
 210

1-4244-1027-4/07/$25.00 ©2007 IEEE

Customizing Reconfigurable On-Chip Crossbar Scheduler

Jae Young Hur1, Todor Stefanov2, Stephan Wong1, and Stamatis Vassiliadis1

1 Computer Engineering Lab., TU Delft, The Netherlands
http://ce.et.tudelft.nl

2 Leiden Embedded Research Center, Leiden University, The Netherlands
http://www.liacs.nl

Abstract

We present a design of a customized crossbar sched-
uler for on-chip networks. The proposed scheduler ar-
bitrates on-demand interconnects, where physical topolo-
gies are identical to logical topologies for given applica-
tions. Considering conventional fully parallel and sequen-
tial schedulers as reference designs, a comparative perfor-
mance analysis is conducted. The hardware scheduler mod-
ule is implemented with parameterized arbiter arrays. Ex-
periments with practical applications show that the cross-
bar network with our custom scheduler realizes on-demand
traffic patterns, occupies on average 52% less area, and
maintains higher performance, compared to the crossbar
network with a fully parallel scheduler. Additionally, our
custom scheduler performs significantly better than the se-
quential scheduler with moderate area overheads for small-
sized tokens communicated over large networks.

1 Introduction
It is a well-known fact that a crossbar network provides

high performance, minimum network latency, and mini-
mum network congestion. The non-blocking dedicated na-
ture of communication and the relatively simple implemen-
tation makes the crossbar popular as an internet switch [1].
A typical crossbar consists of a scheduler and a switch fab-
ric. A commercial crossbar typically accommodates an ar-
biter per port and each arbiter concurrently schedules the
incoming packets [2]. The scheduler plays a key role in
achieving high network performance and becomes more im-
portant as the size of the network increases. In the fully
parallel schedulers, all-to-all connections are required to be
accommodated since traffic patterns are in most cases un-
known. Nevertheless, a major bottleneck of the fully paral-
lel scheduler is the high cost due to the increasing amount
of wires as the number of ports grows. Figure 1 depicts the
area of the iSLIP crossbar scheduler [2], which is widely
used for the commercial crossbar switches. As the num-
ber of ports increases, the area of the scheduler increases
in an unscalable manner. This is mainly due to the all-to-

all topology of the interconnects inside the scheduler mod-
ule. In addition, the crossbar scheduler is an important ba-
sic building block for modern networks-on-chip (NoC) [3].
The scheduler in an on-chip router accommodates all-to-all
connections. In many cases, the schedulers for NoCs are
sequential. In other words, a single arbiter serves only a
single port at a time. Consequently, performance degra-
dation is the result especially for larger crossbars. This
work alleviates these scalability problems by utilizing on-
demand topologies in a NoC-based reconfigurable platform.
This work is motivated by observations that communication
patterns of different applications represent different logical
topologies. In modern NoC platforms, the logical topol-
ogy information can be derived from the parallel applica-
tion specification. The applications in most cases require
only a small portion of all-to-all communications. Fig-
ure 1(2) depicts realistic applications indicating that the re-
quired topologies are application-specific and much simpler
than all-to-all topologies. Moreover, a single application
can be specified differently as observed in the MJPEG spec-
ifications.

(1) Area of iSLIP scheduler [2] (2) Parallel application specifications

0

100

200

300

400

500

600

700

4 8 16 32 64 128

Number of gates (x1000)

(2c) Wavelet

Video
in

DCT
Q

DCT
Q

DCT
Q

DCT
Q

VLE
Video

out

(2b) MJPEG(2a) MJPEG

Init
Copy

Copy

HPF Copy
LPF

Copy

Copy

HPF

Copy
Copy

LPF

Copy
Copy

HPF

Copy

Copy
LPFSink

Sink

Sink Sink

Video
in

DCT

Q

VLE

Video
out

Number of ports

Figure 1. Motivational examples.

In this paper, we present a systematic design, an analysis,
and an implementation of a novel application-specific cross-
bar scheduler. Our scheduler arbitrates only the necessary
interconnects instead of all-to-all interconnects. The pre-

 211

sented scheduler combines the high performance of a fully
parallel scheduler and the reduced area of customized inter-
connects. The main contributions of this work are:

• We propose a custom scheduling scheme, where the
physical topologies are identical to the logical topolo-
gies for an application.

