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Abstract—Emerging nanotechnologies, like single-electron tun-
neling (SET) technology, possesses properties that are fundamen-
tally different from what CMOS offers to engineers. This opens up
avenues for novel computational paradigms, which can perform
arithmetic operations efficiently by utilizing these new available
properties. In this line of reasoning, in this paper we investigate the
implementation of division in SET technology using a novel com-
putation paradigm called electron counting. First, we present two
schemes that are based on sequential approximation of the quo-
tient. The first scheme is basic and simple to build, but suffers
from overshoot and has a rather large delay. The second scheme,
which is a modification of the first one, has a delay logarithmic in
the quotient magnitude and the simulation results we present indi-
cate that this scheme works correctly. Finally, we propose a division
scheme based on the computation of periodic symmetric functions.
Although this scheme requires a varactor for which no nanoscale
implementation yet exists and which cannot be directly simulated,
it demonstrates the possibilities that nanotechnology, and specifi-
cally SET technology, potentially offers as it has a time complexity
of (1).

Index Terms—Computer arithmetic, division, single-electron
tunneling.

I. INTRODUCTION

FOR DECADES we have seen an ongoing increase in
integrated circuit performance mainly due to advances

in fabrication technology and improvements in computational
paradigms. However, fabrication technology is stagnating and
it is generally expected that current technology, i.e., CMOS,
cannot be pushed beyond a certain limit. This limit is expected
to arise in mainly two areas: power consumption and scalability.
The International Technology Roadmap for Semiconductors
(ITRS) [1] states that ”we have reached the point where the
horizon of the Roadmap challenges the most optimistic pro-
jections for continues scaling of CMOS.” Consequently, the
roadmap included post-CMOS devices. Moreover, the amount
of research in this emerging technologies field has exploded.

A promising candidate to succeed CMOS is single-electron
tunneling (SET) technology [2], as it does not suffer from the
limitations CMOS faces (power consumption and scalability).
SET technology allows controlling single or few electrons and
therefore has potential to perform computation with ultra low
power consumption. Downscaling feature sizes increases the
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Fig. 1. Schematic representation of the tunnel junction.

quantum mechanical behavior, especially when reaching the
nanometer region. For CMOS this causes problems, whereas
for SET, which is based on the quantum nature of tunnel
transport, this improves device behavior. Consequently, SET
technology is scalable to the nanometer region and beyond.

Several proposals have been made to implement computa-
tional operations using SET technology and these implemen-
tations are mainly categorized in two types (see, for example,
[2] and [3]). The first type of implementation represents logic
values by voltage [4]–[6] and SET devices are used to switch
currents on and off, resulting in MOSFET-like behavior. The
main advantage of this approach is that current designs can
easily be translated into SET technology, but there are disad-
vantages as well. A major drawback to this approach is the large
power dissipation [7], [8]. The second type of implementation
represents bits by single or few electrons and consequently con-
sumes less power. Single-electron encoded logic (SEEL) [9] is
an example of the latter.

Using the second type of implementation, arithmetic units
can be designed in a conventional logic design style, e.g., using
Boolean and/or threshold gates (see, for example, [10]). The
electron counting (EC) paradigm [11], on the other hand, uses a
novel design style and appears promising as an efficient method-
ology for implementing SET-based arithmetic operations. In
previous research, addition-related arithmetic operations, i.e.,
addition [12], [13] and multiplication [12], [14] have been im-
plemented utilizing the EC paradigm.

In this paper we investigate the implementation of EC-based
division. First, Section II briefly describes the single-elec-
tron tunneling phenomenon and introduces the EC paradigm.
Second, using previously designed EC building blocks, in
Section III we present a basic division scheme, which has a
delay linear in the magnitude of the quotient. Subsequently,
to improve circuit delay, in Section IV an improved division
scheme is proposed, the implementation of which is explained
in detail, and simulation results are presented. This scheme has
a delay that is logarithmic in the magnitude of the quotient.
Third, in Section V we propose a novel division scheme, based
on the computation of periodic symmetric functions, and which
has a time complexity of . Section VI concludes the paper.
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Fig. 2. SET electron trap. (a) Circuit. (b) Transfer function.

