
Design Space Exploration of Configuration Manager
for Network Processing Applications

Christoforos Kachris, Stamatis Vassiliadis
Computer Engineering Lab

Delft University of Technology
The Netherlands

{kachris, stamatis}@ce.et.tudelft.nl

Abstract—Current FPGAs provide a powerful platform for
network processing applications. The main challenge is the
exploitation of the reconfiguration to increase the performance of
the system. In this paper, a design space exploration framework
is presented to design a reconfigurable platform for multi-service
network processing applications. An integrated design flow is
presented from the system level analytical design to the
implementation level. Furthermore, the design of an efficient
configuration manager is presented in which the platform
adaptation is performed for optimum speedup with minimum
overhead taking into account the reconfiguration overhead and
the network characteristics (packet type distribution, network
stability). Finally, a case study is presented in which the platform
is used to process three network flows with different processing
requirements.

I. INTRODUCTION

The increase of network traffic and the emerging network
applications have created the need for more powerful network
processing devices. The first network devices were using
general-purpose processors to perform simple header
processing. Currently, the emerging applications such as VoIP,
Video-On-Demand, Virtual Private Networks (VPNs),
wireless networks, and others require not only simple header
processing but also powerful payload processing (e.g.,
encryption, compression, and intrusion detection). These
requirements are mainly faced at the edges of the networks,
while in the core networks the majority of the packets need
simple header processing. The current network processors
have been evolved to multi-threaded multi-processor platforms
that can face the header processing requirements. Although the
majority of the network processors incorporate some hardware
acceleration units, these units cannot handle efficiently the
increased payload processing requirements.

Hence reconfigurable platforms (e.g., FPGAs) provide a
viable and power efficient alternative for the demanding
payload processing requirements. The reconfigurable
platforms can be used to achieve both higher performance and
lower power consumption compared to a network processor
since hardware accelerators are used instead of software
processing that consume less power. The main benefit of the
FPGAs is that they can be reconfigured to meet the workload
requirements, thus they can adapt to the fluctuations of the
network traffic. Furthermore, some of the modern FPGAs can

be partially reconfigured; hence the static part of the system
remains operational. The main drawback of the
reconfiguration is that during reconfiguration the system is
partially working hence the performance is decreased
compared to a static system. Furthermore, the reconfiguration
scheduler must be carefully designed not to add overhead.
Hence, a reconfigurable platform for network processing must
be carefully designed in order to exploit the reconfiguration
without adding overhead to the system. In addition, the
dynamic reconfiguration can be used to lower the power
consumption of the network devices. The static power
consumption keeps increasing and today is a significant
fraction of the total power consumption. The use of dynamic
reconfiguration can result to the use of a smaller device (hence
less number of gates) while providing the same performance.
For example, the quiescent power of an FPGA device with
40K slices is almost the same with the dynamic power
consumption of 20K slices using a 100MHz clock frequency
and 12.5% toggle ratio [16]. Hence, the use of dynamic
reconfiguration can result to a lower cost and lower power
solution.

This paper presents an integrated framework for the design
space exploration of a reconfigurable platform for network
processing applications and can be used to tune the
reconfiguration manager depending on the systems
characteristics and the network features (network distribution,
network stability, etc.). A case study is presented in which the
platform has to process three network flows with different
processing requirements. The system is explored in terms of
network stability, reconfiguration overhead, and average
packet size to determine the sample rate and the network
threshold to achieve higher speed ups. The contributions of
this paper are:

• An integrated framework for the design space
exploration of reconfigurable platforms in network
processing applications

• A methodology to find the optimum scheduler
configuration in terms of sample rate and network
threshold

• A case study of reconfigurable network processor that
needs to process three different flows for changing
network stability

Section 2 presents the related work in the area of design
space exploration and design of configuration managers.
Section 3 presents the reconfigurable platform for network
processing and the proposed design flow. Section 4 presents a
case study for a network device that processes three different
flows, the design space exploration for several scenarios and
the framework for the tuning of the configuration manager.
Finally, section 5 presents the conclusions and the future work.

