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Abstract—Fault tolerance (FT) is becoming increasingly impor-
tant in computing systems. FT features are based on some form
of redundancy, which adds a significant cost to a system, either
increasing the required amount of hardware resources or degrad-
ing performance. To enable a user to choose between stronger FT
or performance, some schemes have been proposed, which can be
configured for each application to use the available redundancy to
increase either reliability or performance. We propose to have an
instruction-level, rather than application-level, configurability of
this kind, since some applications (for example, multimedia) can
have different reliability requirements for their different parts.
We propose to apply weaker (or no) FT techniques to the less
critical parts. This yields a certain time or resource gain, which
can be used to apply stronger FT techniques to the more critical
parts, thereby, increasing the overall FT. We show how some
existing FT techniques can be adapted to support instruction-
level FT configurability, and how a programmer can specify the
desired FT of particular instructions or blocks of instructions in
assembly or in a high-level programming language. In some cases
compiler can assign the FT level to instructions automatically.
Experimental results demonstrate that reducing the FT of non-
critical instructions can lead to significant performance gains
compared to a redundant execution of all the instructions. The
fault coverage of this scheme is also evaluated, demonstrating
that it is very application-specific. For some applications the fault
coverage is very admissible, but unacceptable for others.

I. INTRODUCTION

The importance of fault tolerance (FT) of computing sys-
tems is increasing instantly nowadays [1]. This is a conse-
quence of the technology trends which try to follow Moore’s
law in increasing chip density by decreasing feature size.
Smaller feature size, greater chip density, and minimal power
consumption lead to increasing device vulnerability to external
disturbances such as radiation, internal problems such as
crosstalk, and other reliability problems, which result in an
increasing number of faults, especially transients, in comput-
ing systems.

After the switch from tubes to more reliable transistors
and until recently, a strong FT used to be a requirement
only of special-purpose high-end computing systems. The
technology reliability was considered sufficient, and only a
few FT techniques, such as Error Correcting Codes (ECC) [2]
in memory, were usually used. Already now, and, according to
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predictions, more and more in the (near) future, the technology
trends pose the reliability problem [1], which leads to the need
of FT features even in PCs.

Many fault tolerant schemes exist. There is always a trade-
off between FT and cost, either in performance or resources.
System resources are limited, and the more of them are
dedicated to FT, the more performance suffers. It is desirable,
having a certain system, to be able to choose in every
particular case if its resources should be used to improve FT or
performance. Some proposed FT schemes may enable system
configuration before an application is run, which allows to
choose between higher performance or stronger FT depending
on the application requirements.

We propose a system configurability targeting either FT
or performance at the instruction, rather than application
level. This is based on the observation that, for example,
for multimedia applications, most of the computations do not
strictly require a strong FT, because many errors would not be
visible for a human, while others can cause a slight, tolerable
inconvenience. However, if the control of a multimedia appli-
cation is damaged, the application is likely to crash. Hence, the
control instructions should preferably be highly fault tolerant,
while the non-critical computations can be left as they are,
or can be protected with weaker (and cheaper) techniques
to avoid excessive redundancy which degrades performance
and/or increases the system cost. Alternatively, the gained time
or resources can be used to enhance the FT of the critical
instructions even further. In this case, the overall reliability of
the application increases, at the expense of reduced reliability
of non-critical parts.

We call the strength of FT features applied to an instruction
the degree of FT. The more efficient FT techniques are
applied, the higher the degree of FT is. The minimum degree
of FT corresponds to the absence of any FT techniques.
Duplication and comparison of the results has a lower degree
of FT than Triple Modular Redundancy (TMR) [3], [4].
Normally, a higher degree of FT corresponds to a greater
amount of redundancy, and hence, is more expensive in terms
of resources and/or time.

