
 76

1-4244-1027-4/07/$25.00 ©2007 IEEE

 Real-time FPGA-implementation for blue-sky Detection

Nhut Thanh Quach
LogicaCMG Nederland B.V.
Computer Engineering lab.
Delft Univ. of Technology

tquach@ce.et.tudelft.nl

Bahman Zafarifar
LogicaCMG Nederland B.V.
Philips Consumer Electronics
Eindhoven Univ. of Technol.

B.Zafarifar@tue.nl

Georgi N. Gaydadjiev
Computer Engineering lab.
Delft Univ. of Technology

The Netherlands
georgi@ce.et.tudelft.nl

Abstract

Currently, television sets with flat plasma and LCD
screens with improved resolutions and better color qual-
ity are emerging. To fully utilize their capabilities, lower
resolution Standard Definition video material is enhanced.
During such process, existing noise can become clearly vis-
ible, or additional artifacts may be introduced. These im-
pairments are usually better visible in smooth image areas
such as sky regions, motivating the development of special
techniques for their removal. In this paper, we introduce
a hardware accelerator for an existing pixel-accurate and
spatially-consistent sky-detection algorithm. We describe
the algorithmic and architectural design considerations of a
resource-efficient real-time system, targeting an FPGA plat-
form. Our results show that it is feasible to implement a
simplified algorithm version by using only 5,756 logic- and
23,687 memory elements of the targeted device. A demon-
strator setup using real-time camera signal, proves that im-
ages of up to 640x480 at a frame rate of 30 fps can be pro-
cessed. Furthermore, according to our estimations, images
with pixel rates up to 142 MHz, e.g. High Definition TV, can
be processed by the proposed system.

1 Introduction

Algorithms to improve the picture quality of Standard
Definition video broadcast streams are widely applied in the
latest high resolution LCD and plasma TV sets. Besides
their advantages, certain shortcomings of such algorithms
can be detected due to conflicting requirements. For exam-
ple, the sharpness enhancement being suitable for textured
areas could affect the quality of uniformly colored (smooth)
areas. On the other hand, the noise reduction techniques
applicable to uniformly colored fields is not suitable for
textured image sections. In such cases compromised set-
tings are normally used for the interfering processing meth-
ods, often leading to suboptimal image quality, or some-

times even to introduction of artifacts. As the artifacts are
more objectionable on large uniformly colored areas, the
detection of commonly seen smooth surfaces, such as sky
areas, is an emerging problem. Various blue-sky detec-
tion algorithms are proposed in the literature [3, 4, 5, 6, 7].
Even though these algorithms can be functionally correct,
no real-time implementation has been reported. The real-
time aspects are important as the desired implementation
needs to be able to process video material in real-time and
be both spatially and temporally consistent. Spatial con-
sistency means that adjacent sky areas are assigned similar
sky probabilities, while temporal consistency implies that
the segmentation results should not change abruptly over
time, when the actual image sequence does not cause this.
Therefore, the implementation of the sky detector needs to
be pixel and frame accurate, meaning that for all pixels of
each frame an output should be calculated.

The main contributions of this paper are:

• Proposing a simplified version of a sky-detection algo-
rithm suitable for real-time hardware implementation;

• Designing a hardware architecture of the above algo-
rithm for real-time operation of SD video material;

• Implementing and performance analysis of the pro-
posed architecture.

To the authors best knowledge, this is the first real-time
implementation of a blue-sky detection algorithm reported
in the literature.

The rest of this paper is organized as follows. Section 2
briefly explains a suitable blue-sky detection algorithm and
describes the algorithm adjustments needed for a real-time
HW implementation. In Section 3, we present our architec-
tural design including the implementation results. Section 4
describes the experimental framework and discusses the re-
sults obtained from the experiments. Finally, Section 5 con-
cludes the paper.