II. RELATED WORK

The use of design space exploration (DSE) tools can be
very useful when designing the micro-architecture of the
network processor. EXPO [1] is a DSE tool that uses the
theory of the arrival and service curves to model the operation
of network processors. The computation complexity in this
case is too expensive, thus they use a piecewise linear
approximation of all arrival and service curves. The network
processors can be modeled in a task graph and given the
mapping of tasks to available resources it can estimate the
Pareto-optimal solution for access and backbone networks.
The tool is restricted to model a system with a common bus
that every resource is attached to this bus.

In [2] a design space exploration is performed using several
parameters of a general-purpose processor such as the
processor clock rate, the instruction and data cache size, the
area and the memory access time for network processing
applications. The CommBench [14] benchmark is used to
illustrate the difference of the optimum configuration using
packets that only need header processing versus packet that
need also payload processing. The model is applied both to a
single processor and multiple processors. In [3] a design space
exploration of the System-On-a-Chip (SoC) communication of
the components is performed. The number of busses and
bridges are investigated in order to find the optimum
configuration for a given graph of connected modules.

Finally, STMicroelectronics has presented a system-level
exploration platform for Network processors called StepNP
[4], [5]. In that case the platform contains multi-threaded
processors connected with a custom network-on-a-chip. The
system is modeled at the functional and transaction levels and
not at a cycle-accurate level. All of these frameworks are used
to perform design space exploration to find the optimum static
architecture for specific network traffic. In the area of
reconfigurable logic, many have proposed the use of FPGAs to
accelerate the performance of the system by exploiting the
dynamic reconfiguration. In all of these cases the system is
targeting multimedia applications in which the co-processors
are scheduled based on the application task graph.

In [10], a reconfiguration manager is presented to hide the
reconfiguration latency. The manager applies two different
techniques at run-time: prefetch scheduling and replacement.
In the prefetch scheduling technique, the manager schedules
the reconfiguration based on scheduled sequence of tasks and
their loading latency. Furthermore, they apply an intertask
optimization technique to further decrease the reconfiguration
overhead. In [11] various types of prefetching to reduce the

reconfiguration overhead are also applied for the configuration
manager. They present techniques such as static, dynamic and
hybrid configuration prefetching. Furthermore, the
configuration manager applies relocation and defragmentation
techniques to reduce the dynamic reconfiguration overhead. A
similar approach is presented in the MOLEN framework [13],
in which a polymorphic processor is presented incorporating
both general purpose and custom computing processing. The
reconfiguration is mainly scheduled by the software, in which
the hardware accelerators are pre-loaded in order to decrease
the reconfiguration overhead.

In [15] a framework for reconfigurable computing
scheduling is presented in which the main task is the
scheduling of the reconfigurable units at design time. A
similar approach is also presented in [8][9], in which the
optimum scheduling sequence is investigated based on the task
graphs of the applications. In all of these approaches the
scheduler can decide based on the task graph the sequence of
the reconfiguration. On the other hand, in the area of network
processing the workload is dynamic hence the management of
the reconfigurable units should be performed on-the-fly.
Furthermore, the scheduling of the reconfigurable units should
be simple enough so there is no much processing overhead.
Hence, complicated algorithm should be avoided that will
consume part of the processing power.

Finally, in [12] a configuration management for network
devices is presented. The proposed architectural framework
incorporates a mobile agent based methodology for the
networked reconfigurable embedded devices. The paper
presents the system level framework in which the embedded
devices that are based on FPGAs can be used similar to
software upgrades. Hence, the system is mainly based on the
higher level of the architecture and not on the dynamic
reconfiguration at run-time to adapt the system to the network.
Also in [17] a case for run-time adaptation in packet
processing systems is presented that targets the Intel network
processors. The proposed framework is used to allocate
several micro-engines (simplified processors) depending on
the fluctuation of the network flow. Each micro-engine is used
for separate flow, thus the system is used to automatically
allocate a specific number of processor for each flow.

III. SYSTEM DESCRIPTION

The proposed system is targeting reconfigurable platforms
(e.g., FPGAs) and consists of a number of specialized
processors and a number of co-processors (hardware
accelerators). The block level diagram of the system is shown
in Figure 1. It consists of a shared bus to which both the
processors and the co-processors are attached. Moreover,
additional co-processors can be attached directly to the
processor using dedicated interfaces. The system can be
logically divided into two parts. The first part is static while
the second part can be reconfigured. The static part
incorporates the processors, the shared bus, the network
interface units, the memory controllers and some of the co-
processors. On the other hand, the reconfigurable part

incorporates the co-processors units and it is controlled by the
configuration manager. The whole system is based on the
Xilinx Virtex4 FPGAs that support partial reconfiguration;
hence the static part is operational while the reconfiguration
part is being reconfigured.

