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Abstract—Current FPGAs provide a powerful platform for 
network processing applications. The main challenge is the 
exploitation of the reconfiguration to increase the performance of 
the system. In this paper, a design space exploration framework 
is presented to design a reconfigurable platform for multi-service 
network processing applications. An integrated design flow is 
presented from the system level analytical design to the 
implementation level. Furthermore, the design of an efficient 
configuration manager is presented in which the platform 
adaptation is performed for optimum speedup with minimum 
overhead taking into account the reconfiguration overhead and 
the network characteristics (packet type distribution, network 
stability). Finally, a case study is presented in which the platform 
is used to process three network flows with different processing 
requirements. 
 

I. INTRODUCTION 
 
The increase of network traffic and the emerging network 
applications have created the need for more powerful network 
processing devices. The first network devices were using 
general-purpose processors to perform simple header 
processing. Currently, the emerging applications such as VoIP, 
Video-On-Demand, Virtual Private Networks (VPNs), 
wireless networks, and others require not only simple header 
processing but also powerful payload processing (e.g., 
encryption, compression, and intrusion detection). These 
requirements are mainly faced at the edges of the networks, 
while in the core networks the majority of the packets need 
simple header processing. The current network processors 
have been evolved to multi-threaded multi-processor platforms 
that can face the header processing requirements. Although the 
majority of the network processors incorporate some hardware 
acceleration units, these units cannot handle efficiently the 
increased payload processing requirements.  

Hence reconfigurable platforms (e.g., FPGAs) provide a 
viable and power efficient alternative for the demanding 
payload processing requirements. The reconfigurable 
platforms can be used to achieve both higher performance and 
lower power consumption compared to a network processor 
since hardware accelerators are used instead of software 
processing that consume less power. The main benefit of the 
FPGAs is that they can be reconfigured to meet the workload 
requirements, thus they can adapt to the fluctuations of the 
network traffic. Furthermore, some of the modern FPGAs can 

be partially reconfigured; hence the static part of the system 
remains operational. The main drawback of the 
reconfiguration is that during reconfiguration the system is 
partially working hence the performance is decreased 
compared to a static system. Furthermore, the reconfiguration 
scheduler must be carefully designed not to add overhead. 
Hence, a reconfigurable platform for network processing must 
be carefully designed in order to exploit the reconfiguration 
without adding overhead to the system. In addition, the 
dynamic reconfiguration can be used to lower the power 
consumption of the network devices. The static power 
consumption keeps increasing and today is a significant 
fraction of the total power consumption. The use of dynamic 
reconfiguration can result to the use of a smaller device (hence 
less number of gates) while providing the same performance. 
For example, the quiescent power of an FPGA device with 
40K slices is almost the same with the dynamic power 
consumption of 20K slices using a 100MHz clock frequency 
and 12.5% toggle ratio [16]. Hence, the use of dynamic 
reconfiguration can result to a lower cost and lower power 
solution. 

This paper presents an integrated framework for the design 
space exploration of a reconfigurable platform for network 
processing applications and can be used to tune the 
reconfiguration manager depending on the systems 
characteristics and the network features (network distribution, 
network stability, etc.). A case study is presented in which the 
platform has to process three network flows with different 
processing requirements. The system is explored in terms of 
network stability, reconfiguration overhead, and average 
packet size to determine the sample rate and the network 
threshold to achieve higher speed ups. The contributions of 
this paper are: 

• An integrated framework for the design space 
exploration of reconfigurable platforms in network 
processing applications 

• A methodology to find the optimum scheduler 
configuration in terms of sample rate and network 
threshold 

• A case study of reconfigurable network processor that 
needs to process three different flows for changing 
network stability 



Section 2 presents the related work in the area of design 
space exploration and design of configuration managers. 
Section 3 presents the reconfigurable platform for network 
processing and the proposed design flow. Section 4 presents a 
case study for a network device that processes three different 
flows, the design space exploration for several scenarios and 
the framework for the tuning of the configuration manager. 
Finally, section 5 presents the conclusions and the future work.  
 

II. RELATED WORK 
 

The use of design space exploration (DSE) tools can be 
very useful when designing the micro-architecture of the 
network processor. EXPO [1] is a DSE tool that uses the 
theory of the arrival and service curves to model the operation 
of network processors. The computation complexity in this 
case is too expensive, thus they use a piecewise linear 
approximation of all arrival and service curves. The network 
processors can be modeled in a task graph and given the 
mapping of tasks to available resources it can estimate the 
Pareto-optimal solution for access and backbone networks. 
The tool is restricted to model a system with a common bus 
that every resource is attached to this bus.  