The proposed technique is referenced to as Instruction-
Level Configurability of Fault Tolerance (ILCOFT). A
programmer is able to specify which instructions are critical,



and thus should be highly fault tolerant, and which instructions
are not. If a system supports several degrees of FT, the
programmer is able to specify the desired degree for each
instruction or group of instructions. This can be done either
in high level language or in assembly code. Partially, it
could also be performed automatically by the compiler. The
system adapts one of the existing FT schemes to satisfy the
needs of particular instructions, for example, by duplicating
or triplicating them in software or hardware, and comparing
the results.

This paper is structured as follows. Section II discusses
related work. Section III presents ILCOFT, giving its reasoning
in a greater detail in Section III-A, showing how several exist-
ing FT schemes can be adapted for ILCOFT in Section III-B,
and discussing possible ways for a programmer to specify the
desired degree of FT for particular instructions or code blocks
in Section III-C. Section IV demonstrates some experimental
results. Finally, Section V draws conclusions and discusses
future work.

II. RELATED WORK

Saxena and McCluskey [5] noticed that multithreaded
FT approaches can target both high-performance and high-
reliability goals, if they allow configuration to either high-
throughput or fault tolerant modes. For example, slipstream
processors [6], [7] provide this configurability.

Breuer, Gupta, and Mak [8] proposed an approach called
error tolerance, which increases the fabrication yield, by
accepting fabricated dies which are not completely error-free,
but deliver acceptable results. Among other considerations,
the tolerance of multimedia applications to certain errors is
discussed.

Chung and Ortega [9] developed a design and test scheme
for the motion estimation process. This reveals that the effec-
tive yield can be improved if some faulty chips are accepted.

Lu [10] presents the Structural Integrity Checking technique
using a watchdog processor [11] to verify the correctness of
an application control flow. “Labels” are inserted into the
application at the places where a check should be performed.
The higher density of the “labels” is, the more checking is
done. Thus, a programmer can increase the density of the
“labels” at the critical parts of an application, increasing the
amount of checking applied to them.

We propose to leverage the error tolerance of certain appli-
cations to improve their overall reliability and/or improve their
performance. This goal is achieved by enabling instruction-
level degree of FT configurability, which means that an
application developer is able to configure the degree of FT
applied to particular instructions or blocks of instructions. By
reducing the degree of FT for non-critical and increasing it
for critical instructions, a developer can improve the overall
application reliability and/or performance.

III. ILCOFT

A. Motivation

Many multimedia applications, such as image, video and
audio coders/decoders, use lossy algorithms. After decoding, a
stream produced is not perfect. It incorporates errors which the
human eye cannot notice or can easily tolerate. For example, if
one of more than 307 thousand (640×480) pixels in an image
or a video frame has a wrong color, it is likely to be ignored
by a human. If an error occurs in calculations associated
with motion compensation in video decoding, this can result
in a wrong (rather small) block for one or a few frames.
The number of frames that can be affected depends on the
place where the error appeared and on how far the following
key frame is. Because usually there are 20 to 30 frames per
second, the chance that a human will notice this error is quite
low. Moreover, if it is noticed, it will probably result in less
inconvenience than the compression-related imperfections.

This shows that some errors can be allowed in this kind of
applications. However, if an error occurs in the control part
of a multimedia application, it is very likely that the whole
application will crash.

As an example, consider the image addition kernel presented
in Figure 1. If an error occurs in any of the expressions that
evaluate the pixel value sum, it will result in a wrong pixel in
the output image, which is tolerable. However, if a problem
appears in the statements controlling the loops, there is a very
small chance that it will not crash the application or seriously
damage the results. A normal termination with correct results
can happen in this case if one or both loops performed too
many iterations, but the memory which they damaged was not
used for any other purpose. This scenario, however, has a very
low probability. It is likely that the application will crash (due
to a jump to an invalid address, damage of memory, etc.), or,
if the loop is exited too early, the part of the image which has
not been processed yet will be wrong. The if statement which
controls saturation is less dangerous than the loops, because if
the condition is evaluated incorrectly, only one pixel suffers. If
the branch target address is corrupted, however, the application
will most probably crash. Thus, this if statement can also be
considered for a higher degree of FT.

for( i=0; i<N; i++ )
for( j=0; j<M; j++ )
{

sum = ImageX[i][j] + ImageY[i][j] ;
if( sum > 255 ) /* saturation */

sum = 255;
ImageX[i][j] = sum;

}

Fig. 1. Image addition

Hence, for the image addition kernel presented in Figure 1,
it is desirable to have the maximum level of FT for the
instructions controlling the loops and the branch target address
of the if statement. A lower level of FT for the other



instructions, which determine the pixel value, is acceptable,
and even desirable, when aiming at performance.