 77

Figure 1. Blockdiagram of the sky-detection
algorithm

2 The Sky-detection algorithm

The sky-detection algorithm proposed in [6, 7] is chosen
for its spatial and temporal consistency, and the suitability
of the employed techniques for a real-time embedded im-
plementation. The algorithm is based on the following ob-
servations: a) blue sky regions are more likely to appear at
the top of the image; b) they cover a certain part of the color
space, and c) have smooth texture. In addition, the limited
horizontal and vertical gradients (in the luminance channel)
of sky regions are also considered. The algorithm contains
the following three stages, as depicted in Fig. 1 (from left
to right): Stage 1: Initial sky probability calculation; Stage
2: Model adaptation; Stage 3: Final sky probability calcu-
lation.

In the initial sky probability calculation stage, a sky-
probability map is produced based on the color, vertical po-
sition, texture and gradient of the image pixels, using fixed,
predefined settings. These settings are defined such that all
desired sky appearances can be captured [4]. The model-
adaptation stage adapts the fixed settings of the first stage to
the properties of the processed image. As such, the settings
for the vertical-position are adapted to the vertical position
of pixels with high initial sky probability. Similarly, the set-
tings for the color probability are adjusted to the the color
values of pixels with high initial sky probability. The final
sky probability calculation stage uses the adapted settings to
create a pixel-accurate final sky-probability map based on a
combination of the color, vertical position and the texture of
the image pixels.

2.1 Algorithm adaptations

For the implementation of the selected algorithm we con-
sider a hardware platform with limited resources for both
the available logic and on-chip memory. We selected Al-
tera EP1S10 Stratix FPGA as our hardware platform. This
device incorporates 10,570 logic elements and 920 kb of
on-chip memory [1]. In order to meet these self-imposed
memory and resource constraints, we modified the origi-

nal algorithm [6, 7] as follows. The initial multi-resolution
texture analysis is simplified to a single-resolution analysis.
The 2-dimensional spatially-adaptive color model is sim-
plified to an improved version of the color model proposed
in [4]. All the above modifications will lead to some false
rejection of parts of the sky area. For our simplified proof
of concept, these are not relevant. More details about the
different simplifications is presented in the next sections.

2.1.1 Initial multi-resolution texture analysis

The original algorithm utilizes a multi-resolution texture
analysis in Stage 1. The texture analysis assigns low prob-
abilities to parts of the image containing high luminance
variations. This to exclude the textured areas from the ini-
tial sky probability. In this multi-resolution analysis three
down-scaled versions (with factors of 2) of the luminance
channel are analyzed using a fixed 5×5 pixels window-size.
The results are combined in the lowest resolution, using the
minimum operator.

In our implementation we include the texture analysis,
but we evade the multi-resolution analysis. The latter is not
implemented, because a serial implementation of this anal-
ysis would exceed the amount of on-chip memory available.
This is due to the fact that the input image and the interme-
diate results require temporal storage. On the other hand,
a parallel implementation of this analysis is envisioned to
surpass the available logic resources of the targeted device.
We implemented the texture analysis, along with the addi-
tional analysis in the initial sky probability calculation stage
and the model-adaptation stage on a down-scaled version of
the original image (down-scale factor 4). This is to expand
the effective size of the texture analysis window, and to save
on the amount of computations. The evation of the multi-
resolution analysis leads to more false positives of lower
frequency texture.

2.1.2 2-dimensional spatially-adaptive color model

The 2-dimensional (2-d) spatially-adaptive color model of
the original algorithm deals with the wide range of sky color
values within one frame. For this purpose, each signal com-
ponent is modeled by a spatially-varying 2-d function, that
is fitted to a selected set of pixels with high initial sky prob-
ability.

In our simplified version, we have evaded the implemen-
tation of the 2-d spatially-adaptive color model. We im-
plement a less complex color model proposed in [4]. This
color model can deal with wide color ranges between dif-
ferent fields, but in cases when the input image contains a
wide color range within the same field, a part of the sky
will be rejected. We compensate for such false rejection of
the sky areas by including a disparity analysis of the sky
color (pixels with high initial sky probability). We examine

 78

the color differences within these areas and when the color
range is large, we increase the variance of the color model.
Also the mean color of the color model is moved towards a
more saturated blue color, to make the possible rejection of
sky regions take place in the lower part of the image. This
prevents the possible rejections to severely affect the post-
processed image in application such as color enhancement.
The color model with these compensations are still not as
good as the adaptive color model.