The network processors that are used at the edge of the
networks (e.g. edge routers) have to process several flows with
different processing requirements. As a case study, Figure 2
shows a task graph in which the packets are classified into
three different flows. In case that the packets belong to a VPN
connection that payload must be encrypted. If the packets are
sent to wireless devices, the payload needs to be compressed.
In all other cases, the packets are just forwarded to the next
network device. The main challenge of a system designer is to
create a balanced system in which the network processor can
face the network traffic. The main advantage of the
reconfigurable platform is that it can be reconfigured to the
best configuration for each network traffic distribution.
Furthermore, the use of reconfigurable platforms for network
processing can be used to upgrade the system with new
updated accelerators or the use of new co-processors for
emerging technologies (VoIP, Video-on-Demand, etc).

The main challenge in the design of a reconfigurable
platform is to find the best configurations for each traffic flow
distribution and then to design a configuration manager that
will be tuned to exploit the reconfiguration based on the
changing network traffic taking into account the
reconfiguration overhead. The proposed design flow for the
efficient design of a reconfigurable platform for network
processing is shown in Figure 3. The first task is the system
analysis, then the performance evaluation and finally the
design space exploration and the tuning of the configuration
manager.

Packet
Classification

Decryption

Compression

IP
Forwarding

Figure 2. Network Traffic Flows

System Analysis

Performance
evaluation

Design Space
exploration

Find optimum configuration
for each flow under the

system constraints

Measure the performance of
these configurations

Tune the configuration
manager (threshold, sample
rate) given network features

Figure 3. Design Flow

The system analysis is used to perform an analytical

design space exploration of the platform at the system level
and to find the optimum configuration for each workload. The
system is described in terms of integer linear programming in
order to find the best configuration in terms of number of
processors, number of co-processors and type of connection
with the processor [6]. The co-processors can be connected
either directly with the processor using direct interfaces or can
be attached to the shared bus. The direct interface provides
faster interconnection between the processor and the co-
processor with reduced latency. On the other hand, the co-
processors attached to the shared bus provide higher
throughput using the DMA burst functions but introduce
higher latency. The whole system is described as an integer
linear programming problem in which the processing time of a
specific flow distribution is the function that must be
minimized based on several constraints. The constraints of the
current system are the following:

• Maximum number of units attached to the bus
• Maximum number of units attached to the processor
• Maximum bandwidth of the shared bus
• Processing power requirements
• Minimum Quality-of-Service requirements for some

specific flows
• Maximum Reconfigurable and Static area

Using these constraints we can perform an analytical design
space exploration and find the best configuration for each
network flow distribution. The solution of these equations
provide the number of processors, the number of each co-
processor and the connection with the processors (direct or
using the shared bus). The detailed framework is described in
[6]. The results depend on the type of processor (hard-core or
soft-core), the bandwidth of the bus (64-bit or 32-bit) and the
average packet size. The hardware accelerators that handle
header data tend to be attached directly to the processor while
the co-processors that use the packet’s payload tend to be
attached to the shared bus. The following table shows the best
configuration for each network flow distribution. For the flow
distribution we used the flows shown in Figure 2. The first
coprocessor is used for DES encryption/decryption and the
second co-processor is used for Lemplel-Ziv Compression.

RISC
Processor

RISC
Processor

Pool of processors

Co-P1 Co-PnConfiguration
Manager

Fixed
Co-

Processors

Reconfigurable Part

 Static Part

...

...

DMA, NI,
Co-Proc.

BRAMs

Figure 1. System Block Diagram

Table 1. Configuration per Traffic Distribution

Network Flow Distribution
(Plain-Encr.-Compr.)