FT is based on some form of redundancy. Space redundancy,
which increases the amount of required hardware resources,
can achieve FT without a performance loss, at the expense of
increased hardware cost. The amount of hardware is usually
limited, however, and to achieve FT under this constraint,
time redundancy is used, which degrades performance. When
both hardware resources and time are limited, which is very
common, the proposed scheme increases performance at the
expense of decreased reliability of non-critical application
parts. However, the critical parts are still as reliable as with
a full FT scheme, so the overall application reliability is
not affected. As Section IV-A shows, ILCOFT can provide
a significant performance improvement.

B. FT Schemes adaptable to ILCOFT

We propose that a system can provide several FT techniques
of varying strengths, corresponding to different degrees of
FT. For example, a non-redundant instruction execution has
FT degree 0 (no FT), duplication with comparison of the
results can be assigned FT degree 1, and a Triple Modular
Redundancy (TMR) is associated with FT degree 2.

Duplication and triplication of an instruction assumes either
hardware or time redundancy, which results either in multi-
ple execution units where the copies of an instruction can
be executed simultaneously, or in a sequential (or partially
sequential) execution of the multiple copies.

There exist several techniques for high-performance pro-
cessors that try to minimize the effect which this created
redundancy has on performance, and we show how they can
be adapted to support ILCOFT.

For instance, a pure software technique named Error De-
tection by Duplicated Instructions (EDDI) [12] has been pro-
posed, which takes advantage of Instruction Level Parallelism
(ILP) [13] of superscalar processors to minimize the perfor-
mance impact of the redundancy. This technique duplicates
all the instructions and memory in software, using different
registers. A software tool performs duplication automatically.
Applying the proposed ILCOFT to this scheme assumes that
a programmer can specify the required FT degree of different
instructions. Without modifications, EDDI can support only
two degrees of FT: 0 (no redundancy) and 1 (duplication and
comparison). However, EDDI can be extended to allow more
redundancy: triplication with voting etc. While compiling,
each instruction is multiplicated according to its FT degree,
then the results are compared or voted. In Section IV EDDI is
adapted to support ILCOFT, with two possible degrees. It is
shown using several multimedia kernels that minimizing the
degree of FT for non-critical instructions provides a substantial
performance gain.

If the FT techniques are implemented in hardware, there
must be a way to set the required FT mode for every instruc-
tion. For example, several bits in the instruction encoding can
specify the required FT degree. The number of bits allocated

for this purpose depends on the number of available FT modes
supported by hardware.

Franklin [14] proposed to duplicate instructions in super-
scalar processors at run time and compare the results to detect
errors. Two places where instructions can be duplicated were
presented and analyzed: (1) in the dynamic scheduler after an
instruction is decoded, and (2) in the functional unit where
the instruction is executed. To adapt this scheme to support
ILCOFT, several bits in the instruction encoding can be set
by the compiler to determine the needed FT degree for that
instruction. Based on this information, the hardware performs
the appropriate FT action, e.g., duplicate the instructions and
compare their results, triplicate and vote, etc. This can be also
applied to the scheme proposed in [15].

The DIVA approach [16], [17], [18] uses a simple and robust
processor, called DIVA checker, to verify the operation of the
high-performance speculative core. This approach can also
be adapted to support ILCOFT by selecting the instructions
whose results have to be verified by the DIVA checker.

ILCOFT is also applicable to FT techniques based on
simultaneous multithreading [19], such as those presented
in [5], [20], [21], [22], [23], slipstream processors [6], and
others.

