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Abstract. In this paper we describe an efficient data fetch circuitry
for retrieving several operands from a n-bank interleaved memory sys-
tem in a single machine cycle. The proposed address generation (AGEN)
unit operates with a modified version of the low-order-interleaved mem-
ory access approach. Our design supports data structures with arbitrary
lengths and different (odd) strides. A detailed discussion of the 32-bit
AGEN design aimed at multiple-operand functional units is presented.
The experimental results indicate that our AGEN is capable of pro-
ducing 8 x 32-bit addresses every 6 ns for different stride cases when
implemented on VIRTEX-II PRO xc2vp30-7ff1696 FPGA device using
trivial hardware resources.

1 Introduction

Nowadays, performance gains in computing systems are achieved by using tech-
niques such us pipelining, optimized memory hierarchies [1], customized func-
tional units [2], instruction level parallelism support (e.g. VLIW, Superscalar)
and thread level parallelism [3] to name a few. These time and space parallel
techniques require the design of optimized address generation units [4-7] capable
to deal with higher issue and execution rates, larger number of memory refer-
ences, and demanding memory-bandwidth requirements [8]. Traditionally, high-
bandwidth main memory hierarchies are based on parallel or interleaved memo-
ries. Interleaved memories are constructed using several modules or banks. Such
structures allow distinct banks access in a pipelined manner [9]. In this paper
we propose an AGEN for efficient utilization of n-way-interleaved main memory
containing vector data, e.g. supporting kernels like SAD (sum of absolute dif-
ferences) and MVM (matrix-vector multiply) operations. More specifically, the
main contributions of this paper are:

— An AGEN design capable of generating 8 x 32-bit address in a single cy-
cle. In addition, arbitrary memory sequences are supported using only one
instruction.

— An organization that uses optimized Boolean equations to generate the 8
offsets instead of an additional adders stage.



— An FPGA implementation of the proposed design able to fetch 1.33 Giga
operands per second from an 8-way-interleaved memory system using only
3% of the targeted device.

The remainder of this paper is organized as follows. Section 2 outlines the nec-
essary background on interleaved-memory systems. Section 3, presents the con-
sidered vector architecture, the memory interleaving mechanism and the design
of the AGEN Unit. In Section 4, we discuss the experimental results in terms
of used area and latency. Finally, in Section 5 conclusions and future work are
presented.

2 Background

The use of multiple memory banks for providing sufficient memory bandwidth
is the key element when memory system performance is evaluated [10]. The ac-
cessing of consecutive data elements separated by a fixed addressing distance is
called a stride. The stride describes the relationship between the operands and
their addressing structure. A memory organized with several banks which store
elements in a stride manner is called an interleaved memory [11,12].

Given that an n-bit address memory field can be divided into 1) memory-unit-
number and 2) address in memory unit (memory-address), two main addressing
techniques arise from this basic address division as depicted on Figure 1.

(a) High interleaved addressing mapping utilizes the low address bits v as
memory-address in the unit, while the higher bits u represent the memory-
unit-number. This technique is used by the traditional scalar processors with
multiple memory pages.

(b) Low interleaved memory mapping use the low address bits u to point out
the memory-unit-number, while the higher memory bits v are the memory-

address.

< u > v > v > u >

| Memory Unit Number] Address in a memory unit | | Address in a memory unit Memory Unit Number
(a) High Interleaved address mapping (b) Low Interleaved address mapping

Fig. 1. Interleave memory formats.

The data in low-interleaved-address mapping is distributed in a round-robin like
fashion among the memory banks. For example, in the memory system with 8
banks and data structure with stride =1, as presented in Figure 2, word 0 is
stored in bank 0, word 1 is stored in bank 1. In general, word z is located in
bank z MOD 8. In this figure, one Major Cycle (memory latency) is subdivided
in 8 Minor Cycles. The retrieving of 8 consecutive elements will take one Major
Cycle and 7 additional Minor Cycles. This is due to the fact that the eight
consecutive elements from the memory banks are retrieved in parallel. Those
read values are stored in intermediate data registers from which are issued to



the functional units in a pipelined manner (using 7 additional Minor Cycles).
With this memory architecture the retrieving of x single-word elements will take
Major Cycle + (x — 1) Minor Cycles.
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Fig. 2. Interleaved memory pipelined access to memory