• We perform a comparative queueing analysis for dif-
ferent scheduling schemes.

• Experiments on realistic applications show that the
central crossbar network with our scheduler performs
better and occupies 52% less area, compared to the
crossbar network with a fully parallel scheduler.

• Experiments show that our scheduler performs signifi-
cantly better with moderate area overheads, compared
to a sequential scheduler.

The organization of this paper is as follows. In Section
2, related work is presented. Scheduler designs and the per-
formance analysis are described in Sections 3. In Section
4, the hardware implementation and results are presented.
Finally, conclusions are drawn in Section 5.

2 Related Work

Our work is based on the general approach for on-
demand reconfigurable networks [4]. In this paper, we
present a custom crossbar scheduler utilizing on-demand
reconfigurable interconnects. Numerous NoCs targeting
ASICs (surveyed in [3]) employ rigid underlying physical
networks. Typically, packet routers constitute tiled NoC ar-
chitectures and each packet router accommodates a cross-
bar switch fabric and a scheduler for internally all-to-all
physical interconnects. Our scheduler is different from the
schedulers in ASIC-targeted NoC routers, since our net-
work topology is reconfigurable on demand and our sched-
uler utilizes the reconfigurability. NoCs targeting FPGAs
(for example, [5][6][7]) employ fixed topologies defined
at design-time. The topology is defined by the intercon-
nections between routers and the crossbar inside the router
also accommodates internally all-to-all physical intercon-
nects. Our approach is different from these NoCs, since
our centralized scheduler accommodates on-demand inter-
connects. The scheduler in [6] accommodates an arbiter
per port, which is similar to our approach. In [6], sin-
gle 2D-mesh packet router for an 8-bit flit occupies 352
slices and 10 block memories (BRAMs) in a Virtex-II Pro
(xc2vp30) device. Our work is close to [7], in which a
topology adaptive parameterized network component is pre-
sented. While the crossbar interconnects inside a router of
[6][7] are still all-to-all, the physical topology of our cross-
bar interconnects is identical to the logical topology of the
application. Finally, our custom scheduling scheme differs
from traditional traffic-specific scheduling schemes, such as
a weighted round-robin, in that our scheduler does not arbi-
trate unnecessary interconnects.

3 Customized On-Chip Crossbar Scheduler

As mentioned earlier, our objective is to systematically
design on-demand reconfigurable crossbar scheduler in or-
der to reduce the area compared to a fully parallel sched-
uler and increase the performance compared to a sequential
scheduler. A crossbar scheduler is also required to dynam-
ically generate the control signals to configure the switch
fabrics. Our system is based on the Kahn Process Network
(KPN) model of computation, where a KPN is a network
of concurrent processes that communicate over unbounded
FIFO channels and synchronize by a blocking read on an
empty FIFO. However, the presented design techniques also
can be utilized in other systems.