C. Specification of the Desired FT Degree

Two possible ways how a programmer can specify the
desired degree of FT applied to an instruction are to set it
in assembly code or in high-level language. Alternatively, in
some cases, the compiler can perform this automatically.

Since a programmer most likely does not dream to mark
the degree of FT for every assembly instruction or high-level
language statement manually, the first step is to choose the
appropriate policy which determines the default degree of FT,
which is applied to all unmarked instructions. The default can
be set to, for example, the minimum, average, or maximum
possible degree of FT.

The approach which sets the default degree of FT
to the minimum requires a programmer to mark instruc-
tions/statements that should receive a higher degree of FT. This
method does not look very practical, because there is a high
chance that many instructions are critical for an application:
an illegal branch in any place can crash the whole application.

The opposite approach, when the default degree of FT is
the maximum, looks more useful for many applications. In
this case, a programmer marks the instructions or statements
that should have the lower degree of FT, and all the others get
a higher degree. This is especially suitable for multimedia ap-
plications, many of which spend most of the runtime in small
kernels. Decreasing the degree of FT of a few computational
instructions in a heavily used kernel can provide a significant
application-level performance gain.

Finally, the default degree of FT can be assigned some
intermediate value. Then, a programmer has to specify instruc-
tions/statements requiring higher and lower degree of FT.



1) In Assembly Code: If a programmer specifies the desired
degree of FT in assembly code, the way how it can be done
depends on the FT scheme which is used.

If FT is implemented in hardware, the programmer marks
instructions with the required degree of FT using some flags,
and the assembler encodes this information into every instruc-
tion.

In pure software, the EDDI technique [12] discussed in
Section III-B can be used. This technique duplicates all the
instructions and compares important results to detect possi-
ble errors. Adapting EDDI, a programmer can duplicate the
critical instructions manually, taking care about the register
allocation, register spilling, possibly memory duplication, etc.
However, some automatic assisting tool would be very useful.
This tool can be based on the compiler postprocessor used
in [12], which automatically includes EDDI into an applica-
tion. A compiler reserves registers for duplicate instructions,
and a tool duplicates everything. In the resulting assembly file,
a programmer removes the undesired redundancy manually.

2) In High-Level Language: Figure 2 demonstrates a pos-
sible way for a programmer to specify the desired degree
of FT for particular statements or blocks of statements in a
high-level language. This is done in the form of a #pragma
statement which determines the degree of FT that should be
applied to the following statements, until the next #pragma
statement changes it. The larger the number corresponding to
FT DEGREE is, the higher degree of FT should be. Each
statement is compiled into instruction(s) whose degree of FT
is equal to that of the corresponding statement. In the case
of control statements, a compiler must be able to find their
dependencies and to apply the same degree of FT to them.

In Figure 2, the instructions which are generated for the
for statement, should have the degree of FT equal to 3. The
instructions inside the loop (and after the loop until the next
#pragma) should have the degree of FT 1. Thus, the correct
loop control is more critical than the addition result, which
is typical for multimedia applications. Obviously, the loop
control depends on the values of the variables i and n, which
have been assigned before. Hence, the compiler should walk
backwards to find all the instructions on which the values of
these variables depend, and assign the degree of FT 3 to them.

#pragma FT_DEGREE 3

for( ; i < n; i++ )
{
#pragma FT_DEGREE 1

c[i] = a[i] + b[i];
}

Fig. 2. Possible FT degree specification in a high-level language

3) Automatically by the Compiler: If a system supports
only two degrees of FT, for example, no FT (no FT techniques
are applied) and fault tolerant (some techniques are applied),
in some cases the compiler can determine the instructions that

need to be fault tolerant automatically. This saves a program-
mer from manual work. The automatic compiler scheme can be
based on the observation that in most cases, the instructions on
which an application’s control flow depends, require a higher
degree of FT. All control flow instructions, such as branches,
jumps, and function calls, are assigned a higher degree of
FT. Furthermore, all instructions on which these control flow
instructions depend should also receive the higher FT degree.
The efficacy of this scheme depends on the compiler’s ability
to perform exact dependence analysis. In the worst case, all
instructions on which a control flow instruction could depend
need to be given the higher FT degree.