In [2] a design space exploration is performed using several 
parameters of a general-purpose processor such as the 
processor clock rate, the instruction and data cache size, the 
area and the memory access time for network processing 
applications. The CommBench [14] benchmark  is used to 
illustrate the difference of the optimum configuration using 
packets that only need header processing versus packet that 
need also payload processing. The model is applied both to a 
single processor and multiple processors. In [3] a design space 
exploration of the System-On-a-Chip (SoC) communication of 
the components is performed. The number of busses and 
bridges are investigated in order to find the optimum 
configuration for a given graph of connected modules. 

Finally, STMicroelectronics has presented a system-level 
exploration platform for Network processors called StepNP 
[4], [5]. In that case the platform contains multi-threaded 
processors connected with a custom network-on-a-chip. The 
system is modeled at the functional and transaction levels and 
not at a cycle-accurate level. All of these frameworks are used 
to perform design space exploration to find the optimum static 
architecture for specific network traffic. In the area of 
reconfigurable logic, many have proposed the use of FPGAs to 
accelerate the performance of the system by exploiting the 
dynamic reconfiguration. In all of these cases the system is 
targeting multimedia applications in which the co-processors 
are scheduled based on the application task graph.  

In [10], a reconfiguration manager is presented to hide the 
reconfiguration latency. The manager applies two different 
techniques at run-time: prefetch scheduling and replacement. 
In the prefetch scheduling technique, the manager schedules 
the reconfiguration based on scheduled sequence of tasks and 
their loading latency. Furthermore, they apply an intertask 
optimization technique to further decrease the reconfiguration 
overhead. In [11] various types of prefetching to reduce the 

reconfiguration overhead are also applied for the configuration 
manager. They present techniques such as static, dynamic and 
hybrid configuration prefetching. Furthermore, the 
configuration manager applies relocation and defragmentation 
techniques to reduce the dynamic reconfiguration overhead. A 
similar approach is presented in the MOLEN framework [13], 
in which a polymorphic processor is presented incorporating 
both general purpose and custom computing processing. The 
reconfiguration is mainly scheduled by the software, in which 
the hardware accelerators are pre-loaded in order to decrease 
the reconfiguration overhead.  

In [15] a framework for reconfigurable computing 
scheduling is presented in which the main task is the 
scheduling of the reconfigurable units at design time. A 
similar approach is also presented in [8][9], in which the 
optimum scheduling sequence is investigated based on the task 
graphs of the applications. In all of these approaches the 
scheduler can decide based on the task graph the sequence of 
the reconfiguration. On the other hand, in the area of network 
processing the workload is dynamic hence the management of 
the reconfigurable units should be performed on-the-fly. 
Furthermore, the scheduling of the reconfigurable units should 
be simple enough so there is no much processing overhead. 
Hence, complicated algorithm should be avoided that will 
consume part of the processing power.  

Finally, in [12] a configuration management for network 
devices is presented. The proposed architectural framework 
incorporates a mobile agent based methodology for the 
networked reconfigurable embedded devices. The paper 
presents the system level framework in which the embedded 
devices that are based on FPGAs can be used similar to 
software upgrades. Hence, the system is mainly based on the 
higher level of the architecture and not on the dynamic 
reconfiguration at run-time to adapt the system to the network. 
Also in [17] a case for run-time adaptation in packet 
processing systems is presented that targets the Intel network 
processors. The proposed framework is used to allocate 
several micro-engines (simplified processors) depending on 
the fluctuation of the network flow. Each micro-engine is used 
for separate flow, thus the system is used to automatically 
allocate a specific number of processor for each flow.  
 

III. SYSTEM DESCRIPTION 
 
The proposed system is targeting reconfigurable platforms 
(e.g., FPGAs) and consists of a number of specialized 
processors and a number of co-processors (hardware 
accelerators). The block level diagram of the system is shown 
in Figure 1. It consists of a shared bus to which both the 
processors and the co-processors are attached. Moreover, 
additional co-processors can be attached directly to the 
processor using dedicated interfaces. The system can be 
logically divided into two parts. The first part is static while 
the second part can be reconfigured. The static part 
incorporates the processors, the shared bus, the network 
interface units, the memory controllers and some of the co-
processors. On the other hand, the reconfigurable part 



incorporates the co-processors units and it is controlled by the 
configuration manager. The whole system is based on the 
Xilinx Virtex4 FPGAs that support partial reconfiguration; 
hence the static part is operational while the reconfiguration 
part is being reconfigured. 