Opt. Configuration
(DES-LZCompr)

50%-25%-25% 2-2
25%-50%-25% 3-1
25%-25%-50% 1-3

After the system level design space exploration, a more
detailed performance evaluation can be performed to measure
the real throughput of the system for each configuration. In the
performance evaluation the system is developed and simulated
using real and synthetic traces to measure the performance of
the system [7]. The distribution of the network flows
(percentage of packets that belong to each flow) was synthetic
in order to measure the performance of the system for several
network flow distribution. The performance evaluation can be
used to measure in more details several features of the system
such as the exact processing time, the utilization of the
processors and the co-processors, the utilization of the bus and
the power consumption of each configuration. Furthermore,
the implementation of the system can also provide information
about the reconfiguration overhead. The reconfiguration time
(the time to partially reconfigure the device) depends on the
area of the co-processors (in terms of slices for the FPGAs)
and the sequence of the configurations. The following table
(Table 2) shows the execution time for each packet (assuming
256 bytes as average packet size) belonging to different flow
per configuration and Table 3 shows the reconfiguration time
depending on the number of reconfigurable units.

Table 2. Processing time per configuration
Processing (usec) Configuration Forward Encrypt Compress

1. 2DES-2LZC 0.1 8.4 7.3
2. 3DES-1LZC 0.6 2.4 12.3
3. 1DES-3LZC 0.6 16.5 1
4. 1DES-1LZC 0.2 12.9 5.3

Table 3. Reconfiguration time

Number of co-
processors

Configuration Time

1 2.1ms
2 4.2ms

Finally, a design space exploration of the system should be
performed to tune the configuration manager in order to
achieve the maximum speed up. The design space exploration
takes into account the network stability, the reconfiguration
time and the average packet size to tune the manager in terms
of network threshold and sample time. The network threshold
is used by the configuration manager to decide when it should
perform a reconfiguration. If the sample rate is small then the
configuration manager will have a major overhead to the
system and the configurations will be too often. On the other
hand if the sample rate is large (thousand of packets) then the
system does not adapt fast enough to the network traffic hence

a reduced speed up is achieved. Hence, a design space
exploration tool is developed to check if the reconfiguration
can achieve higher throughput than a static system and then
find the configuration values for the threshold and the sample
rate.

IV. DESIGN SPACE EXPLORATION AND TUNING

After the performance evaluation of the implemented design a
more accurate design space exploration can be performed. A
framework has been developed in Matlab in which the
following operations are performed:
• Calculation of the speedup based on

o The network stability
o The reconfiguration time
o The sample rate
o The network threshold

• Design space exploration to find the optimum sample rate
• Design space exploration to find the optimum network

threshold
• Design space exploration to find the best sample rate and

threshold for given network stability and reconfiguration
time.

Figure 4 shows the GUI of the framework for a specific
simulation in which the traffic distribution change 2 times,
thus the system is reconfigured each times. The system is
initialized in the balanced configuration (2 units for encryption
and 2 units for compression), then switch to the encryption-
optimized configuration and then to compression-optimized
configuration. Each integer represents a configuration from
Table 2. The state in which the reconfiguration takes place and
the spare units cannot be used is symbolized as 4. As it is
shown in the figure the reconfiguration time when the system
change from Config2 to Config3 is double as the others, since
both of the reconfigurable spare units are reconfigured. The
lower figure shows the processing time per number of samples
packets (in this case 100 packets). As it is shown, during the
reconfiguration the processing time is much higher than the
static system. This is due to the fact that the spared co-
processor units that are reconfigured cannot be used. But after
the reconfiguration the processing time of the dynamic system
(dashed line) is lower than the static system. Hence, this
framework is used first to explore the speedup of the
reconfigurable system for several network workloads. The
network stability represents the time in which the distribution
of the flows remain the same (e.g. 50% of the packets need
just forwarding, 25% need compression and 25% need
encryption) with some variation (e.g. ±5%). If the network
stability change too often then the system is reconfigured too
often hence a negative speedup is achieved due to the
reconfiguration overhead. The network stability values can be
measured from the targeted network. In order to have a
positive speedup the performance of the system with the new
configuration and during the reconfiguration time must be
better than the performance of the system of keeping the
previous configuration as it is shown in the following
equation:

)(confignewoldconfigconfignewnew ttPtPtP +⋅≥+ (1)

where,
tnew : the time that the new configuration is active
tconfig : the time for the reconfiguration
Pnew : the performance of the new configuration
Preconfig : the performance during the configuration
Pold : the performance of the previous configuration

Figure 5 shows how the speedup of the reconfigurable system
depends on the network stability and the reconfiguration time.
When the network distribution changes too often (5ms) then
the speedup is usually negative. As the network become more
stable (the distribution remain the same for more than 10 ms),
the speedup increase up to the maximum speedup (the
maximum speedup is calculated assuming a zero
reconfiguration time). In the last case that the network is quite
stable (30ms) the reconfiguration time has small effect on the
speedup of the system. The reconfiguration time depends on
the number of co-processors that are reconfigured and the
features of the FPGA device (height and width in terms of
slices).

