahend value and one on the correc-

tion of addition result). In our proposal, in contrast to all

previous adders, a single addition with 11002 value is used,

achieving with this a real effective addition/subtraction ca-

pability.

Table 3. Decimal Correction Terms

DC DC

Operation N1 > N2 N2 ≥ N1 N1 > N2 N2 ≥ N1

Addition 01102 01102 00002 00002

Subtraction 01102 11002 00002 01102

Please note that when a binary operation is performed

Bin = 1 the decimal correction term is not needed. A

value of 00002 is used for any binary operation. The uni-

versal adder is set up with the aforementioned logic, a one-

dimensional (3/2)counter array, a Carry-propagate Adder

and a set of XOR gates. The final organization is depicted

in figure 6.

EAdd

Add N1' N2' N1N2

Add Bin

SUM

DC
Logic

N2

DS

Add

 Decimal      Correction Terms

 Decimal SUB

Binary ADD/SUB
Decimal ADD

Figure 6. Universal adder micro-architecture

Note that the input N2∗ for computing the digit carry

logic is equal to N2 + 10 when processing decimal sub-

traction otherwise is equal to N2. The multiplexor signal

control for decimal subtraction or any addition (DS) is com-

puted by:

DS = Add · Bin (12)
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The final complement operation is controlled by equa-

tion (13) which is a modified version of equation (6):

△ = (Co · EAdd)|(Co · Add · Bin) (13)

The rationale behind the design of the universal adder is

based on the following observations and considerations:

• EAdd signal controls one’s complement operation of

the subtrahend in binary and decimal operations.

• The △ logic (see equation (13)) corrects the final result

in binary and decimal operations.

• We need a (3/2)counter row to selectively add the nec-

essary correction terms (correction coder) as indicated

by Table 3.

• The hardware reuse is fundamental when a partial re-

configurable hardware units are designed for reconfig-

urable processor scenarios.

When our design is mapped on partially reconfigurable

hardware platforms, the following modules (shown in

dark in Figure 6) can be reused in both modes: the

Carry-propagate Adder, the EAdd logic, the two XOR

logic blocks (at the input and output of the unit) and the

Co logic. These “permanent” blocks can be configured at

the beginning when the processor is set up. In order to

provide the BCD functionality the remaining (shown as not

colored in Figure 6) modules can be configured on demand.

Such dynamic partial reconfiguration will diminish the

penalty due to reconfiguration latencies. A preliminary es-

timation [6] indicates that the “permanent” blocks account

for approximately 40 % of the total hardware resources

implementing the operations when targeting Xilinx Virtex4

devices.

Finally, the fundamental decimal addition and subtrac-

tion operations of our proposal can be summarized with the

following equationsiii :

Decimal Addition

Sum = N1 + N2 + 01102 ∀ DC = 1

Sum = N1 + N2 + 00002 ∀ DC = 0

Decimal Subtraction

Sum = N1 + DW (N2) + 01102 ∀ DC = 1 ∧ Co = 0

Sum = N1 + DW (N2) + 00002 ∀ DC = 0 ∧ Co = 0

Sum = N1 + DW (N2) + 11002 ∀ DC = 1 ∧ Co = 1

Sum = N1 + DW (N2) + 01102 ∀ DC = 0 ∧ Co = 1

iiiPlease note that the decimal Sum value presented in those equations

requires the one complemented operation as was stated in (5). Where the

∆ control signal (13) is used to obtain the final SUM result

4 Experimental Results Analysis

The proposed Universal Adder was implemented using

VHDL, synthesized, functionally tested, and evaluated

using the ISE 8.1i Xilinx design tools [27] targeting

4vfx60ff672-12 VIRTEX 4 FPGA device. Furthermore, the

designs proposed by Fischer [10], Hwang [17], Busaba [5]

and Haller [16] were also implemented and synthesized

using the same methodology. Table 4, summarizes the

latency and hardware utilization results for all of the

considered designs.

Table 4. Latency&Area - Adder comparison
Latency (ns) Resources used

32-bit wide units Logic Wire Total Slices LUTs

Our proposal 7.3 4.7 12.1 256 495

Fischer [10] 5.5 4.8 10.3 123 233

Hwang [17] 5.9 4.6 10.5 82 158

Busaba [5] 5.3 5.6 10.9 242 466

Haller [16] 5.5 4.5 10.0 305 584

Please note that all of the units proposed before require

an additional cycle to produce the correct result in cases

when N2 > N1 for the BCD subtraction operations (see

Figure 5). To deal with this problem additional hardware

unit or software fix is required. In the Fischer proposal

the output stage can possible be modified for effective addi-

tion/subtraction, however, the custom made “editing logic”,

is expected to become very complex. In addition, none

of the above proposals presented how they will detect the

N2 > N1 (BCD) situation. Our design does not require

such additional effort or resources with some increase in la-

tency and area.

In terms of latency the “best” design is the one proposed

by Haller. Compared to it, our proposal is 21% slower,

but uses 15% to 16% less hardware resources (LUTs and

Slices). When considering area, Hwang’s proposal ranks

best, but has the deficiency as described above. In general,

our design is between 11% and 21% slower than the oth-

ers. Assuming a design with a latency of 10ns, e.g. Haller,

(worse case for our design) and a detection of N2 > N1
(BCD) “for free”, the average execution time is going to be

similar to ours (12ns) when 20% of the operations require

the compensation cycle as introduced earlier.

When absolute performance is considered, our design

achieves 82.6MOPS (1/12ns). Please note that this will

be significantly improved when a pipelined version of the

design is considered. The latency of the Carry-propagate

Adder is expected to de determine the operating frequency

in such a case.

5 Conclusions

This paper provides the details for a novel

adder/subtracter arithmetic unit that combines Binary

5
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and Binary Code Decimal (BCD) operations in a single

structure. The unit is able to perform effective addition-

subtraction operations on unsigned, sign-magnitude, and

various complement representations. Our proposal can be

implemented in ASIC as a run time configurable unit as

well as in reconfigurable technology as a run-time recon-

figurable engine. Under the assumption that significant

part of the hardware in the proposed structure is shared

by the different operations reconfigurable platforms with

partial reconfiguration become an interesting target. The

proposed unit and several widely used adder organizations

were synthesized for 4vfx60ff672-12 Xilinx Virtex 4 FPGA

for comparison. Our design achieves a throughput of

82.6 MOPS with similar area x time (AxT) product when

compared to the other proposals, using only 2% of the

available resources of the targeted FPGA.
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