3.1 Reference Scheduling Schemes

We consider a conventional sequential scheduler (SQS)
and a fully parallel scheduler (FPS) as references to com-
pare our custom scheduler with. Figure 2 depicts the SQS,
FPS, and the proposed custom scheduler for the application
in Figure 1(2a). Figure 2(1) depicts a topology after a port-
mapping and a corresponding system model. In our system,
the crossbar network transfers the requests (from proces-
sors) and data (from FIFOs). Figure 2(2) depicts possible
request patterns, where 4 processors request to 4 FIFOs as
an example. For the sake of simplicity, the data is assumed
to be requested in the first cycle. The arbiter is also as-
sumed to perform a circular round-robin arbitration in the
order of P1,P2,P3, and so on. After arbitration, a link be-
tween a processor and a FIFO port is established using a
handshaking protocol, which is assumed to take 2 cycles.
The bold lines represent actual data transmission, which is
assumed to take 10 cycles. Figure 2(3) depicts the behav-
ior of a typical SQS, where one FIFO port is arbitrated at
a time by a single scheduler. A request is served after a
request in the previous port index is arbitrated and/or the
link is established. Subsequently, 24 cycles are required in
total, as depicted in Figure 2(3). Figure 2(4) depicts our im-
plemented FPS, where homogeneous arbiters are located in
each port. Each arbiter checks for all ports whether there is
a request or not. Consequently, all-to-all interconnects are
established and 19 cycles are required in total, as depicted
in Figure 2(4). Our FPS implementation is similar to iSLIP
scheduler [2], in that circular round-robin pointer is updated
when the request is granted. The round-robin pointer indi-
cates the currently served processor port. The iSLIP sched-
uler is designed for the input-queued packet switch. How-
ever, our FPS differs from the iSLIP scheduler in the follow-
ing ways. First, our FPS has been implemented for on-chip
multiprocessor systems with distributed memories. Second,
while the iSLIP scheduler [2] requires two stages of arbiter
arrays, our FPS requires a single stage of arbiter arrays. As
Figure 2(4) depicts, FPS performs better than SQS, since
the concurrent requests can be served in parallel.

 212

1 2 3 4 5 6 7 8 9 10 1112 1314 15 16 1718 19 20 2122 2324 25

R G
R
R

G
G

R
R
R

G
G

G

R : data requested G : request granted () : current served port : data transfer

cycles

P1
P2
P3
P4

P1
P2

P3
P4

R
R
R

G
G

G

P1

P2
P3
P4

(1)

(1) (2)

(1) (2) (3)

(2)

(2)

(2)

(3)

(4) Full parallel

(5) Custom parallel

R G
P6
P5

R GP5 (1)(2)(3)(4)
P6

(5)

R GP5 (5)
P6

(2) Data request

scheme

P1
P2
P3
P4
P5
P6

P1
P2
P3
P4
P5
P6

FIFO
s

Processors

P1 P2 P3 P4P5 P6FIFO port

FIFO
s

FIFO
s

FIFO
s

(3)

(4)

(3)

(6)

(6)

(6)

(6)

(3) Sequential

(2)

(3)(4)(5)(6) (1)

P1
P2

P3

P4
P5
P6

P1
P2

P3

P4
P5
P6

FIFO
s

Processors

P1
P2

P3

P4
P5
P6

P1
P2

P3

P4
P5
P6

FIFO
s

Processors

P1 P1
P2 P2
P3 P3
P4 P4
P5 P5
P6 P6

F
IFO

s

Processors

P1
P2
P3
P4
P5
P6

FIFOs

Processors

P1 P2 P3 P4 P5 P6

(1) System model

Interconnection
network

request dataP1

P2

P3

P4

P5

P6

Figure 2. Different scheduling schemes.

3.2 Proposed Custom Scheduler

Our custom parallel scheduler (CPS) scheme is similar
to the FPS in that the scheduler consists of arbiter arrays.
In our CPS, however, the round-robin pointer update oper-
ation is performed only for on-demand interconnects. We
exploit the fact that the application is specified by a point-
to-point graph, in which each node has possibly a different
number of connected links. As a design technique, each
arbiter is parameterized with respect to the logical topol-
ogy. Application-specific and differently sized arbiters en-
sure that the topology of the physical interconnects is iden-
tical to the logical topology specified by the application par-
titioning. Given the logical topologies from the application
specifications, our CPS operates as follows:

1. Request: A processor issues a request, by designating
the target FIFO port and FIFO index.

2. Validate: If there is a request in the round-robin pointer
and the target FIFO port is idle, the request is validated.

3. Establish: The target FIFO status is checked. If the
target FIFO is not empty, the request is accepted and
the channel is established. The round-robin pointer
is updated to the one that appears next in a round-
robin schedule, where the round-robin schedule is de-
termined by the topology of an application.