IV. EXPERIMENTAL RESULTS

A. Performance Evaluation

To evaluate the performance gain delivered by applying
ILCOFT, we adapt the EDDI [12] scheme to support ILCOFT.
Performance results of four kernels in non-redundant (origi-
nal), EDDI and ILCOFT-enabled EDDI forms are compared.
The SimpleScalar simulator tool set [24], [25] is utilized
for performance simulation. The default SimpleScalar PISA
architecture is used.

Four simple kernels are investigated: image addition (matrix
addition) discussed in Section III-A, matrix multiplication,
sum of absolute differences (SAD), and a Fibonacci numbers
generator. For each kernel, the C source code is compiled to
SimpleScalar assembly code. The compiler-optimized (GCC
-O2 flag) version of the application plays the role of the
“original”, non-redundant application, with no FT.

The EDDI version of the kernel is derived from the original
version by duplicating all the instructions and memory, and
integrating the checking instructions, by hand, according to
the scheme presented in [12]. Memory duplication means that
the data memory has a shadow copy which is referenced by
the duplicate instructions. Thus, after any duplicate instruction
has finished its execution, the contents of a duplicate of a
memory structure must always be equal to that of the original
structure. Inequality signals an error. Checking instructions
only appear before a value is stored or used to determine a con-
ditional branch outcome. Faults are free to propagate within
intermediate results. This is proposed in [12] to minimize the
performance overhead.

The ILCOFT-enabled EDDI version is obtained from the
original application by duplicating only the critical instructions
in the kernel and comparing their results, without memory
duplication. Most of the control instructions are considered
to be critical. For the image addition kernel, these are the
instructions to which the loop control statements in Figure 2
are compiled, and the instructions on which the control vari-
ables depend. Memory duplication does not make sense for
ILCOFT-enabled EDDI, because all the instructions have to
be duplicated to maintain a shadow memory copy. In our
experiments, the applications FT does not suffer from this,
because the control instructions do not depend on memory
contents, but only on register values, which are protected.
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Fig. 3. Slowdown of EDDI and ILCOFT-enabled EDDI over non-redundant kernels, for varying issue widths

Both EDDI and ILCOFT-enabled EDDI reliably protect
only against transient hardware faults that do not last longer
than one instruction execution. To protect against faults taking
more time, including permanent faults, there should be a way
to ensure that an instruction and its duplicate execute on
different hardware units. For example, they can execute on dif-
ferent CPUs in a multicore system, or on different functional
units of a superscalar processor. In the latter case, only long-
lasting faults of functional units are covered. Alternatively, to
avoid hardware replication, techniques changing the form of
the operands of a duplicate instruction, such as alternating
logic [26] and recomputing with shifted operands [27], can be
used. However, they are expected to have a significant impact
on performance, and are outside the scope of this paper.

Figure 3 depicts the slowdown of EDDI and ILCOFT-
enabled EDDI over the non-redundant scheme for four dif-
ferent processor issue widths. Figure 4 demonstrates the ratio
of the number of committed instructions of both schemes to
that of the non-redundant scheme. Without ILP, speculation
etc., Figure 3 is expected to be similar to Figure 4. The
performance results of Figure 3(a) (issue width 1) are quite
consistent with Figure 4, but for larger issue widths, the
processor exploits the available parallelism better (the original
instruction and its duplicate are independent). Because of this,
the slowdown of EDDI and ILCOFT-enabled EDDI decreases
when the issue width increases, unless there are other limiting
factors. Matrix multiplication, for example, has a structural
hazard: there is only one multiplier, so the duplicate of a
multiplication instruction cannot be executed in parallel with
the base instruction.

  

Fig. 4. Committed instructions

As in [12], despite duplication of all instructions and mem-
ory in EDDI, especially for larger issue widths, its slowdown
over the original application is in most cases smaller than
the intuitively anticipated two times (actually, more than two
because of the checking instructions, duplicated memory, and
register spilling). This is due to the increased ILP introduced
by the duplicates which are independent of the original in-
structions. This leads to a more efficient resource usage and
fewer pipeline stalls. ILCOFT-enabled EDDI also profits from
this feature.