3 AGEN Unit design

We consider a vector co-processor consisting of a group of reconfigurable func-
tional units [13,14] coupled to a core processor. Figure 3 presents this orga-
nization. An arbiter is used to distribute the instructions between the vector
unit and the scalar processor following the paradigm proposed in [15]. Please
note that many current platforms implement similar approaches, e.g. the Fast
Simplex Link interface and the Auxiliary Processor Unit (APU) controller for
MicroBlaze and PowerPC IP cores [16]. The memory banks presented in Fig-
ure 3 are built using dual ported memories, e.g. BRAMs [17] in case of FPGA
implementation, shared by both processors, the scalar and the vector. One port
of the BRAM is used by the scalar processor as a linear array memory organi-
zation with high interleaved address mapping. The second port is used by the
vector unit. The memory access from the vector processor side requires ded-
icated AGEN unit (different from the one embedded into the core processor)
that generates the addresses for the 8-way interleaved memory organization in
the correct sequence order. The vector data is distributed in an interleaved-way,
scattered by the stride values, that requires 8 different addresses for each mem-
ory access. The AGEN unit is configured to work with single or multiple groups
(with the same stride) of streamed data using a single instruction. The AGEN
special instruction configures the base addresses, the stride and the length of
the particular streaming data format. The memory accesses can be performed
in parallel with the execution phase of a previous iteration using the decoupled
approach as presented in [2].
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Fig. 3. Block diagram of the reconfigurable Custom Computing Unit

3.1 Memory-interleaving mechanism

In this paragraph the mechanism to retrieve n data elements in parallel is pre-
sented. Figure 4, shows eight different stride cases, with odd strides < 15 for
eight memory banks. For example, the stride shown in case (b), is three. One
can see, that in all of the cases the data is uniformly distributed in the mem-
ory banks. This fact suggests the feasibility of an AGU capable to generate the
effective addresses of n data elements every major cycle. This can be formally
stated as follows:

n data elements stored in m memory banks can be retrieved in a single
major cycle if the stride is an odd integer and n is a power of two.

Otherwise stated this can be extended as follows:

n data elements stored in m memory banks can be retrieved in a single
magor cycle if ged(n,Stride)=1.
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Fig. 4. Example of 8-way interleaved memory banks with odd strides < 15.

The notation ged(a,b) is used for the greatest common divisor. Two integers a, b
are relatively prime if they share no common positive factors (divisors) except



of 1, e.g ged(a,b) = 1.

Extension to the general case: Let’s consider n banks of memory each holding
m memory cells. The m xn memory array can be represented as a matrix [m X n)
where each column corresponds to a memory bank. In addition, the cell 7 of the
memory bank j corresponds to the matrix element with indexes (7, j). We denote
this matrix as A and consider n = 2" and m for its dimensions, with h,m € N.
In addition, the stride of the data structures stored on the memory is an integer
Str=2¢+1,q € N.

From now on, the data stored in the memory banks will be considered as ma-
trix A elements. Let the n consecutive data elements placed in different memory
banks be denoted by:

AQy vy A1 - (1)
Remark 1. Every element a,, with a = 0,...,n — 1, is identified in the matrix
by its row-index i, with ¢ = 0,1,...,m — 1, and its column-index j, with 7 =
0,1, ...,n—1. This means that there exists a one-to-one relation among a,, and the
indexes couple (in, jo). Additionally, the couple (i4, jo) can be used to represent
G as a number in base n, obtainable as juxtaposition of i, as most significant
digit and j, as least significant digit. The two indexes can also be used in a
base 10 representation. Therefore, we have the following chain of equivalent
representations for a:

Ao < (i Ja) < (Zaﬂa)\n = (niq ‘|’ja)|10- (2)

As an example, Table 1 shows the chain of representations as defined in (2) for
a case where n = 8 and Str = 3.

Table 1. Correspondence ay < (fasJa) + Aq|n > aqji0 for n =8 and Str = 3.