If the pointed request is a Clear Request, the channel
is cleared. If there is no request, the round-robin pointer

is incremented. Figure 2(5) depicts the scenario of the
CPS. Each arbiter checks if there is a request for required
links. As an example, P2 has two probable requests in total,
from P2 and P6. Therefore, the CPS arbiter at P2 searches
for only two links. Note that an FPS arbiter at each port
searches for 6 links. As Figure 2(5) indicates, only 15 cy-
cles are required. In general, CPS performs better than FPS,
since the request search space of CPS is a subset of the full
search space of the FPS. Moreover, area reduction also can
be expected, since on-demand links are physically estab-
lished. Additionally, CPS performs significantly better than
SQS, since the arbitration is performed in parallel. In many
cases, CPS occupies more area than SQS. The area over-
head issue is discussed in Section 4.

3.3 Performance Analysis
We have formulated a network delay model to compare

the relative performance. Our analysis is based on the queu-
ing model [11], since the queuing model provides a rea-
sonable fit to the reality with relatively simple formulation.
Based on the general queuing model, the following assump-
tions were made. First, our system network conforms to the
Jackson model [11]. Each queue behaves as an independent
single server and the total network latency can be modeled
as the combination of each service latency. Second, each
server is analyzed by an (M/M/1) queuing model. In other
words, the incoming traffic obeys the Poisson distribution.
The data arrivals occur randomly and are independent from
one another. Additionally, the service time distribution is
exponential. Third, if the server is idle, a data in the queue
is served immediately. The queue size is adequately large to
avoid the stall of the data flow. The Jackson’s open queue-
ing model is based on the network of queues [11] and can be
suitably applied to our system as explained in the following
facts. First, our KPN model and actual system are indeed a
network of queues. Second, the incoming data stream pat-
tern is statistically random. Third, a token in the FIFO is
independently served by a single scheduler (or server) at
each crossbar port. In this work, a token refers to a set of
data words, which is a primitive communication unit. Con-
sequently, the general network latency can be modeled as:

Tnetwork =
1
λ

M∑

i=1

λi

µi − λi
, (1)

where Tnetwork is the total latency of the crossbar system
network. M is the number of queueing systems. λ is the
total incoming arrival token rate to the network (or outgoing
rate from the network). λi is the incoming arrival rate to the
ith queue. µi is the service rate of the arbiter in the ith

queue.
µi = (Tarbit + Ttransmit)−1, (2)

where Tarbit is the round-robin arbitration latency to es-
tablish a link. Ttransmit is the actual data transmission la-

 213

tency after the link is established. Ttransmit can be derived
as Num Word

Clksys
, where Num Word refers to the number of

data words, or the token size. Clksys refers to the system
clock frequency. We can fairly compare different schedul-
ing schemes, since the arbitration latencies are only differ-
ent. Tarbit for different schedulers can be approximated as
follows:

Tarbit SQS = k1 (�#ports
2

� × Thand) /(Clksys) (3a)

Tarbit FPS = k2 (�#ports
2

� + Thand) /(Clksys) (3b)

Tarbit CPS = k3 (�#links
2

� + Thand) /(Clksys), (3c)

where Tarbit SQS refers to the arbitration latency (in sec-
onds) for SQS. k1, k2, k3 are the scaling factors to calibrate
the hardware implementation. The request check latency
is modeled by � #ports

2 � cycles. We divide by 2, since the
circular round-robin pointer is statistically located in the
middle of the search space. In the SQS, there is only one
arbiter in the system. Only after the requested link is es-
tablished using the handshaking protocol for the currently
served port, the next port is served. Therefore, we model
these sequential operations by multiplying the handshak-
ing latency Thand by � #ports

2 �. Tarbit FPS refers to the ar-
bitration latency for each port in the FPS. Since multiple
requests can be concurrently served, we model these par-
allel operations by adding the Thand. In the FPS, the ar-
biter at each port obliviously checks for all ports. The
request check latency is modeled by � #ports

2 � cycles, simi-
larly to the SQS. Tarbit CPS refers to the arbitration latency
for the CPS. Similarly to the FPS, we model the single
server latency by adding the Thand. However, the request
check latency is modeled by � #links

2 �, since the actual ar-
bitration is performed for the only required links, instead
of all links. #links is equal or less than #ports. There-
fore, it is obvious that Tarbit CPS is less than Tarbit SQS

and Tarbit FPS . Only if the required topology is all-to-all,
then the Tarbit CPS is equal to Tarbit FPS .