2.1.3 Final texture analysis

The original algorithm [6, 7] consists of an optional tex-
ture analysis in the final sky probability calculation. Using
a large texture window in the final sky probability leads to
a decreased sky probability around objects adjacent to sky
areas, which subsequently can cause artifacts in the post-
processed image. For example, in color enhancement, the
color of sky areas in the post-processed image is saturated,
except for a halo around objects next to sky areas which
retains the original color. A moderate amount of this de-
crease of sky probability around the objects may be useful
for some applications, such as noise reduction, for retain-
ing the sharpness of the edges. In our version of the algo-
rithm, the final sky probability calculation is only based on
the color and vertical position of the pixels.

3 Architecture

This section describes the considerations that have lead
to the architectural design of the adjusted algorithm. Our in-
put image is in the YUV color-space and the image is inter-
laced scanned. In this scanning mode, each frame consists
of two fields, containing the even and odd lines.

In Section 3.1, the memory design considerations are
stated. The following sections describe the considerations
in the three stages of the algorithm.

3.1 Design considerations

Consumer video appliances, such as TVs that are the
main targets for our sky-detection system imply restricted
amount of on-chip memory. In our case, the proposed
sky-detection system is meant to be combined with an al-
ready existing video chain, to enable content-based locally-
adaptive processing of sky areas. The permitted latency de-
pends on the architecture of the video processing system,
and where the sky-detection algorithm is placed. In a sys-
tem which already includes an input/output latency, if the
sky-detection system is placed at the appropriate position,
a field or frame delay could be permissible. Obviously, the
permitted delay in a memoryless architecture, would not be

in terms of fields or frames, but based on the available data-
buffering resources would be limited to a number of pixel-
or line periods.

On the other hand, the algorithm requires the entire im-
age data for calculating some of the parameters. For ex-
ample, two threshold levels are calculated by examining the
initial sky probability of the entire image, meaning that they
cannot be calculated before all image lines are received.
Similarly, the model-adaptation stage can start only after
the two threshold levels are calculated, and the final sky
probability can be computed only after the color model and
the vertical-position models are updated. These data depen-
dencies prescribe the sequence of the computation, and will
therefore require the image data and the intermediate results
(such as the initial sky probability) to be saved in relatively
large amount of local memory. Besides, such sequential
method also leads to a large input-output latency.

Special measures are needed to overcome the aforemen-
tioned problems. In the first place, our implementation uses
a pixel-synchronous approach, meaning that instead of first
storing the incoming image data in a field memory, and
starting the computations only after the complete image is
received, we temporarily store the incoming image lines in
a small number of line-memories and start the computa-
tions as soon as the necessary image data are received (thus
synchronous to the input pixel clock). In the second place,
where parameters are needed before computations can start,
we use the parameters that were computed in the previous
field. To be more concrete, we take the threshold levels
calculated in the previous field for model adaptation, and
we use the color and vertical-position models of the previ-
ous field for final sky probability calculation. In this way,
we can perform all computations (initial sky probability,
threshold calculation, model adaptation and final sky proba-
bility) in parallel, albeit using one or two field old data. This
approach not only improves the memory requirements dras-
tically (no field-memory is required), but also decreases the
input-output latency from order of fields to order of pixels.

It has to be noted that using the information from previ-
ous fields could lead to undesired side effects in case of sig-
nificant temporal changes in the color values of the image,
e.g. due to object or camera motion, or rapid scene changes
(shot-changes). To analyze the performance of the system
in this respect, we carry out a number of experiments, as
explained below.