Figure 3 shows that ILCOFT-enabled EDDI is considerably
faster than EDDI for all kernels. Several factors contribute to
this:

• The number of instructions in ILCOFT-enabled EDDI is
smaller than in EDDI (by about 40% on average).

• EDDI duplicates memory, while ILCOFT-enabled EDDI
does not.



• EDDI needs more registers than ILCOFT-enabled EDDI,
since ILCOFT-enabled EDDI duplicates fewer instruc-
tions and, hence, reduces register pressure. Higher reg-
ister usage leads to more register spilling.

As these factors have different weights for different kernels,
the speedup of ILCOFT-enabled EDDI over EDDI is not
constant. For the image addition kernel, memory duplication
contributes 1.3% to the speedup of ILCOFT-enabled EDDI
over EDDI. The contribution of additional register spilling
(two more registers are saved in stack for EDDI) is negli-
gible (less than 1%). The remaining contribution should be
attributed to the duplicated instructions.

B. Fault Coverage Evaluation

In this section we provide an initial evaluation of the
fault coverage of ILCOFT-enabled EDDI. The purpose is to
determine how ILCOFT affects the fault coverage of EDDI.

We simulate hardware faults by extending the SimpleScalar
sim-outorder simulator with a fault injection capability. At a
specified frequency (every N instructions) a fault is injected
by corrupting an input or output register of an instruction
(overwriting its content with a random value). Only integer
arithmetic instructions are affected, because only this kind
of instructions appears in the tested kernels, in addition to
memory access and branch instructions. The faults inside
memory access and branch instructions are not covered by
EDDI (only their inputs are protected), thus ILCOFT-enabled
EDDI is also not expected to cover them, so they are not
affected by the fault injector. Fault injection into an input
register simulates a memory, bus or register file fault. Fault
injection into an output register simulates a functional unit
fault also. Faults are injected only within the kernel code,
because the main function is not protected in our experiments.

We remark that the fault appearance does not represent
a realistic model. The aim here is to evaluate the behavior
(fault coverage) of the investigated schemes under different
fault pressures (frequencies), and to ensure that as many as
possible of the fault propagation paths within the kernels are
examined. By making the fault injection periodic rather than
random, and by varying the frequency for each of a large
number of simulations, we attempt to gain a better control
over the process, and to achieve the mentioned goals.

Table I, Table II, and Table III present the faults injection
results for the three different schemes. The first column of each
table shows the number of simulations executed. The chosen
number of simulations differs for each kernel, and depends
on the number of committed instructions. The frequency of
injected faults starts from one fault per every 1000 (in some
cases 100) instructions, and every new simulation decreases
the fault frequency until it becomes roughly one fault per
execution. In this way we make sure that all the situations with
frequent down to rare faults are evaluated, and that random
instructions within kernels are affected. The second column
shows how often faults have been detected by the FT scheme
(EDDI or ILCOFT-enabled EDDI), the third column – faults
detected by the simulator (for example, a memory access to

an illegal address is reported). The fourth column contains the
percentage of undetected faults, which shows how often the
kernel execution finished without reporting an error. The fifth
column demonstrates how often an application crashed, i.e.,
did not produce any output. The sixth column shows how often
an application delivered a correct result despite the presence of
undetected fault(s). In other words, the application has finished
execution without reporting an error, but a certain number of
faults occurred which have not been detected. Nevertheless,
the application output was correct, since the faults have not
propagated to it. In parentheses the maximum number of
undetected faults in this situation is given. The seventh column
gives the maximum number of faults injected per execution,
before the execution finished normally or was interrupted
reporting an error. There are usually fewer injected faults
in EDDI than in other schemes, because EDDI detects and
reports faults, aborting the execution, earlier. The next column
shows the maximum number of undetected faults, which were
injected but not detected, and the execution finished without
reporting an error. Most of the times these undetected faults
result in corrupted application output, except the cases counted
in the sixth column. Finally, the ninth column presents the
maximum, and the last column – the average output corruption
caused by undetected faults, demonstrating how many of them
propagate to the output. An output corruption percentage is
defined as a ratio of the number of wrong to the number of
correct application outputs. The average output corruption is
calculated as a sum of all the corruption percentages divided
by the number of simulations, and is used to emphasize that
a very high maximum output corruption does not necessarily
mean that the output is usually corrupted by the same amount.
It can be an exceptional case.