3.4 Case Studies
As a case study, we consider the MJPEG application in

Figure 1(2a). The port-mapped system model is depicted in
Figure 3(1). Considering P1 as a streamed data source, P1
generates the data in a rate of λ (tokens/s). A token rate in
each queue is derived from the Yapi profiler [8], as depicted
in Figure 3(1). Figure 3(2) depicts a scheduler model for
CPS and total network latencies can be derived, as depicted
in Figure 3(3). The service rates for different scheduling
schemes are derived as follows. We assume that the system
operates at 100MHz and k1, k2, k3 are 1. Thand is assumed
to be 2 cycles, since each of the request and the acknowl-
edgement requires 1 cycle, respectively. Ttransmit is as-
sumed to be 1 cycle per word. The service rate µs for each

(3) Performance analysis

μc1

μc2

μc3

μc4

μc5

μc6
Note
Token size = 1 word
System clock frequency = 100MHz

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

queueing system

32λ/1291
2
3
4
5
6
7

8
9

10
11

12
13

14

λ
λ

λ

(1) Network of queues

P1

P2

P3

P4

P5

P6

1
2

9

4

5

7
3

10

11

12

13

14

legend

(2) Custom parallel scheduler

request data

Video
in

Video
out

8

6
32λ/129

32λ/129

32λ/129

32λ/129

32λ
/129

32λ/12
9

32λ/129
32λ/129

λ/129

32λ/129
32λ/129

32λ/12
9

32λ
/129

32λ/129
32λ/129
32λ/129
λ/129
32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

32λ/129
32λ/129

λ

6
6 6

32
1 129 12912 32 14.3 1014.3 10 14.3 10

129 129

SQST

λ λ
λ

λ λλ λ

 
 

= × + + × − × − × −
 

6
6 6 6

32 32
1 129 129 1294 832 32 33 1020 10 20 10 25 10

129 129 129

CPST

λ λ λ
λ

λ λ λλ λ

 
 

= × + + × + × − × − × − × −
 

6
6 6

32
1 129 12912 32 16.7 1016.7 10 16.7 10

129 129

FPST

λ λ
λ

λ λλ λ

 
 

= × + + × − × − × −
 

Figure 3. A case study.

port in the SQS is the same. Considering the single-word
token communications, or Num Word = 1, µs can be de-
rived by 100MHz

(3×2+1)cycles = 14.3×106 tokens/s from Equation
(3a). Similarly, each service rate µp for the FPS can be
derived by 100MHz

(3+2+1)cycles = 16.7×106 tokens/s from Equa-
tion (3b). Each service rate µc for the CPS is determined
by the topology. µc1 is 100MHz

(2+2+1)cycles = 20×106 tokens/s,

since 5 links are established, or � 5
2� = 2. Similarly, µc2,

µc3, µc4, µc5 is 100MHz
(1+2+1)cycles = 25×106 tokens/s. Finally,

µc6 is 100MHz
(0+2+1)cycles = 33×106 tokens/s. Note that only a

single link is necessary for port 6, indicating that no arbitra-
tion is necessary. As a result, the network system latencies
are derived and depicted in Figure 4(1a). The performance
analysis indicates that the CPS performs over 44% better
than SQS and at least 34% better than the FPS for all token
rate ranges. Also, the performance is better improved as the
token rate increases. Moreover, our CPS is 3× better than
SQS and 2× better than FPS in terms of throughput. Fig-
ure 4(1b) depicts the case study for a large token size with
Num Word=64. The CPS performs at least 5% better than
SQS and 3.3% better than FPS for all ranges. The perfor-
mance improvement is smaller than the case of single-word
token transactions, since Ttransmit is a dominant factor for
the network latency, compared to Tarbit.