Element aq Row-Index i, Column-Index jo |@a|8|@a|10
ag 0 0 00 0
a 0 3 03 3
az 0 6 06 6
as 1 1 11 9
aq 1 4 14 12
as 1 7 17 | 15
ag 2 2 22 | 18
ar 2 5 25 | 21

Remark 2. Without loss of generality, we can assume that the first element ag
stored in the matrix remains at position (i, jo) = (0,0).

Lemma 1. The number of rows necessary to hold n elements with stride Str =
2q+1,q € N is Str.

Proof. The number of cells (f..;;) necessary to store n elements with stride Str
is feett = n 4 (Str — 1) n = n(2¢ + 1). Therefore, the number of rows is

feen mod n = n(Str) mod n = Str. (3)
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Remark 2 and Lemma 1 imply that the necessary rows to store the n elements
with stride Str are:
{0,1,...,Str — 1} (4)

The n data a, can be defined recursively. If ag = (ig,jo) the elements
a3, ..., an—1 can be recursively defined as follows:

Go = Qo1 + Str. (5)

Theorem 1. Let n be the number of elements a,, with & = 0..n — 1, stored in a

matrix A, m x n, with n = 2". Let the stride be the integer Str € N. If (i, jo)
and (ig,jp) are the couples of indexes identifying a, and ag in the matrix and
ged(n, Str) = 1, we have:

Ja #]ﬁ vavﬂe [0,...,”—1]. (6)

Proof. Without loss of generality, by Remark 2, we can assume (ig, jo) = (0,0).
By contradiction let j, = jg. We have two possible cases: (1) i, = ig and (2)
io # ig.

The first case is not possible: more precisely, if i, = ig will lead to aq = ag
since jo = jg (see Remark 1).

In the second case: iy # ig. Firstly, by (4), it follows:

ig —ia € [0,Str — 1. (7)
Without loss of generality we can assume 8 > «. By (5) we have:
ag = ag—1 + Str = ag_s + 2Str = ... = a, + xStr, (8)

with € N and = < n; it is straightforward to show that x = § — a. By using
the representations in base 10 of a, and ag (see (2)), the equation (8) becomes:

nig + jg = Niq + jo + xStr, 9)
taking into account the assumption j, = jz we can rewrite (9) as
n(ig —iq) = x Str. (10)

Since ged(n,Str) = 1 and n divides the product = Str, it follows that n is a
divisor of x. This implies that: x = r n, with r € N. Therefore x > n which
contradicts the original hypothesis. As a consequence, it must be that j, # jg,
for all o, 8 € [0, ...,n — 1].

O

Remark 3. The previous theorem can be reformulated saying that if n data ele-
ments are stored in n memory banks with a fized stride Str and the ged(n, Str) =
1, each data element is stored in a different memory bank.



Corollary 1. By Theorem 1 it follows that the data are stored in different
memory banks if n = 2" and Str is an odd integer and viceversa if n is an odd
integer and Str = 2".

Example: Let’s consider the case (b) presented in Figure 4. In this example,
n = 8, the Str= 3. This is also the case considered in Table 1. Column 3 of Table
1, shows that each element of this data structure belongs to a different column
and therefore to a different memory bank. This follows by Theorem 1. If there
exist two elements a,,ag with the same column index then there exists x < 8
such that: n(ig —is) = ©(2¢+1) (¢ = 1 in this case). Considering that n = 8 in
our example, n(ig — iy) can be either 8 or 16. The difference cannot be 0 since
in that case i, = ig and therefore a, = ag. As a consequence, we have two cases
8 = 3z or 16 = 3z and both equations don’t have an integer solution for z.

3.2 The AGEN Design

As stated in [18] effective address computation is performance-critical. The
AGEN unit described in this section generates eight addresses for fetching
data elements simultaneously from an 8-way interleaved memory system at high
speed. The AGEN is designed to work with multi-operand units [13, 14] and uses
a special-purpose-instruction such as the ones presented in [19]. In Figure 5 an
example of such instruction is presented. The multiple base addresses in this
instruction are necessary for cases with multiple indices such as SAD and MVM
operations.