The network processors that are used at the edge of the 
networks (e.g. edge routers) have to process several flows with 
different processing requirements. As a case study, Figure 2 
shows a task graph in which the packets are classified into 
three different flows. In case that the packets belong to a VPN 
connection that payload must be encrypted. If the packets are 
sent to wireless devices, the payload needs to be compressed. 
In all other cases, the packets are just forwarded to the next 
network device. The main challenge of a system designer is to 
create a balanced system in which the network processor can 
face the network traffic. The main advantage of the 
reconfigurable platform is that it can be reconfigured to the 
best configuration for each network traffic distribution. 
Furthermore, the use of reconfigurable platforms for network 
processing can be used to upgrade the system with new 
updated accelerators or the use of new co-processors for 
emerging technologies (VoIP, Video-on-Demand, etc).  

The main challenge in the design of a reconfigurable 
platform is to find the best configurations for each traffic flow 
distribution and then to design a configuration manager that 
will be tuned to exploit the reconfiguration based on the 
changing network traffic taking into account the 
reconfiguration overhead. The proposed design flow for the 
efficient design of a reconfigurable platform for network 
processing is shown in Figure 3. The first task is the system 
analysis, then the performance evaluation and finally the 
design space exploration and the tuning of the configuration 
manager. 
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Figure 2. Network Traffic Flows 

 

System Analysis

Performance 
evaluation

Design Space 
exploration

Find optimum configuration 
for each flow under the 

system constraints

Measure the performance of 
these configurations

Tune the configuration 
manager (threshold, sample 
rate) given network features

 
Figure 3. Design Flow 

 
The system analysis is used to perform an analytical 

design space exploration of the platform at the system level 
and to find the optimum configuration for each workload. The 
system is described in terms of integer linear programming in 
order to find the best configuration in terms of number of 
processors, number of co-processors and type of connection 
with the processor [6]. The co-processors can be connected 
either directly with the processor using direct interfaces or can 
be attached to the shared bus. The direct interface provides 
faster interconnection between the processor and the co-
processor with reduced latency. On the other hand, the co-
processors attached to the shared bus provide higher 
throughput using the DMA burst functions but introduce 
higher latency. The whole system is described as an integer 
linear programming problem in which the processing time of a 
specific flow distribution is the function that must be 
minimized based on several constraints. The constraints of the 
current system are the following: 

• Maximum number of units attached to the bus 
• Maximum number of units attached to the processor 
• Maximum bandwidth of the shared bus 
• Processing power requirements 
• Minimum Quality-of-Service requirements for some 

specific flows 
• Maximum Reconfigurable and Static area 

 
Using these constraints we can perform an analytical design 
space exploration and find the best configuration for each 
network flow distribution. The solution of these equations 
provide the number of processors, the number of each co-
processor and the connection with the processors (direct or 
using the shared bus). The detailed framework is described in 
[6]. The results depend on the type of processor (hard-core or 
soft-core), the bandwidth of the bus (64-bit or 32-bit) and the 
average packet size. The hardware accelerators that handle 
header data tend to be attached directly to the processor while 
the co-processors that use the packet’s payload tend to be 
attached to the shared bus. The following table shows the best 
configuration for each network flow distribution. For the flow 
distribution we used the flows shown in Figure 2. The first 
coprocessor is used for DES encryption/decryption and the 
second co-processor is used for Lemplel-Ziv Compression.  
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Figure 1. System Block Diagram 



 
Table 1. Configuration per Traffic Distribution 

Network Flow Distribution  
(Plain-Encr.-Compr.) 

Opt. Configuration 
(DES-LZCompr) 

50%-25%-25% 2-2 
25%-50%-25% 3-1 
25%-25%-50% 1-3 

 
After the system level design space exploration, a more 
detailed performance evaluation can be performed to measure 
the real throughput of the system for each configuration. In the 
performance evaluation the system is developed and simulated 
using real and synthetic traces to measure the performance of 
the system [7]. The distribution of the network flows 
(percentage of packets that belong to each flow) was synthetic 
in order to measure the performance of the system for several 
network flow distribution. The performance evaluation can be 
used to measure in more details several features of the system 
such as the exact processing time, the utilization of the 
processors and the co-processors, the utilization of the bus and 
the power consumption of each configuration. Furthermore, 
the implementation of the system can also provide information 
about the reconfiguration overhead. The reconfiguration time 
(the time to partially reconfigure the device) depends on the 
area of the co-processors (in terms of slices for the FPGAs) 
and the sequence of the configurations. The following table 
(Table 2) shows the execution time for each packet (assuming 
256 bytes as average packet size) belonging to different flow 
per configuration and Table 3 shows the reconfiguration time 
depending on the number of reconfigurable units.  
 