Figure 4. Speedup Calculation

0.5 1 1.5 2 2.5 3

x 104

-0.05

0

0.05

0.1

0.15

0.2

Stability (usec)

S
pe

ed
up

2ms
3ms
4ms

Figure 5. Speedup vs. network stability

Furthermore, the framework can be used to specify the
network threshold in which the system must be reconfigured.
If the network threshold is too low then the reconfiguration
will happen too often. On the other hand if the threshold is too
high then the system will fail to adapt to the workload traffic.
The design space exploration can be achieved using any
heuristic algorithm. But since the possible values is bounded
(0-100), a two-phase exhaustive search is performed. In the
first phase the percentage is increased every 10% and then a
more detailed second phase is performed around the maximum
value of the first-pass. As it is Figure 6, the best threshold for
the change of the reconfiguration from the balanced
configuration to the encryption-optimized configuration is
around 40% of encrypted packets for 20ms network stability
and 2ms reconfiguration time for each co-processor unit. The
network threshold depends also on the previous and the next
configuration. For example, the threshold to change back from
the encryption optimized configuration to the balanced
configuration is higher (percentage of simple packets must be
at least: 49%). Hence, using the specific framework we can
easily specify the threshold for each pair of configurations.

Figure 6. Design space exploration of threshold

Besides the network threshold, the sample rate is also crucial
to the performance of the system. The sample rate represents
the number of packets that have to be received to measure the
network distribution. If the sample rate is too high (e.g. every
50 packets) then there is no accurate estimation of the network
distribution. On the other hand, if the sample rate is too low
(e.g. every 400 packets) then the system fail to adapt fast to
the changing network traffic hence, the speedup is reduced.
Figure 7 shows the design space exploration of the sample rate
(number of packet to be accumulated) for 20ms network
stability and 2ms reconfiguration time. The figure shows that
the maximum speedup is achieved using around 100 packets.
The overhead of the sample rate is usually negligible to the
performance of the system. After the classification of the
packet a counter that counts the number of packets that belong
to each flow is upgraded without wasting processing power.

Figure 7. Design space exploration of sample rate

Finally the framework is used to perform a design space
exploration for various network threshold and sample rates.
Figure 8 shows the speedup of the system for several sample
rates (30, 60, 90, 120 and 150 packets) and for several network
thresholds (30%, 35%, 40%, and 45%). As it is shown both of
these parameters are crucial to the speedup of the systems. The
figure shows the design space exploration for 20ms network
stability and 2ms reconfiguration for each co-processor unit.
The best speedup is performed when the sample rate is around
120 network packets and the minimum threshold before the
reconfiguration is 40% of a specific flow. Hence, using this
framework we can easily tune the configuration manager
depending on the network characteristics in order to achieve
the maximum speedup of the reconfigurable platform.

The main advantage of the proposed design flow is that a
simple Look-Up-Table can be constructed in an embedded
RAM (Block RAM) that stores the performance of several
configurations such as in Table 2 and decide on the
reconfiguration based on the network stability and using the
equation shown in (1). The network stability can be obtained
by counting the time that the distribution of the flows remains
the same. Hence, the configurable manager can achieve
efficient decision making about the scheduling of the
reconfigurable units by using this LUT without performing
complicated algorithms.

V. CONCLUSIONS

In this paper an integrated framework has been presented that
can be used to perform a design space exploration of the
performance of a reconfigurable platform for network
processing. This framework can be used to easily evaluate if
the reconfiguration can be used in specific network application
and network traffic. Furthermore, it provides the ability to
perform a design space exploration in order to tune the
reconfiguration manager in terms of threshold and sample rate.
These parameters are crucial to achieve the maximum speedup
over a static version. Finally, a case study is presented in
which a network system has to process three flows with
different processing requirements and how the dynamic
reconfiguration can be exploited to increase the performance
of the system.