Similarly, the network latencies for the 22-node Wavelet
application, depicted in Figure 1(2), are derived. As the
number of crossbar ports increases, Tarbit for SQS and FPS
proportionally increases. However, Tarbit for CPS does not
increase, since the average number of ports for the round-
robin pointer is 1.6. In other words, on average 1.6 ports
are only required to be arbitrated by an arbiter, instead of

 214

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 8 16 24 32

Token rate (X106 tokens/s)

CPS
FPS
SQS

0

3

6

9

12

15

0 500 1000 1500

Token rate (X103 tokens/s)

CPS
FPS
SQS

0

0.4

0.8

1.2

1.6

2

0 15 30 45 60 75

Token rate (X106 tokens/s)

CPS
FPS
SQS

0

3

6

9

12

15

0 900 1800 2700 3600

Token rate (X103 tokens/s)

CPS
FPS
SQS

Network latency (us) Network latency (us) Network latency (us) Network latency (us)

(1a) Token size = 1 word (1b) Token size = 64 words (2a) Token size = 1 word (2b) Token size = 64 words

(1) 6-node MJPEG application in Figure 1(2a) (2) 22-node Wavelet application in Figure 1(2c)

Figure 4. Network performance.

22. Figure 4(2a) depicts the network latency for single-
word token transactions. The network latency is reduced by
at least 84% compared to SQS and at least 73% compared
to FPS. Our CPS also provides significantly higher through-
put. Figure 4(2b) depicts the network latency for 64-word
token transactions. CPS performs at least 22% better than
SQS and 13% better than FPS. It can be suggested that our
CPS scheme is more beneficial for small sized tokens com-
municated over large networks.

4 Implementation and Results

The aforementioned scheduler modules have been im-
plemented in VHDL to integrate the presented network
components in the ESPAM design environment [10]. The
CPS module is implemented with parameterized arbiter ar-
rays. The scheduler module is generic in terms of data
width, number of ports, and logical topologies. The arbiter
is implemented with a three-state finite state machine, as
described in Section 3.2. The switch module in [9] is used
as a common interconnects fabric and the communication
controller in [10] is used as a common network interface.
The functionality of the network is verified by VHDL sim-
ulations. From the implementation, k1 = k2 = k3 = 1 have
been obtained for Equation (3). The crossbar network with
our scheduler has been implemented with the following spe-
cific steps. First, the schedule information is extracted from
the application specifications. Figure 5(1) depicts how the
schedule information is extracted for the MJPEG applica-
tion in Figure 1(2a). Each FIFO port has possibly different
set of request links, as depicted in Figure 5(1a). The sched-
ule table in Figure 5(1b) shows the number of links and a list
of ports from which the links are directed. As an example,
the round-robin pointer in the arbiter A2 points to either P2
or P6, as depicted in Figure 5(1c), indicating that the data
in FIFOs connected to P2 is transferred to either processor
P2 or processor P6. The schedule table for the round-robin
pointer is identical to the topology information. Second,
given the schedule table, the arbiter generates two control
signals, namely CTRL PROC and CTRL FIFO. Fig-

ure 5(2) depicts that P6 reads from a remote memory in
P2, as represented by the bold line. CTRL PROC and
CTRL FIFO arbitrates the requests and data transfers,
respectively. In case there is a request, the request is regis-
tered. The registered 32-bit request signal contains a target
port and a target FIFO index. If the target port is idle and
the designated FIFO contains data, CTRL PROC signals
are generated. CTRL FIFO signal is generated by sim-
ply swapping the CTRL PROC. Third, control signals
dynamically configure the switch fabrics. There are two
types of multiplexors, namely processor-side multiplexors
and FIFO-side multiplexors. Processor-side multiplexors
are controlled by CTRL FIFO signals and the FIFO-
side multiplexors are controlled by CTRL PROC signals.
Once a link is established, a remote memory behaves as a
local memory until the link is cleared.