These experiments are performed with synthetic se-
quences used in [6, 7] slightly shifted between two subse-
quent fields to mimic (small) camera movements. A small
movement is defined as a movement that shifts at a maxi-
mum of one quarter of the image per second. In the experi-
ment, we use 60 images with a resolution of 320×240. The
subsequent images are shifted by 3 pixels in vertical direc-
tion. The experimental results show that the threshold val-

 79

Figure 2. Architectural overview

ues change very slowly (the thresholds only differ by 0.4%
for small motions). Therefore, by using the previous field’s
thresholds, the color and vertical-position models changes
slowly between the fields (by only 0.4% on all components).
As a result, the difference between the original final sky
probability and the sky probability based on delayed infor-
mation is almost unnoticeable. A histogram of the differ-
ence in sky-probability values shows that more than half of
the pixel values produce a difference of zero, and that 99.8%
of all pixel values differs by only 2% at most. Furthermore,
our experiment shows that the temporal incoherence of the
resulting sky probability after scene changes (caused by us-
ing 2-field old information) are hardly noticable to human
eyes, when the sequence is played in real-time.

The above considerations lead to an architecture as de-
picted in Fig. 2, where the large blocks on the top corre-
spond to the three main stages of the algorithm, the thresh-
old calculation is shown as a separate block, and the green
blocks represent the registers that save the inter-field data,
namely the threshold values and the model parameters. Us-
ing this architecture, the inter-field dependencies are illus-
trated in Fig. 3 (each chain is represented by a different
color and fill). This figure shows that the final sky prob-
ability calculation for field n+2 is based on the model pa-
rameters calculated for field n+1, and these parameters are
based on the thresholds calculated in field n (the chain con-
taining blocks filled with green horizontal lines).

In addition, we choose to do the initial sky probability
calculation and the model-adaptation stage on a downscaled
version of the original image. This expands the effective
size of the texture analysis window, and reduces the amount
of computations and required memory, as explained in 2.1.

3.2 Initial sky probability calculation

In the initial sky probability calculation stage, the archi-
tectural considerations are related to the texture probabil-

Figure 3. Inter-field dependencies

ity calculation. The texture calculation block computes the
Sum of Absolute Differences (SAD) and gradient of each
pixel in the image, which are further appropriately scaled.
The SAD is calculated over (vertically and horizontally) ad-
jacent pixel pairs in a 5×5 window. The horizontal gradient
is computed by taking the difference between the average
values of the left and right halves of the analysis window.
Similarly, the vertical gradient is computed by using the up
and down halves.

The calculated gradient and SAD are then used as an in-
dex for a look-up table that represents the Gaussian weight-
ing function used in [6, 7]. Implementing the additions and
subtractions that are involved in this block (about 111 addi-
tions/subtractions) using a naı̈ve approach, in which the op-
erations are assigned dedicated adder blocks, utilizes more
than 3,500 logic elements (35%) of the targeted FPGA.

We decided to optimize this by scheduling and resource
binding, to reduce the large hardware utilization of this
block. The scheduling and resource binding is performed
according to the DeMicheli method [2]. The scheduling is
done under resource constraints to find area/latency Pareto
points, where the maximum latency is 26 clock cycles (be-
cause this is the number of cycles between two downscaled
pixels in Standard Definition input video format assuming
a system clock frequency of 100 MHz). Using manual
scheduling, binding the resources and sharing the registers
we obtained an optimization of the hardware costs for this
block from more than 3,500 to only 1,056 logic elements.

The scheduling is performed as follows. We define two
different building blocks: an adder block and a block that
calculates the absolute difference (ABS-block). First, we
determine the minimum number of blocks that calculate the
absolute differences for the texture calculation. Second,
we set the minimum number of adders to keep the maxi-
mum latency within its constraints. We determine that the
minimum number of these block pairs is 4, and the mini-
mum register utilization is 12 (using the minimum number
of blocks and register sharing). The exact scheduling of
the blocks using the ASAP algorithm described in [2], is

 80

Figure 4. Initial texture analysis scheduling

Table 1. Fig. 4 acronyms meaning
acronym meaning acronym meaning

A Y11 + Y12 N D + E
B Y21 + Y22 O H + I
C Y31 + Y32 P K + L
D Y41 + Y42 left int M + N
E Y51 + Y52 right int O + P

F Y13 + Y23 top int M + O
G Y43 + Y53 bottom int N + P
H Y14 + Y15 left left int + C
I Y24 + Y25 right right int + J
J Y34 + Y35 top top int + F

K Y44 + Y45 bottom bottom int + G
L Y54 + Y55 horizontal right - left
M A + B vertical bottom - top

depicted in Fig. 4. The colors represent the resource bind-
ing (each color represents a different building block). The
ABS-blocks are represented by the colors red, purple, blue
and orange, the adders are represented by yellow, tan, green
and turquoise, and the different time slots are represented in
the vertical direction.