Obviously, ILCOFT affects kernels in very different ways.
The difference in the fault coverage can be explained by
the density of the duplicated instructions in a kernel. The
more instructions are duplicated, the better fault coverage
is, and the lower performance gain is. Among the presented
kernels, the worst fault coverage (the greatest percentage of
undetected faults) appears in matrix multiplication and sum
of absolute differences, in which relatively many unprotected
computational instructions reside between the protected con-
trol instructions. Depending on the application, the significant
performance increase at the expense of the weak fault coverage
can be considered acceptable. For example, for sum of absolute
differences used in motion estimation, a wrong result leads to
a wrong block, which can usually be tolerated.

The exceptionally high percentage of correct outputs despite
faults in matrix multiplication can be explained by the fact
that most of the results (output matrix elements) are truncated
when overflow occurred. The truncation masks many errors.
This can also be one of the reasons why matrix multiplication
has a relatively small percentage of detected faults: the faults
are masked before they propagate to a checking instruction
which can detect them. With a higher calculations precision
(more bits per value), the number of correct outputs despite
faults would drop.



TABLE I
FAULT INJECTION RESULTS FOR THE ILCOFT SCHEME FOR THE FOLLOWING KERNELS: IMAGE ADDITION (IA), MATRIX MULTIPLICATION (MM),

FIBONACCI NUMBERS GENERATION (FIB) AND SUM OF ABSOLUTE DIFFERENCES (SAD)

Kernel # sim.
Detected

(FT scheme)
%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Correct output
despite faults

% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

Max. output
corruption

%

Av. output
corruption

%

IA 13526 86.66 0 13.34 0 0.07 (2) 22 11 0.13 0.012
MM 621 53.62 0 46.38 0 23.19 (5) 15 11 99 3.103
Fib 581 66.44 25.99 7.57 0 0 8 3 96.67 38.232
SAD 340 55.88 0 44.12 0 0.29 (1) 25 18 100 100

TABLE II
FAULT INJECTION RESULTS FOR THE EDDI SCHEME

Kernel # sim.
Detected

(FT scheme)
%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Correct output
despite faults

% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

Max. output
corruption

%

Av. output
corruption

%

IA 6025 100 0 0 0 0 2 0 0 0
MM 621 100 0 0 0 0 11 0 0 0
Fib 581 67.81 32.01 0.17 0 0 3 2 96.67 96.667
SAD 340 98.53 0 0.29 1.18 0.29 (1) 23 1 100 100

TABLE III
FAULT INJECTION RESULTS FOR THE NON-REDUNDANT SCHEME

Kernel # sim.
Detected

(FT scheme)
%

Detected
(simulator)

%

Undetected
%

Application
crashed

%

Correct output
despite faults

% (max. # faults)

Max. #
injected
faults

Max. #
undetected

faults

Max. output
corruption

%

Av. output
corruption

%

IA 2768 n/a 0 100 0 0 6438 6438 99.66 1.074
MM 621 n/a 0 100 0 43 (9) 50 50 94.75 2.992
Fib 532 n/a 32.33 67.67 0 10.71 (4) 5 5 97.78 53.991
SAD 326 n/a 0 100 0 8.28 (10) 130 130 100 100

The most important fault coverage characteristic from a
user point of view is the final output corruption. The fact
that a certain amount of corruption can be allowed in some
applications drives the idea behind ILCOFT. Obviously, this
is a very application-specific issue, depending solely on the
algorithm employed.