II. BACKGROUND

SET circuits are based on tunnel junctions which consist of an
ultrathin insulating layer in a conducting material (see Fig. 1).
In classical physics no charge transport is possible through an
insulator. However, when the insulating layer is thin enough
the transport or tunneling of charge can be controlled in a dis-
crete and accurate manner, i.e., one electron at a time. Tun-
neling through a junction becomes possible when the junction’s
current voltage exceeds the junction’s critical voltage [15]

, where , is the
capacitance of the junction, and is the capacitive value of
the remainder of the circuit as seen from the junction. In other
words, tunneling can occur if and only if .

Electron tunneling is stochastic in nature and as such the
delay cannot be analyzed in the traditional sense. Instead, for
each transported electron the switching delay can be described
as

(1)

where is the junction’s resistance and is the proba-
bility that the desired charge transport has not occurred after
seconds. In this paper we assume and

. Each transported electron reduces the system energy by
from which the consumed energy can be

calculated.
Besides the switching error probability, there are two

fundamental phenomena that may cause errors in SET cir-
cuits: thermal tunneling and cotunneling. Given a maximum
acceptable switching error probability, we must ensure that
the thermal error probability as well as the cotunneling error
probability are of the same order of magnitude or less. Thermal
tunneling errors are caused by thermal agitation. The thermal
error probability can be calculated as ,
where is Boltzmann’s constant ( J K),

is the operating temperature, and is the change in the
systems energy as a result of the tunnel event. Note that
scales inversely with the capacitor sizes in the SET circuit. For
a multijunction system in which a combination of tunnel events
leads to a reduction of the energy present in the entire system,
there exists a nonzero probability that those tunnel events occur
simultaneously (even if for all individual tunnel
junction involved). This phenomenon is commonly referred to
as cotunneling [16], [17]. The cotunneling error probability can

be reduced sufficiently through the addition of strip resistors
[18]–[20]. Additionally, current experimental SET circuits
contain random electrical charges which affect circuit biasing.
Such charges are assumed to be the result of trapped charge
particles in the tunnel junctions themselves or in the substrate
and are anticipated [3] to reduce or even disappear entirely
for the nanometer-scale feature size circuits required for room
temperature operations.

One issue that seems to hurt any nanoscale technology,
whether it is CMOS or SET, is variability. Several sources of
variability are known and at least some of them, e.g., process
parameter variations, will affect SET circuitry. In [21] an
analysis of several SET gates was presented indicating that
their robustness to variability can be low. Although this issue is
out of the scope of this paper, we do acknowledge that design
for variability and even design for fault tolerance are essential
for effective utilization of the SET technology.

Note that the implementations discussed in here are tech-
nology independent. SET tunnel junctions can for example be
implemented by classical semiconductor lithography and by
carbon nanotubes [22]. Therefore, circuit area is evaluated in
terms of the total number of circuit elements (capacitors and
junctions).

A well-known SET structure is the electron trap depicted in
Fig. 2(a). The SET electron trap functions as follows. If the
input voltage rises, the output voltage follows due to capaci-
tance division. At some point, though, the voltage across the
tunnel junction exceeds the critical voltage and an electron tun-
nels to the output node. Consequently, the output voltage drops.
As the input voltage continues to rise, the output voltage rises
again until it reaches the critical voltage, etc. Thus, the electron
trap has a periodic transfer function as depicted in Fig. 2(b).