On the left side of Fig. 4, the index for the SAD look-
up table is calculated. The absolute differences between
the adjacent pixels are computed at the top of each col-
umn using the ABS-blocks. These are summed up using
the adders numbered from 1 to 39, the results of the blocks
on the upper side of the adders are used as the two terms in
the summation. The resulting sum (of adder 39) is thresh-
olded to form the SAD thresholded. The thresholding
is needed to suppress the noise as explained in [6, 7].The
SAD thresholded is scaled for the correct index for the
look-up table.

On the right side of this diagram, the index for the
gradient look-up table is calculated. Tab. 1 shows the
meaning of the scheduled additions that eventually lead to

the two gradients, denoted as horizontal and vertical.
These two results are then thresholded and summed for the
total gradient. Subsequently, the gradient is scaled to
obtain the correct LUT index.

3.3 Model adaptation

The model adaptation stage includes 1) the computa-
tion of the two thresholds for calculating the color model
and vertical-position model, 2) computing a sky confidence
metric, and 3) the actual calculation of the mentioned mod-
els. First, we consider the calculation of the two thresholds,
and the sky confidence metric. This contains the calcula-
tion of the histogram and the cumulative density function
(CDF) of the initial sky probabilities (see [6, 7] for details).
The histogram of the initial sky probability is calculated, us-
ing a memory array, by incrementing the memory location
corresponding to the value of the sky probability of each
pixel, as soon as the sky probability is computed. During
the blanking period of the video signal, the histogram val-
ues are integrated and weighted to compute the weighted
CDF. The blanking period of the video signal is the period
of time between the last pixel a field and the first pixel of the
following field. The two thresholds and the sky-confidence
factor are extracted from the weighted CDF. The creation
of the CDF and the extraction of the mentioned parameters
are performed during the blanking to accomodate a more
relaxed computation requirement.

3.4 Final sky probability calculation

In the final sky probability calculation stage, the design
considerations are related to the timing constraints. The pix-
els need to be processed within 8 system clock cycles (for an
assumed system clock frequency of 100 MHz), because this
is the amount of time between horizontal adjacent pixels in
Standard Definition format video. The color probability in
this final stage is computed by a subtraction (pixel color
– mean color prescribed by the color model), a division
(by the variance of each color component) and an access
to a look-up table. As the variance is not fixed, an imple-
mentation pointed out that the division cannot be performed
within 8 clock cycles. This timing problem is solved by us-
ing multiplication and bit-shifting instead of a division. We
shift by a fixed number of bits and the multiplication factor
is determined by examining the variance (prescribed by the
color model). As a result, the color probability is computed
by a subtraction, a multiplication, a bit-shift and an access
to a look-up table, which can be performed within 8 clock
cycles.

 81

Table 2. HW resource utilization
Resource Logic Elements Memory DSP
utilization LUT Registers bits blocks
Total resources 10,570 920,448 48

Algorithm 2,710 3,046 23,687 13
(relative) 54.4% 2.6% 27%

Complete system 3,236 4,182 33,927 13
(relative) 70.2% 3.7% 27%

3.5 Implementation results

The proposed architecture was implemented on an Al-
tera EP1S10 FPGA and was found to achieve a maximum
system clock frequency of 104 MHz. For the sake of ease of
calculations and to have some safety margins for the PLL,
we set the system clock frequency at 100 MHz. The de-
vice contains DSP blocks that are 9-bit arithmetic units and
can perform multiplication, additions, subtractions and/or
accumulations. Table 2 depicts the hardware resource uti-
lization of our implementation. In total, 54.5% of the avail-
able logic elements, 2.6% of the available memory bits and
27% of the available DSP blocks are used for the algorithm
only (excluding the I/O infrastructure for camera and output
(VGA) handling), and 70.2%, 3.7% and 27%, respectively,
are utilized for the complete system (including the I/O in-
frastructure).