(1) Extraction of topology

Port NUM_LINK PORT_LIST
 P1 5 P2,P3,P4,P5,P6
 P2 2 P2, P6
 P3 2 P3, P6
 P4 2 P4, P6
 P5 2 P5, P6
 P6 1 P6

(2) A network with customized arbiter A2

P1
P2

P3
P4
P5
P6

P1
P2
P3
P4
P5
P6

FIF
O

s

P
rocessors

request data

CC2 CC6

P2
interface

Processor side
P 6

interface

FIFO side
P2

interface

FIFO
 6

interface

Request’

Read’

Data’

Empty’

Request’

Read ’
Data’

Empty’

FIFO_sel
Empty

Data

FIFO_sel
Empty

Data

Arbiter 2

Read-requested by processor-side P6
Select target FIFO and check if FIFO is empty
Establish circuit between P2 and P6
and start remote-read operation

Read

Read

switch module

1
2
3

12

3

(1a) Topology (1b) Schedule table
(topology table) (1c) Custom arbiters

CTRL_PROC
=P6

CTRL_FIFO
=P2

MUX_OUT = P6

MUX_OUT = P2

A1

A2

A3

A4
A5

A6

legend
A arbiter

CC network interface
control
data

26

3
6

4
6

5
6

6

2
345

6A1

A2

A3

A4

A5

A6

Figure 5. A customized crossbar network.

 215

The implemented scheduler modules are integrated in
the centralized crossbar network and are compared in terms
of area utilization. We experimented with different task
graph topologies of realistic applications, where our net-
work provided the on-demand topologies. The application
task graphs of MPEG4, PIP, MWD were taken from [12].
The task graphs of H.263 encoding, MP3 encoding, and
MMS were taken from [13]. The task graphs of 802.11
MAC, TCP checksum, VOPD are taken from [14],[15],[16],
respectively. The numbers between braces indicate the
number of nodes and the number of required links. As an
example, TCP Chk{5,14} indicates that the crossbar for the
TCP checksum application requires 5 nodes and 14 links.
Assuming each node is associated with a single crossbar
port, the implemented networks were synthesized using the
Xilinx ISE 8.2 tool targeting the Virtex-II Pro (xc2vp20-7-
896) FPGA and the areas were obtained and depicted in Fig-
ure 6. The network with our CPS requires on average 52%
less area compared to the network with FPS. As an example,
our centralized 5-node crossbar network employing the FPS
occupies 437 slices, while the area is reduced to 187 slices
when the crossbar network accommodates our CPS for the
topology of the MJPEG application in Figure 1(2a). The
network with our CPS requires on average 17% more area
compared to the network with SQS. We consider that the
area overhead of our CPS over SQS is less significant, since
the xc2vp20 device we target contains 9280 slices and chip-
wise overhead of CPS over SQS is on average 2.5%. As
an example, a crossbar system network for 16-node VOPD
application occupies 716 slices for CPS and 664 slices for
SQS. The area of our network is not only dependent on the
number of nodes that determine its size but also on the net-
work topology. It is observed that the higher area reduction
is obtained as the network size increases. This is due to the
fact that the average number of links per node is 1.8 and
does not increase as the number of nodes increases.

0

2000

4000

6000

8000

10000

MJP
EG {5

, 7
}

MP3 e
nc {

5, 1
0}

TCP C
hk

 {5
, 1

4}

MJP
EG {6

, 1
4}

H.26
3 e

nc {
7, 1

4}

PIP {8
, 8

}

 802
.11 M

AC {9
, 2

0}

MWD {1
2,

13
}

MPEG4 {1
2,

26
}

VOPD {1
6,

20
}

Wave
let

 {2
2,

36}

MMS {2
5,

47}

Topologies

N
um

be
r o

f s
lic

es

FPS + Switch
SQS + Switch
CPS + Switch

Area of crossbar network

Figure 6. Experimental results.

5 Conclusions
In this paper, we presented a topologically customized

crossbar scheduler designed for networks on chip. We
showed that our scheduler can be implemented using pa-
rameterized arbiter arrays. By utilizing the topology as a
parameter, the scheduler is adapted to given applications,
without modifying the network implementation. Our cus-
tomized network efficiently utilizes the bandwidth, by con-
structing on-demand topologies. We showed that our sched-
uler performs better and occupies significantly less area
than conventional fully parallel schedulers. We showed
that our scheduler performs significantly better for small-
sized tokens communicated over large networks and occu-
pies moderately more area than sequential schedulers.

Acknowledgement. This work was supported by the Dutch Science
Foundation (STW) in the context of the Architecture, Programming,
and Exploration of Networks-on-Chip based Embedded System Platforms
(ARTEMISIA) project (number LES.6389).