Reg1 Reg2  Reg3 Reg4 Reg5 Reg6
0 8 1 28 31

2 16 20 24
Opcode | Base 1 | Base2 | Base3 |Length| Stride | Index |

Fig. 5. Compound Instruction

The 4-bit instruction fields depicted in Figure 5, define the registers con-
taining the addresses and/or the length and the stride parameters of the data
structure to be accessed. More precisely they are:

— Base;(i = 1,2, 3). These registers contain the memory addresses that point
to the first elements of an data arrays to read or write in the interleaved
memory organization. For example, the minuend and subtrahend in the sum
of absolute differences (SAD) instruction or multiplicand, multiplier and
addendum in multiply-accumulate (MAC) operations.

— Length. This register holds the number of n-tuples (cycles) needed to gather
y-elements from the memory. For example, when length value is 10 and
n = 8, 80 elements will be retrieved in 10 memory accesses.

— Stride. This register holds the distance between two consecutive data ele-
ments in an n-way interleaved memory. In our case the possible strides are
odd numbers in the range between 1 and 15. Thus, strides are expressed as
2q + 1, with 0 < ¢ < 7. In our design, these eight possible stride values are
encoded using three bits.

— Index. The address stored in this register has two uses:



e The register contains the vertical distance between two consecutive groups
of n elements. For example, Figure 4 (a) presents the index (also referred
as vertical stride) that is equal to 9.

e Sometimes the AGEN can be used to retrieve a single data word. In this
case the register value is used as an offset address.

Equation (11) describes the effective address (EA) computation. EA is obtained
by the addition of a pre-computed base-stride (BS) value, the index (IX) value
and the memory-bank offsets represented by Ai(0...3). Figure 6(e) depicts the 8
x EA generators for the targeted 8-way interleaved memory system.

EA; =BS+ Ai(0.3)+1X ¥V 0<i<7 A RES>0 (11)
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Fig. 6. Address Generation Unit: (a) Accumulator for BS computing, (b) Accumulator
for loop control, (¢) Hardwired encoder, (d) Index Accumulator, (e) Final addition
Effective Address computing

The first addendum term (BS) of equation(11) is computed using the follow-
ing relation: BS = Base + k.Stride. During the first cycle, BS is equal to the
base address, therefore a 0 value is used for the second term. Thereafter, the
stride offset is added for each k iteration. Note that the stride value is equal
to the offset between two consecutive data elements in the same column (see
also Figure 4). In Figure 6(b) the subtractor used for counting the number of
memory accesses is presented. In each clock cycle, e.g. equivalent to 8 iterations
of an unrolled loop, the subtractor value is decremented by one until it reaches
zero. A negative value of the subtractor result (underflow) asserts the “Int”
flag, indicating the end of address generation process. Figure 6(c) represents the
hardwired logic for computing the offset-value Ai(0...3) which will be discussed
in address transformation subsection in more details. Finally, Figure 6(d) shows
the IX computation.

The accumulator structure presented in Figure 6 (a) is composed by two
stages partially (4-bits only) shown in Figure 7. The first stage consists of an
4/2 counter which receives the SUM and the Carry signals of the previously



computed value. The other two inputs (shown left on the figure) receive the mux-
es outcomes used to select the appropriate operands (base and stride values) as
explained above. The second stage consist of a 2/1 adder that produces the BS
values.

‘0’ Bas(i+3) ‘0’ Str(i+3) ‘0’ Bas(i+2) ‘0’ Str(i+2) ‘0’ Bas(i+1) ‘0’ Str(i+1) ‘0’ Bas(i) ‘O’ Str(i)
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Fig. 7. Main accumulator circuitry

Address transformation: The stride values supported by our implementation
are encoded using 3 bits represented by S251Sp. The pattern range 0005..1115
encodes the 2¢q + 1 stride values with 0 < ¢ < 7. A hardwired logic is used to
transform the encoded stride values into the corresponding A0, ..3),.., A7(0...3)
address offsets using a memory-bank-wise operation. A “memory-bank-wise” ad-
dress is created based on the stride value. For example, consider Figure 4 (c)
that presents the case for stride = 5. In this case, concerning banks 1 and 4
offset values of 3 and 2 are required. These correct memory-bank-wise values are
generated by our hardwired logic. Please note that our approach supports all
possible odd stride values in the range between 1 and 15. The exact transforma-
tions are presented as a set of equations in Table 2.