4 Experimental results

We carried out experiments for functional verification
and performance evaluation of the proposed sky-detection
algorithm implementation. The hardware framework for
these experiments is as follows. The hardware implementa-
tion platform incorporates an Altera Stratix EP1S10 FPGA
that runs at 100MHz, the Omnivision OV7620 camera that
provides the input video image, and a VGA display for the
final sky probability output. The camera can deliver video at
a resolution of 640×480, with fixed frame rates between 0
– 30 fps. In the video-input link, the FPGA is the slave and
the camera is the master. The FPGA receives the image in
a pixel by pixel fashion and therefore the computations are
also done pixel by pixel. Using this framework and a video
input with a resolution of 640×480, the correct working of
the implementation for video streams of up to 30 fps is ver-
ified.

The mode of the system operation can be split into
two parts: operation during the active video and operation
during the blanking of the video. Because of the pixel-
synchronous nature of the system, the pixel frequency de-
fines the maximum available time in the critical path. The

critical path in our system is the final sky probability cal-
culation block, as this stage runs at the original pixel fre-
quency (the rest of the blocks use a scaled version of the
input image). The pixel processing time is computed to be
8 clock cycles of 100 MHz, which is equal to 80 ns. Dur-
ing the blanking of the video, several blocks in the model-
adaptation stage are active, this contains the calculate adap-
tive threshold and sky confidence block, the adapt color
model block, and the adapt vertical-position model block.
These blocks perform their computations during the blank-
ing, because they need to wait until all pixels are processed
and the results need to be ready before the first pixel of the
following field is received. The adapt color model block
and the adapt vertical-position model block only perform
the normalization during the blanking, whereas the calcu-
late adaptive threshold and sky confidence block perform
the integration and multiplication of all sky probabilities
during this period of time. Therefore, we only need the
time of the calculate adaptive threshold and sky confidence
block to compute the minimum blanking time. This takes
2304 clock cycles. The theoretic number of cycles needed
for processing one frame C′

frame,hw can be calculated as:

C′
frame,hw = (dimx × dimy × Cpixel)+(2 × Cblanking) ,

where dimx × dimy is the image resolution, Cpixel is the
number of cycles needed for each pixel and Cblanking is the
number of cycles needed during the blanking period (in our
case it is for the adaptive threshold and sky confidence cal-
culation). When using Cpixel = 8, Cblanking = 2304 and
a resolution of 640×480, this results in a C′

frame,hw of
2,462,208 clock cycles, which is equal to 24.6 ms. Thus,
a maximum frame rate of up to 40 fps can be processed by
our implemented hardware system. The theoretical number
of cycles for one frame C′

frame,hw can be used to estimate
the active duty cycle of our implementation (the percent-
age of time that the hardware is actually processing) for the
validated frame rates, as this is the number of cycles that
the system is actually operational. The duty cycle τ can be
calculated by

τ =
C′

frame,hw

fclk
Nframes,

where fclk is the system clock frequency (100 MHz) and
the Nframes is the frame rate. The duty cycles resulting
from our experiment are listed in Tab. 3.

As stated before, we verified the correct working for
frame rates of 30 fps. At this frame rate, Tab. 3 shows that
the hardware implementation is only active for 74%. Fur-
thermore, this means a pixel and frame accurate probability-
map for the sky area can be created in real-time for Standard
Definition video images.