The relation between the input voltage and the output
voltage of the electron trap can be derived as

(2)

where is the sum of all capacitances connected to node
and is the net charge in node . Also, the input voltage for
which the output voltage reaches its maximum can be expressed
as

for (3)
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Fig. 3. Basic quotient approximation division scheme. Dividend z is stored in analog format in reservoir Z . The quotient (Q) starts at zero and is increased by
adding charge to reservoir Q. Once Q�D � Z (D is the divisor) the comparator switches of the current source. Reservoir Q contains the resulting quotient.

This equation shows that the period of the electron trap
transfer function is only dependent on the magnitude of ca-
pacitance . The periodic nature of the electron trap transfer
function provides the fundamentals for effective implementa-
tion of periodic symmetric functions (PSFs) in SET technology,
which is further explained in Section IV-B2. PSFs are an
essential element for implementing arithmetic operations in the
EC paradigm.

There are many ways to do computation using SET tech-
nology, but most do not seem to fully utilize the potential of-
fered by SET. The EC paradigm is a novel way of computation
that does exploit the potential of SET technology to a greater
extend. In the EC paradigm, the ability to control the transport
of individual electrons is utilized to encode an integer value
directly as a charge . Using a digital to analog converter
(DAC) [12], a binary value can be converted into an amount
of charge and stored on a relatively large capacitor (a charge
reservoir). Once binary values have been encoded as a number
of electrons, arithmetic operations can directly be performed in
electron charges, which reveals a broad range of novel compu-
tational schemes. The result of the arithmetic operations can be
converted back to a binary value using an analog to digital con-
verter (ADC) [12]. Based on this approach, in previous research
[12], [14] we implemented addition and multiplication schemes,
using respectively a depth-2 and a depth-3 network. In this paper
we investigate the implementation of a nonlinear arithmetic op-
eration, i.e., division, in the EC paradigm. In the next section
we first present a simple EC division scheme, which is based on
quotient approximation.

III. BASIC QUOTIENT APPROXIMATION DIVISION

Binary division is defined as with ,
where is the dividend, is the divisor, is the quotient, and

is the remainder. Assuming an operand size of bits for ,
generally speaking the operand size for is , resulting in an

-bit quotient ( ) and an -bit remainder ( ). Such a divider is
referred to as a -bit by -bit divider.

First, in the next section we present a block level descrip-
tion of the basic quotient approximation division scheme and
explain its functionality. Second, in Section III-B we present
detailed descriptions of the building blocks utilized by the divi-
sion scheme.

A. Strategy

A basic way to make an EC-based division scheme is pre-
sented in Fig. 3 and it works as follows. The dividend , which
we assume to be binary encoded, is converted by a DAC scheme
into an analog value, i.e., a number of electrons stored in charge
reservoir . The bits of the divisor are connected to an EC
multiplier [12], which computes the product of and the quo-
tient , and stores this value in charge reservoir . The
quotient , stored in charge reservoir , is reset to zero before
the start of each computation. A comparator keeps track of the
values of and and allows a current source to subtract
electrons from reservoir as long as is smaller than .
In our EC-based circuit implementations we represent values by
positive charge, meaning that removing electrons from a charge
reservoir increases the represented value. When the value in
reservoir is equal to or greater than the value in , the
comparator opens the switch and the removal of electrons from
reservoir stops. The final result of the division is in charge
reservoir and, if necessary, can be converted back to the dig-
ital domain by utilizing an ADC scheme. We note here that for
noninteger quotients this scheme always rounds off upward.

B. Implementation

The division scheme utilizes a DAC building block and an
EC multiplier, both consisting of a parallel structure of MV
blocks (MoVe electrons block), resulting in a depth-1 network.
For a detailed description of the implementations we refer the
reader to [12].

The comparator was implemented using an SET threshold
logic gate (TLG). A threshold gate is a device that computes
a function given by:

if
if

(4)

(5)

where are the inputs, are the corresponding weights, and
is an internal threshold value. For this scheme we used

, thus it can be implemented by a two input threshold
gate, with , and . For
more details on the implementation of the SET threshold gate
we refer the reader to [23].
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Fig. 4. Improved quotient approximation division scheme. The quotient Q starts at zero. Each MC2 e block, subsequently enabled from i = n� 1 down to 0,
removes 2 electrons from Q if Z � Q �D > 2 D. Reservoir S contains the remainder.