Table 2. Processing time per configuration 
Processing (usec) Configuration Forward Encrypt Compress 

1. 2DES-2LZC 0.1 8.4 7.3 
2. 3DES-1LZC 0.6 2.4 12.3 
3. 1DES-3LZC 0.6 16.5 1 
4. 1DES-1LZC 0.2 12.9 5.3 

 
Table 3. Reconfiguration time 

Number of co-
processors 

Configuration Time 

1 2.1ms 
2 4.2ms 

 
Finally, a design space exploration of the system should be 
performed to tune the configuration manager in order to 
achieve the maximum speed up. The design space exploration 
takes into account the network stability, the reconfiguration 
time and the average packet size to tune the manager in terms 
of network threshold and sample time.  The network threshold 
is used by the configuration manager to decide when it should 
perform a reconfiguration. If the sample rate is small then the 
configuration manager will have a major overhead to the 
system and the configurations will be too often. On the other 
hand if the sample rate is large (thousand of packets) then the 
system does not adapt fast enough to the network traffic hence 

a reduced speed up is achieved. Hence, a design space 
exploration tool is developed to check if the reconfiguration 
can achieve higher throughput than a static system and then 
find the configuration values for the threshold and the sample 
rate. 
 

IV. DESIGN SPACE EXPLORATION AND TUNING 
 
After the performance evaluation of the implemented design a 
more accurate design space exploration can be performed. A 
framework has been developed in Matlab in which the 
following operations are performed: 
• Calculation of the speedup based on 

o The network stability 
o The reconfiguration time 
o The sample rate 
o The network threshold 

• Design space exploration to find the optimum sample rate 
• Design space exploration to find the optimum network 

threshold 
• Design space exploration to find the best sample rate and 

threshold for given network stability and reconfiguration 
time. 

Figure 4 shows the GUI of the framework for a specific 
simulation in which the traffic distribution change 2 times, 
thus the system is reconfigured each times. The system is 
initialized in the balanced configuration (2 units for encryption 
and 2 units for compression), then switch to the encryption-
optimized configuration and then to compression-optimized 
configuration. Each integer represents a configuration from 
Table 2. The state in which the reconfiguration takes place and 
the spare units cannot be used is symbolized as 4. As it is 
shown in the figure the reconfiguration time when the system 
change from Config2 to Config3 is double as the others, since 
both of the reconfigurable spare units are reconfigured. The 
lower figure shows the processing time per number of samples 
packets (in this case 100 packets). As it is shown, during the 
reconfiguration the processing time is much higher than the 
static system. This is due to the fact that the spared co-
processor units that are reconfigured cannot be used. But after 
the reconfiguration the processing time of the dynamic system 
(dashed line) is lower than the static system. Hence, this 
framework is used first to explore the speedup of the 
reconfigurable system for several network workloads. The 
network stability represents the time in which the distribution 
of the flows remain the same (e.g. 50% of the  packets need 
just forwarding, 25% need compression and 25% need 
encryption) with some variation (e.g. ±5%). If the network 
stability change too often then the system is reconfigured too 
often hence a negative speedup is achieved due to the 
reconfiguration overhead. The network stability values can be 
measured from the targeted network. In order to have a 
positive speedup the performance of the system with the new 
configuration and during the reconfiguration time must be 
better than the performance of the system of keeping the 
previous configuration as it is shown in the following 
equation: 



 
)( confignewoldconfigconfignewnew ttPtPtP +⋅≥+               (1) 

where, 
tnew       : the time that the new configuration is active 
tconfig    : the time for the reconfiguration 
Pnew      : the performance of the new configuration 
Preconfig : the performance during the configuration 
Pold       : the performance of the previous configuration 
 
Figure 5 shows how the speedup of the reconfigurable system 
depends on the network stability and the reconfiguration time. 
When the network distribution changes too often (5ms) then 
the speedup is usually negative. As the network become more 
stable (the distribution remain the same for more than 10 ms), 
the speedup increase up to the maximum speedup (the 
maximum speedup is calculated assuming a zero 
reconfiguration time). In the last case that the network is quite 
stable (30ms) the reconfiguration time has small effect on the 
speedup of the system. The reconfiguration time depends on 
the number of co-processors that are reconfigured and the 
features of the FPGA device (height and width in terms of 
slices). 