The image addition kernel, computing every pixel value
independently, without a long chain of computations, shows
a very good result: only a few pixels (maximum 0.13%
of the whole output image) are corrupted. This can often
be unnoticed by a user. The maximum output corruption
happened when a fault was injected into the register which
held the base address of an array representing one input image
line (matrix row), and was later used to fetch all the image data
on this line. As a result, garbage was fetched from a random
memory location for every pixel of the rest of the line, and
the resulting image line was entirely corrupted from the point
where fault appeared. This was quite visible on the output
image. It could be solved by performing checks of computed
addresses before every load and store. Then, only single pixels
would have been affected.

In all other kernels, the resulting values depend on a
long chain of computations, and even on each other, so the
final output corruption increases dramatically. In Fibonacci
numbers generation, every subsequent value depends on the
previous one, so, all the values behind the first erroneous
one become wrong. This leads to the unexpected extremely
high final output corruption in EDDI, which catches an eye in
Table II. However, in fact, only one of 581 simulations finished
with an undetected error (2 undetected faults), and this error
obviously manifested among the first Fibonacci numbers, so

all the following numbers were computed on the base of this
error, and thus, about 97% of the final output was corrupted.
The average output corruption of about 97% is equal to the
maximum, because this is the only undetected error. Sum
of absolute differences delivers only one value as a result,
which can be either correct or wrong, and any unmasked fault
in the computations leads to an error. Consequently, all the
undetected errors affect 100% of the output.

The experimental results demonstrate that the fault coverage
of ILCOFT-enabled EDDI can be significantly improved by
protecting the computed memory access addresses. For ex-
ample, as mentioned, it could solve the corrupted output line
problem in image addition. This can be done before every load
and store instruction, by checking the value of the register
which holds the memory address. Of course, the redundant
value must be computed by a chain of duplicated instructions
(which can be done automatically by a compiler), bringing
back the trade-off between performance and fault coverage.

The memory access address problem is not relevant for
EDDI, because the memory is duplicated there, and all the
loads and stores reference different memory locations. How-
ever, this can be a point where the fault coverage of ILCOFT-
enabled EDDI is stronger than that of EDDI itself: EDDI
does not have any memory address protection, so a fault in
a store can damage any memory location, while ILCOFT-
enabled EDDI with memory access protection saves from this.

To minimize the performance loss, only the store addresses
can be protected, assuming that a memory corruption is worse
than fetching a wrong value. But in this case, the image
addition corrupted line problem discussed above is not solved.



V. CONCLUSIONS

In this work we have proposed an instruction-level, rather
than application-level, configurability of FT techniques applied
to an application. This idea is based on the observation that
some applications might pose different FT requirements for
their different parts. For example, in multimedia applications,
an error in parts calculating the value of a pixel, a motion
vector, or a sample frequency (sound) can be easily unnoticed
or ignored by a human observer. However, an error in the
control (critical) part will most probably lead to a crash of the
whole application. This suggests that it is most important to
apply the strongest FT features to the critical parts, and non-
critical parts can be protected with a weaker FT to improve the
application performance. In applications with execution time
constraints, the time saved by reducing the FT of non-critical
parts can be used to further increase the FT of the critical
parts, thus improving the overall application reliability.

We have shown how several existing FT schemes can be
adapted to support ILCOFT, proposed a way how a program-
mer can specify the desired degree of FT in a high-level
language or assembly code, and indicated how a compiler can
apply FT techniques to control code automatically.

The experimental results have demonstrated that ILCOFT is
able to significantly improve an application performance when
applying a higher FT degree to its critical parts (instructions)
only. They have also shown that fault coverage of ILCOFT is
very application-specific and works best with applications that
compute independent elements. The fault coverage certainly
depends on the amount of redundancy applied. Finally, we
have demonstrated that adding memory access address pro-
tection can significantly improve the fault coverage.

Future work consists of applying ILCOFT to other FT
schemes, also in hardware. Furthermore, development of com-
piler support for specification of FT degree is necessary to
evaluate ILCOFT for large applications, such as audio/video
codecs.
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