The current source and switch were implemented by a
single-electron transistor (see [5] for an early analysis), which
operates similar to a MOS transistor. However, the current
through a single-electron transistor consists of discrete elec-
trons that tunnel strictly one after another, allowing us to control
the charge in an accurate manner.

The basic division scheme, as presented so far, does not com-
pute the remainder. Although this could in principle be imple-
mented, we actually did not do so because of the resulting in-
crease in delay and area costs.

C. Simulation

We implemented the division scheme in Fig. 3 in the sim-
ulation environment SIMON [24]. In the simulations that we
performed the circuit suffered from heavily overshoot, i.e., the
single-electron transistor was closed too late resulting in a too
large charge in reservoir . That problem can be solved by
clocking the transfer of electrons to the charge reservoir , thus
by adding a delay in the feedback loop. This could be imple-
mented by replacing the single-electron transistor with an elec-
tron pump [25]. We did not simulate this possibility as it would
worsen the delay of the scheme, which already is rather large.
Either using an SET transistor or an electron pump, electrons
are removed from reservoir one after another. Therefore, the
delay of this division scheme is linear in the magnitude of the
quotient.

Concluding, this first division scheme is simple but has a
rather large delay. In its basic form it does not compute the re-
mainder, which could be resolved but requires quite some hard-
ware and annuls the only positive asset of this scheme, i.e., its
simplicity.

IV. IMPROVED QUOTIENT APPROXIMATION DIVISION

The delay of the basic EC division scheme, as presented in
the previous section, can be reduced by transferring electrons

in groups. This observation led to the design of the improved
EC division scheme, presented in this section. Again, first we
present the block level description of the circuit and its strategy
after which we discuss the used building blocks in detail.

A. Strategy

The analog value of can be described as a sum of powers
of two, i.e., , where is a Boolean coefficient.
By determining the Boolean coefficients and removing the
corresponding number of electrons we can compute .

The EC division scheme as depicted in Fig. 4 uses this
strategy and works as follows. Assuming an -bit quotient,
the addition of charge to reservoir is performed by par-
allel MC (move conditional electrons) building blocks.
These blocks are consecutively enabled, starting with the most
significant one. MC block ( )
removes electrons from reservoir if the condition

is true. That is, it computes, based on
the current estimation of , whether the removal of electrons
from would result in an estimation of (that is )
that is smaller or larger than the actual value. If the estima-
tion is calculated as being lower, the MC block removes
electrons from , otherwise it does not. Consequently, after
the last MC block has been enabled reservoir contains
the quotient. We note here that for noninteger quotients this
scheme rounds off downward.

The remainder, defined as , can easily be com-
puted in this scheme using a subtraction block. The subtraction
block uses as inputs the analog values from reservoirs and

and stores the remainder in reservoir .
As an example Table I describes the operation of the division

scheme for and . For this case three MC blocks
are required that have parameters , and . The
operation starts with and the first estimation of , i.e.,

, is 0. The difference between and its estimation is
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TABLE I
THE ALGORITHM FOR Z = 14 AND D = 4.

Fig. 5. Modified MCke building block. The threshold logic gate evaluatesZ�
Q � D > kD, and if true the MMVke block removes k electron, thus adds
charge to the charge reservoir.

14, which is smaller than . Thus, condition is FALSE and
the first MC block removes no electrons from reservoir .
Subsequently, the second MC block evaluates condition ,
resulting in TRUE, so the second MC block removes 2 elec-
trons from . Finally, the last MC block evaluates condition

using the new value for resulting in TRUE, therefore re-
moving one electron from . The final result is , which
is the correct result of the division.

Given that the evaluation of the conditions has to be done
serially, the delay of the circuit is determined by the number of
MC blocks. Thus, it is logarithmic in the maximum magni-
tude of the quotient.