 
Figure 4. Speedup Calculation 
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Figure 5. Speedup vs. network stability 

 

Furthermore, the framework can be used to specify the 
network threshold in which the system must be reconfigured. 
If the network threshold is too low then the reconfiguration 
will happen too often. On the other hand if the threshold is too 
high then the system will fail to adapt to the workload traffic. 
The design space exploration can be achieved using any 
heuristic algorithm. But since the possible values is bounded 
(0-100), a two-phase exhaustive search is performed. In the 
first phase the percentage is increased every 10% and then a 
more detailed second phase is performed around the maximum 
value of the first-pass. As it is Figure 6, the best threshold for 
the change of the reconfiguration from the balanced 
configuration to the encryption-optimized configuration is 
around 40% of encrypted packets for 20ms network stability 
and 2ms reconfiguration time for each co-processor unit.  The 
network threshold depends also on the previous and the next 
configuration. For example, the threshold to change back from 
the encryption optimized configuration to the balanced 
configuration is higher (percentage of simple packets must be 
at least: 49%).  Hence, using the specific framework we can 
easily specify the threshold for each pair of configurations.  
 

 
Figure 6. Design space exploration of threshold 

 
Besides the network threshold, the sample rate is also crucial 
to the performance of the system. The sample rate represents 
the number of packets that have to be received to measure the 
network distribution. If the sample rate is too high (e.g. every 
50 packets) then there is no accurate estimation of the network 
distribution. On the other hand, if the sample rate is too low 
(e.g. every 400 packets) then the system fail to adapt fast to 
the changing network traffic hence, the speedup is reduced. 
Figure 7 shows the design space exploration of the sample rate 
(number of packet to be accumulated) for 20ms network 
stability and 2ms reconfiguration time. The figure shows that 
the maximum speedup is achieved using around 100 packets.  
The overhead of the sample rate is usually negligible to the 
performance of the system. After the classification of the 
packet a counter that counts the number of packets that belong 
to each flow is upgraded without wasting processing power.  
 



 
Figure 7. Design space exploration of sample rate 

 
Finally the framework is used to perform a design space 
exploration for various network threshold and sample rates. 
Figure 8 shows the speedup of the system for several sample 
rates (30, 60, 90, 120 and 150 packets) and for several network 
thresholds (30%, 35%, 40%, and 45%). As it is shown both of 
these parameters are crucial to the speedup of the systems. The 
figure shows the design space exploration for 20ms network 
stability and 2ms reconfiguration for each co-processor unit. 
The best speedup is performed when the sample rate is around 
120 network packets and the minimum threshold before the 
reconfiguration is 40% of a specific flow. Hence, using this 
framework we can easily tune the configuration manager 
depending on the network characteristics in order to achieve 
the maximum speedup of the reconfigurable platform. 

The main advantage of the proposed design flow is that a 
simple Look-Up-Table can be constructed in an embedded 
RAM (Block RAM) that stores the performance of several 
configurations such as in Table 2 and decide on the 
reconfiguration based on the network stability and using the 
equation shown in (1). The network stability can be obtained 
by counting the time that the distribution of the flows remains 
the same.  Hence, the configurable manager can achieve 
efficient decision making about the scheduling of the 
reconfigurable units by using this LUT without performing 
complicated algorithms.  

 
V. CONCLUSIONS 

 
In this paper an integrated framework has been presented that 
can be used to perform a design space exploration of the 
performance of a reconfigurable platform for network 
processing. This framework can be used to easily evaluate if 
the reconfiguration can be used in specific network application 
and network traffic. Furthermore, it provides the ability to 
perform a design space exploration in order to tune the 
reconfiguration manager in terms of threshold and sample rate. 
These parameters are crucial to achieve the maximum speedup 
over a static version. Finally, a case study is presented in 
which a network system has to process three flows with 
different processing requirements and how the dynamic 
reconfiguration can be exploited to increase the performance 
of the system.  
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Figure 8. Design space exploration for sample rate and threshold 
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