The most critical parts of our hardware implementation
are the scaling block (this block downscales the image for

 82

Table 3. Duty cycles for images of 640×480
active

frame rate duty cycle τ

10 fps 0.25
15 fps 0.37
20 fps 0.49
25 fps 0.62
30 fps 0.74

the initial sky probability calculation and model-adaptation
stage) and the final sky probability calculation block, be-
cause these blocks operate on the full image resolution. All
other blocks operate on the downscaled version of the image
for the creation of the adaptive model (QCIF resolution), so
these blocks can process images of various resolutions with
a constant speed. For higher resolution input images, the
downscale factor is set higher to retain a constant analysis
resolution. The scaling block is not computional intensive
compared to the final sky probability calculation block. In
the final sky probability calculation, the most critical parts
are the Pcolor and Psky calculations. The Pposition is only
calculated once per line and this calculation can be done in
advance (before each line starts), and therefore, this block
is less critical. The Pcolor computations consists of subtrac-
tions, multiplications, bit-shifts and look-up table accesses,
as stated in Section 3.4, and the Psky calculations consists
of multiplications only. These computations are based on
8-bit integers.

When the final sky-detection stage is further pipelined,
one single 8-bit multiplier determines the speed of the sys-
tem, as the subtractions, bit-shifts and look-up table ac-
cesses are performed faster. The pipelining of this stage can
be performed by adding registers to remember all the inter-
mediate results in the Pcolor and the Psky blocks. In such
pipelined implementation, the time needed for the multipli-
cation is at most 7.025 ns (retrieved from Quartus II), which
means that the rate at which new pixels can be processed is
142 MHz. This theoretical rate exceeds the pixel rate of the
highest HDTV quality images, which is 74.25 MHz for a
resolution of 1920×1080, significantly, indicating that our
design can be used for HDTV format video material with
minor modifications.

5 Conclusions and future work

In this paper, we have presented a hardware architecture
for a real-time implementation of a sky-detection algorithm.
The algorithm includes a 2-d texture and gradient analy-
sis, an adaptive thresholding method, and an adaptive color
model creation. This implementation uses only 54.4% of
the Altera EP1S10 FPGA and can operate at clock frequen-

cies up to 104 MHz.
The proposed architecture employs pipelining and

scheduling and resource binding to enable an efficient real-
time implementation of the algorithm. Furthermore, paral-
lel execution of different computational blocks were made
possible due to removing calculation dependencies, by
reusing some information calculated in previous fields.

Our experiments have shown that the system can pro-
cess Standard Definition format video material in real-time.
As indicated by our calculations, after some minor modi-
fications, video streams with a maximum pixel rate of 142
MHz should be processable. This means that it should be
possible to handle HDTV video material with a further op-
timized system.

Due to the limited duration of the project, we aimed for
a simplified proof of concept using a simplified algorithm
to provide insight in the feasibility of such algorithm for
real-time operation on TV signals. The implementation and
analysis of the original algorithm is left for future work.

Acknowledgments

The authors would like to thank Eric van der Laan,
Marco Pas and Eddy de Ridder of LogicaCMG’s Working
Tomorrow program for creating the graduation project. In
addition, we would like to thank Eric van der Vliet and Pe-
ter de With of LogicaCMG for the project definition and for
guidance during the project. We would also like to thank
Dirk Piepers and Erwin Dewitte of Philips Consumer Elec-
tronics for their cooperation for setting up the project.

References

[1] Altera Corporation, 101 Innovation Drive, San Jose, CA
95134. Nios development board, reference manual, stratix
edition, 1.2 edition, December 2003.

[2] G. DeMicheli. Synthesis and Optimization of Digital Circuits,
chapter 4-6, pages 146–245. McGraw-Hill, 1 edition, January
1994.

[3] A. C. Gallagher, J. Luo, and W. Hao. Improved blue sky
detection using polynomial model fit. In ICIP, pages 2367–
2370, 2004.

[4] S. Herman. Real-time segmentation of video image
sequences—part 2: Sky detection, March 2002.

[5] S. Herman and E. Bellers. Locally-adaptive processing of
television images based on real-time image segmentation.
In International Conference on Consumer Electronics, pages
66–67, 2002.

[6] B. Zafarifar and P. H. N. de With. Adaptive modeling of sky
for video processing and coding applications. In 27th Sympo-
sium on Information Theory in the Benelux, 2006.

[7] B. Zafarifar and P. H. N. de With. Blue sky detection for
picture quality enhancement. In Advanced Concepts for In-
telligent Vision Systems (Acivs 2006), 2006.