B. Implementation

The improved quotient approximation division scheme re-
quires some additional functional blocks when compared to the
basic version. In this section we present the implementations of
these blocks, i.e., the MC block, the ADC block, the subtrac-
tion block (which utilizes the ADC block), and the control logic.

1) The MC Block: An MC building block implementa-
tion was proposed in [14]. The MC building block consists of
two parts, an SET threshold logic gate and an MMV block.
The first part is responsible for evaluating condition on the
input signals, while the second part is responsible for removing
electrons from the charge reservoir connected to the output.
Condition can be expressed as ,
thus it can be implemented by a three input threshold gate, with

, and . Since the
original MC implementation had only one input and could
only evaluate simple conditions, we replaced the threshold gate
in the first stage with a three input version, resulting in the im-
plementation in Fig. 5.

The MMV block is a modified version of the MV block.
It also removes electrons when enabled and has a similar
structure but internally works a little differently, which makes

Fig. 6. AD conversion using PSFs. Each bit i can be expressed as a PSF with
period 2 .

it suitable to be used in combination with the threshold gate.
The implementation of the MMV block is discussed in detail
in [14].

2) The ADC Block: To build the subtraction block an ADC
block is required, which was first introduced in [11]. The func-
tionality of the EC analog to digital conversion block is based
on PSFs, which we first explain. An -variables function is
symmetric if and only if for any permutation of ,

. In other
words, a symmetric function is independent on the order of its
input operands.

As Boolean functions have operands that are either “0” or “1”
Boolean symmetric functions depend on the number of “ones”
in the input. Thus, a Boolean symmetric function entirely de-
pends on the sum of its input values:

. This allows for a more compact representation of
the function as it can be described by a vector
where is the output of when the sum of the inputs is .
This representation is linear in the number of inputs while the
traditional truth table has a size of entries.

A generalized symmetric function is a function that
depends on the weighted sum of its inputs ,
where is the weight of input .

A PSF is a symmetric function for which there exists a period
such that . A PSF is completely defined

by the constants , , and , where is the first positive transi-
tion and is the first negative transition.

In the analog to digital conversion process, each output bit can
be described as a PSF of the analog input value. Fig. 6 depicts
4-bit AD conversion both as logic values and as a waveform. The
waveform shows that each output bit is a PSF of the input with
a period of . Thus, an -bit ADC block can be implemented
using parallel functional blocks that compute PSFs.

Such a functional block, referred to as a PSF block, can be im-
plemented using the electron trap depicted in Fig. 2, as a basis.
The electron trap has a periodic transfer function and the period
can be adjusted through the value of capacitance . To trans-
form the sawtooth shaped transfer function of the electron trap
into the rectangular shaped PSF, an SET inverter [9] can be uti-
lized, which then acts as a literal gate. The full implementation
of the PSF block is depicted in Fig. 7.

3) The Subtraction Block: In order to compute the remainder
a subtraction block is required. One possible implementation
is depicted in Fig. 8. In this implementation, the subtraction is
performed by adding the value of to the reservoir while
subtracting the value of from it, thus computing a negative
remainder. Adding the value of is done by means of
an MV block (with ), where the input is directly
connected to reservoir . Theoretically, removing the value
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Fig. 7. Implementation of the PSF block. C and C form an electron trap
which has a sawtooth shaped period transfer function. The rest of the circuit
forms a buffer which acts as a literal gate.

Fig. 8. Overview of the subtraction block. Q�D is added to the reservoir by
a normal MVke block. The binary signals z are first converted from positive to
negative voltage. MVke blocks, powered with negative supply voltage, add the
corresponding number of electrons to the reservoir, and thus subtract the value
of Z .

of can be done in a similar way but as of yet no building
block is available that can do so. Instead we apply a strategy
which utilizes the binary inputs of and has a structure similar
to the DAC block. In normal operation the MV block removes
electrons from a reservoir, thus increasing the value stored in it.
In this case we apply negative voltages to all inputs ( , enable,
and reset), causing it to add electrons to the reservoir and thus
subtracting value.