References
[1] Cisco Systems, Inc., http://www.cisco.com.
[2] N. Mckeown, “The iSLIP scheduling algorithm for input-queued switches,”

IEEE/ACM Transaction on Networking, vol. 7, no. 2, pp. 188-201, Apr 1999.
[3] T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices of

Network-on-chip,” ACM Computing Surveys, vol. 38, no. 1, pp. 1–51, Mar
2006.

[4] S. Vassiliadis and I. Sourdis, “FLUX Networks: Interconnects on Demand,”
Proceedings of International Conference on Computer Systems Architectures
Modelling and Simulation (IC-SAMOS’06), pp. 160–167, Jul 2006.

[5] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “HERMES: an
Infrastructure for Low Area Overhead Packet-switching Netwoks on Chip,”
Integration, the VLSI Journal, vol. 38, no. 1, pp. 69–93, Oct 2004.

[6] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri, “LiPaR: A Light-
weight Parallel Router for FPGA-based Networks-on-Chip,” Proceedings of
the Great Lakes Symposium on VLSI (GLSVLSI’05), pp. 452–457, Apr 2005.

[7] T.A. Bartic, J.-Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde,
and R. Lauwereins, “Topology adaptive network-on-chip design and imple-
mentation,” IEE Proceedings of Computers & Digital Techniques, vol. 152,
no. 4, pp. 467–472, Jul 2005.

[8] E.A. de Kock, G. Essink, W.J.M Smits, P. van der Wolf, J.-Y. Brunel, W.M.
Kruijtzer, P. Lieverse, and K.A. Vissers, “YAPI: Application Modeling for
Signal Processing Systems,” Proceedings of the 37th Design Automation Con-
ference (DAC’00), pp. 402–405, Jun 2000.

[9] J. Y. Hur, T. Stefanov, S. Wong, and S. Vassiliadis, “Systematic Customization
of On-Chip Crossbar Interconnects,” Proceedings of International Workshop
on Applied Reconfigurable Computing (ARC’07), pp. 61–72, Mar 2007.

[10] H. Nikolov, T. Stefanov, and E. Deprettere, “Efficient Automated Synthe-
sis, Programming, and Implementation of Multi-processor Platforms on FPGA
Chips,” Proceedings of 16th International Conference on Field Programmable
Logic and Applications (FPL’06), pp. 323–328, Aug 2006.

[11] Rusty O. Baldwin, Nathaniel J. Davis IV, Scott F. Midkiff b, and John E.
Kobza, “Queueing network analysis: concepts, terminology, and methods,”
The Journal of Systems and Software, vol. 66, no. 2, pp. 99–117, May 2003.

[12] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G.D. Micheli, “NoC Synthesis Flow for Customized Domain Specific Multi-
processor Systems-on-Chip,” IEEE Transactions on Parallel and Distributed
Systems, vol. 16, no. 2, pp. 113–129, Feb 2005.

[13] J. Hu and R. Marculescu, “Energy-Aware Mapping for Tile-based NoC Ar-
chitectures Under Performance Constraints,” Proceedings of the 8th Asia and
South Pacific Design Automation Conference (ASP-DAC’03), pp. 233–239,
Jan 2003.

[14] K. Sekar, K. Lahiri, A. Raghunathan, and S. Dey, “FLEXBUS: A High-
Performance System-on-Chip Communication Architecture with a Dynami-
cally Configurable Topology,” Proceedings of 42th International Conference
on Design Automation Conference (DAC’05), pp. 571–574, Jun 2005.

[15] K. Lahiri, A. Raghunathan, G. Lakshminarayana and S. Dey, “Design of High-
Performance System-On-Chips Using Communication Architecture Tuners,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 23, no. 5, pp. 620–636, May 2004.

[16] S. Murali and G.D. Micheli, “Bandwidth-Constrained Mapping of Cores onto
NoC Architectures,” Proceedings of International Conference on Design, Au-
tomation and Test in Europe (DATE’04), pp. 896–901, Feb 2004.