Table 2. Hardwired Encoder - Set up Table of Equations

[Bank] Ao [ Ay [ A, Az
0 0 0 0 0
1 [S2-51-80+ 5251 So+ Sy - St Sz - So + 5152 Sz - S1

Sy +S1-So+S2- 5180
2 S1 S2 - S1 S0+ S - So+ S5 - S1 - So Sa - So
Sa - S1
3 Sa Sa - So S5 - S1 Sz - S1
4 So S1 Sa 0
5 Sa S - So S2-51+S0+S2-S1-S50[S2-S1-So
[ S1 Sg - S1 4+ Sz - So+ So - 81 -So S251S0
Sy - S1-So
7 |S2-S1-So+S2-S1-So+ So - 51 S2 - S1+ S-S 0
Sy 51+ 80

e.g. the address bit Ag for bank 1 will be: Ay = S3 - S + S1 - Sa2.
This value (offset) is added to the current Base address value for obtain EA
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4 Experimental Results Analysis

The proposed address generation unit was described using VHDL, synthesized
and functionally validated using ISE 7.1i Xilinx environment [20]. The target
device used was VIRTEX-II PRO xc2vp30-7ff1696 FPGA. Table 3 summarizes
the performance results in terms of delay time and hardware utilization of the
complete AGEN unit as well as the major sub-units used in our proposal.

Table 3. The Address Generation unit and embedded arithmetic units

Time delay (ns) Hardware used
Unit Logic Delay[Wire Delay[Total Delay Slices[ LUTs
Address Generation Unit | 45 | 14 | 60 [673] 1072
Hardwired encoder (Digitwise) } 0.3 - 0.3 9 16
4:2 counter i 0.5 0.5 1.0 72 126
3:2 counter f 0.3 - 0.3 37 64
32-bit CPA (2/1) adder } 2.2 0.7 2.9 54 99

f: Embedded circuitry into AGEN unit. Those are presented without I/O buffers delays.

From Table 3 it can be seen that the 32-bit CPA adder used is the most
expensive component in terms of delay. The latency of this adder can be ad-
ditionally improved using a deeper pipeline of the CPA as shown in [21]. This
will improve the overall performance of the proposed unit but will require a
deeper pipelined organization. The last is important for technologies with lower
memory latency like the Virtex 4 and Virtex 5 devices [22]. The AGEN unit
proposed here uses 3 stage pipeline. The first two pipeline stages correspond to
the accumulator for BS computation (Figure 6(a)) and the third one to the 3/2
counter array and the final 2/1 adder. The latter forms the critical path for our
implementation.

The proposed AGEN reaches an operation frequency of 166 MHz. Other-
wise stated, our proposal is capable to generate 1.33 Giga addresses of 32-bits
(totaling 43.5 Gbps) from an 8-way interleaved memory. Concerning the silicon
area used by the proposed AGEN, the total unit uses only 3 % and 4 % of the
targeted device in terms of slices and LUTSs respectively.

5 Conclusions

A detailed description of an efficient vector address generation circuitry for re-
trieving several operands from an n-bank interleaved memory system in a single
machine cycle was presented. The proposal is based on a modified version of the
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low-order-interleaved memory approach. The theoretical foundation of the pro-
posed approach that guarantees the trivial indexing structure was also presented.
Moreover, a new AGEN unit capable to work with dedicated multi-operand in-
struction that describes inner loops was introduced. An analysis of the latency
of the proposed unit indicates that it is capable to generate 8 x 32 bit addresses
every 6 ns. In addition, our design uses only 3 % of the hardware resources of
the targeted FPGA device.

Our future work will focus on defining the complete ISA for the embedded
functional units as well as the design of a more efficient reconfigurable inter-
connect switch with the aim of diminishing the latency and area cost of our
implementation. We are also considering the design and analysis of the complete
vector facility.
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