For the inputs of the MV blocks we use the binary signals
and not the analog value from reservoir

as suggested by Fig. 4. However, those binary signals are repre-
sented by positive voltages. This problem was solved by using
positive to negative (P2N) blocks which transform a binary pos-
itive voltage into a binary negative voltage.

The P2N building block was implemented using an SET in-
verter connected to a negative supply voltage as depicted in
Fig. 9 and works as follows. If the input voltage is zero, the
circuit is charge neutral and the output voltage is zero too. If
the input voltage becomes high, the voltage across junction 4
( ) exceeds its critical voltage and one electron tunnels from
the supply voltage to node . This in turn results in a voltage
across junction 3 ( ) that exceeds its critical voltage. Thus,
one electron tunnels from node to node , resulting in a nega-
tive charge on capacitor and thus a negative output voltage.
If the input voltage changes to zero again, a similar sequence of
tunnel events happens in respectively junction 1 and junction 2,
which results in a zero output voltage.

4) The Control Logic: The linear division scheme requires a
set of enable signals, which together have the shape of a pulse
train. We propose to generate these signals by local control

Fig. 9. The P2N building block. Binary inputs are converted from positive to
negative voltage using a buffer powered with negative supply voltage.

logic, more specifically by using a delay line structure, build
out of serially cascaded SET inverters [9]. This even allows us
to assign to each MC block a different delay time, depending
on the number of electrons it has to transfer.

C. Simulation

To verify the proposed linear EC-based division scheme we
simulated a 6-bit by 3-bit instance. Fig. 10 presents the simula-
tion results for 14/3 and 14/4. The first result corresponds to the
numbers in Table I. The top two rows show the reset and (block
level) enable signal, respectively. The third row shows the value
of the remainder . The next three rows are the (internal) enable
signals for the MC blocks and the last row represents the quo-
tient . As the SIMON simulator does not provide any delay in-
formation, the time axis has no dimension. Below we present the
worst case delay of the scheme based on (1). Furthermore, the
control logic, i.e., the delay line, could not be simulated, due to
the timing limitations of SIMON. When simulated in SIMON, a
gate produces its output instantaneous when the inputs change.
Thus, a line of serially cascaded inverters would all switch at the
same time, instead of one after another. In order to simulate the
division scheme we used three voltage sources to generate the
enable signals for the MC blocks.

We also simulated the circuit for other input values and all
simulations indicate that this scheme functions correctly. The
worst case delay was calculated as 50.5 ns and the worst case
energy consumption was calculated as 4.1 eV. The area cost of
the scheme is 363 elements.

The delay of this division scheme is determined by the
number of steps in the approximation which is logarithmic in
the maximum magnitude of the quotient. Reminding that the
basic quotient approximation division scheme has a linear time
complexity with respect to the magnitude of the quotient, the
improved scheme is better in terms of time efficiency. However,
it still does not seem to be the best SET technology can offer.
In the next section we propose the implementation of an
division scheme.

V. ADJUSTABLE PSF DIVISION

In this section we propose an implementation of an EC-based
division scheme that has a time complexity of . The scheme
is theoretical in the sense that it requires an element, i.e., a
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Fig. 10. Simulation results of the improved quotient approximation division scheme. At time 0.1 the calculation of 14/3 starts while at time 0.6 the calculation of
14/4 starts.

Fig. 11. Adjustable PSF division scheme. First, dividend Z and divisor D are
converted from digital to analog signals. Next, the VC-PSFs convert Z back to
the digital domain using a new scale which is inverse proportional to the value
of D, such that the result is Q.

voltage controlled capacitor or varactor, for which to the best
of our knowledge no nanoscale implementation has so far
been proposed. However, we believe this scheme has great
potential and certainly shows the opportunities provided by
SET technology.