30 60 90 120 150
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Sample rate (packets)

S
pe

ed
up

30%
35%
40%
45%

Figure 8. Design space exploration for sample rate and threshold

ACKNOWLEDGMENT

This work was supported by Sandbridge Technologies, Inc.

REFERENCES

[1] L. Thiele, S. Chakraborty, M. Gries, S. Künzli, “Design Space

Exploration of Network Processor Architectures”, Workshop on
Network Processors, 8th International Symposium on High-
Performance Computer Architecture (HPCA8), February 2002

[2] T. Wolf, M. Franklin, E. Spitznagel, “Design Tradeoffs for
Embedded Network Processors”, Proceedings of the
International Conference on Architectures of Computing
Systems (ARCS), vol.2299, pp-146-164, April 2002

[3] K. Lahiri, A. Raghunathan, S. Dey, “System-Level Performance
Analysis for Designing On-Chip Communication
Architectures”, IEEE Transactions on Computer Aided Design
of Integrated Circuits and Systems, Vol. 20(6), pages 768-783,
June 2001

[4] P. Paulin, C. Pilkington, E. Bensoudane, “StepNP: A System-
Level Exploration Platform for Network Processors”, IEEE
Design & Test, v.19 n.6, p.17-26, November 2002

[5] P. Paulin, C. Pilkington, “Application of a Multi-Processor SoC
Platform to High-Speed Packet Forwarding”, Proceedings of the
Design, Automation and Test in Europe Conference,
(DATE’04), March 2004.

[6] C. Kachris, S. Vassiliadis, "Analysis of a Reconfigurable
Network Processor", Reconfigurable Architectures Workshop,
IEEE International Symposium on Distributed and Parallel
Systems, Rhodos, Greece, April 2006

[7] C. Kachris, S. Vassiliadis, "Performance Evaluation of an
Adaptive FPGA for Network Processing", IEEE International
Conference on Rapid Systems Prototyping, Chania, Greece,
June 2006

[8] K. Papademetriou, A. Dollas, “Performance Evaluation of a
Preloading Model in Dynamically Reconfigurable Processors”,
IEEE International Conference on Field Programmable Logic
and Applications, Madrid, Spain, August 2006

[9] K. Papademetriou, A. Dollas, “A Task Graph Approach for
Efficient Exploitation of Reconfiguration in Dynamically
Reconfigurable Systems”, IEEE Symposium on Field
Programmable Custom Computing Machines, San Jose, CA,
April 2006

[10] J. Resano, D. Mozos, F. Catthoor, D. Verkest, “A
Reconfiguration Manager for Dynamically Reconfigurable
Hardware”, IEEE Design and Test of Computers, Sept.-Oct.
2005, Vol. 22, Issue: 5, pp. 452- 460

[11] Z. Li, S. Hauck, “Configuration Prefetching Techniques for
Partial Reconfigurable Coprocessor with Relocation and
Defragmentation”, International Symposium on FPGAs, ACM
Press, pp. 187-195, April 2002

[12] T. O’Sullivan, R. Studdert, “Configuration Management for
Networked Reconfigurable Embedded Devices”, Mobility
Aware Technologies and Applications, Springer-Verlag, pp.98-
107, January 2005

[13] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M. Bertels,
G.K. Kuzmanov, E. Moscu Panainte, “The Molen Polymorphic

Processor”, IEEE Transactions on Computers, pp. 1363- 1375,
November 2004, Volume 53, Issue 11

[14] T. Wolf, M. Franklin, “CommBench A Telecommunications
Benchmark for Network Processors”, Proc. of IEEE
International Symposium on Performance Analysis of Systems
and Software, April 2000

[15] R. Maestre et al., “A Framework for Reconfigurable
Computing: Task Scheduling and Context Management”, IEEE
Transactional on Very Large Scale Integration (VLSI) Systems,
Vol. 9, No.6, December 2001

[16] Xilinx Power Consumption Tools, “Virtex 4 XPower Estimator
spreadsheet”, www.xilinx.com

[17] A. Raghunath, A. Kunze, E. J. Johnson, V. Balakrishnan,
“Framework for supporting multi-service edge packet
processing on network processors”, Symposium on
Architectures for Networking and Communications Systems,
Princeton, NJ, October, 2005