The scheme we propose in this section is based on PSFs,
which were explained in Section IV-B2. The general idea be-
hind this division scheme is to dynamically adjust the period
of the PSF blocks. As Fig. 11 depicts, the dividend is stored
as an analog value in reservoir . Subsequently, that value is
converted back to the digital domain using voltage-controlled
PSF (VC-PSF) blocks where the period is dynamically adjusted
through the value of . Fig. 12 shows a simple example of how
the period of the PSFs is changed according to the divisor value
and how the analog to digital conversion results in the value of
the quotient . For the period of the PSF blocks is nom-
inal and the AD conversion results in the digital representation

Fig. 12. Division using an adjustable PSF. Bit i of Q is described as a PSF of
Z with a period of D2 .

Fig. 13. Implementation of the VC-PSF block. C is a varactor, which allows
to control the period of the VC-PSF block through voltage V .

of the value of . For all periods of the PSF blocks are
doubled and as a result the AD conversion outputs , e.g.,

for . For , the period is tripled, etc.
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Fig. 14. Simulation results of the adjustable PSF division scheme for Z = 14.

To implement the adjustable PSF, we propose the implemen-
tation of a VC-PSF block as depicted in Fig. 13. The only differ-
ence with the normal PSF block is the capacitor , which has
been replaced with a voltage controlled capacitor (often referred
to as a varactor). Although such a device has not been imple-
mented at nanoscale, there exist techniques that potentially can
do so. The most common way to implement a varactor is to use
a diode. However, such a device is only suitable for operation
on ac signals. Recently, ferroelectric thin-film devices [26] have
been proposed. Using this new technology, which can easily be
integrated in semiconductor technology, an implementation of a
varactor was proposed by Subramanyam et al. [27]. Another re-
cent development is using organic semiconductors to implement
an organic voltage-controlled capacitor [28]. Thus, even though
at time of writing no nanoscale implementation of a varactor is
available, we expect that such a device can be implemented in
the future.

The simulation environment SIMON does not support a var-
actor as a circuit element. Therefore, we could not directly simu-
late the division scheme. However, to demonstrate the potential
of the scheme we simulated the varactor with manual adjustment
of the value of capacitor . The simulation results are depicted
in Fig. 14 for . The plot shows that indeed the output of
the analog to digital converter equals the value of the quotient

. We calculated, assuming a 6-bit by 3-bit divider, the worst
case delay as 18 ns and the worst case energy consumption as
2.3 eV. For these calculations, the varactor was modelled as two
separate capacitors. The area cost of the divider is 143 elements.
On all three parameters this scheme scores better then the im-
proved quotient approximation scheme. For larger operand sizes
the difference will be even greater as the first has time com-
plexity while the latter has time complexity .

VI. CONCLUSION

In this paper we presented three EC-based division schemes
in SET technology. The first two schemes are based on sequen-
tial approximation of the quotient. The first scheme is basic and
simple to build, but suffers from overshoot and has a rather large
delay. The second scheme, which is a modification of the first
scheme, has linear time complexity and all simulations indicated
that it works correctly. For a 6-bit by 3-bit division, we calcu-
lated the worst case delay of this scheme as 50.5 ns and the worst
case energy consumption as 4.1 eV. Finally, we proposed a divi-
sion scheme based on the computation of PSFs. For this scheme,
which has an time complexity, we computed, assuming the
same operand sizes, a delay of 18 ns and an energy consumption
of 2.3 eV. This performance improvement increases for large
operand sizes. The proposed division schemes reveal the pos-
sibilities that nanotechnology, and specifically SET technology,
potentially offers for computing arithmetic functions. The work
presented in this paper indicates that if engineers are willing to
leave behind the traditional way of computation and are willing
to embrace new paradigms, nonlinear operations like division
can be implemented using relative simple circuits which have
excellent time characteristics.
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