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Abstract

Existing SIMD extensions cannot efficiently vectorize the
histogram function due to memory collisions. We propose
two techniques to avoid this problem. In the first, a hi-
erarchical structure of three levels is proposed. In order
to provide n-way parallelism, auxiliary arrays that have n
and n/2 subarrays are used in the first and second level,
respectively. The last level has the primary histogram ar-
ray. Indirect SIMD load and store instructions are designed
in order to access different elements of different subarrays.
The different subarrays in the lower levels are merged and
finally at the end, the calculated results are stored in the pri-
mary histogram array. In the second method, parallel com-
parators are used in order to count the number of subwords
within a media register that are the same. Thereafter, these
numbers are added to the values of the histogram array si-
multaneously. Experimental results obtained by extending
the SimpleScalar toolset show that proposed techniques im-
prove the performance compared to the fastest scalar ver-
sion by a factor of 7.37 and 5.52, respectively.

Keywords: Subword Parallelism, Multimedia Extensions,
Histogram Calculation.

1 Introduction

Histogram features are used in some applications such
as image and video retrieval, video sequence segmentation,
and objects classification in image processing and pattern
recognition [5]. Additionally, in [4] has been indicated that
using the color histogram features is the most suitable com-
pared to the texture and shape features for large databases
such as Web. This is due to its simplicity, invariant to image
rotation, and low storage requirements compared to the size
of the image.

Given an image of size N×M , a histogram is simply the
count of how many pixels of the image map to each element
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Figure 1. SIMD vectorization of histogram
leads to memory collisions when multiple
subwords contain the same value.

as shown in the code below:

for (i=0; i<N; i++)
for (j=0; j<M; j++)

Histogram[image[i][j]] +=1;

The size of the histogram array depends on the number of
bits per pixel (bpp). If bpp = n, the histogram array has 2n

elements. We call this array the primary histogram array.
SIMD vectorization of the histogram computation, how-

ever, is a challenging problem. The most important rea-
son for this is memory collisions [1] as illustrated in Fig-
ure 1. Memory collisions increase the number of memory
accesses. In image and video processing collisions are com-
mon because there are many occurrences of the same pixel
value in either an image or a frame.

Existing SIMD architectures such as MMX [9] and
SSE [10] cannot efficiently vectorize this important func-
tion. The most important reason is that these SIMD exten-
sions cannot support indexed (indirect) load or store instruc-
tions. Hence, we propose two techniques to vectorize the
histogram calculation using subword processing. The first
method is called hierarchical structure. This structure has
three levels. In the first and second levels, auxiliary arrays
with different sizes and data type are used. The primary his-
togram array is used in the last level. We use n pixel values
as indirect pointers to these auxiliary arrays using SIMD
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indirect pointer. With this SIMD indirect pointer we can
either load or store data from n locations at the same time
using indexed load/store instructions. After the calculation
of the histogram on this auxiliary arrays, the result will be
merged at the end and stored in the primary array.

The second technique is based on parallel comparators.
Parallel comparators are used to count the number of sub-
words that are the same. After counting the number of
subwords that are the same, counted numbers are added
with values of histogram array simultaneously. A special-
purpose instruction has been designed for this technique. It
is called parallel count within a media register (pcwar).

Our proposed techniques, SIMD instructions, and MMX
instructions have been simulated by extending the Sim-
pleScalar toolset [3]. The performance acquired by the pro-
posed techniques has been compared to scalar implementa-
tion. The experimental results show that:

• The speedup of the hierarchical structure for 8-way
parallel SIMD instructions ranges from 3.17 to 7.37.

• The speedup of the hierarchical structure for 4-way
parallel ranges from 5.77 to 6.19.

• The 8-way parallelism is faster than 4-way parallelism
for small bpps. For large bpps, on the other hand, the
4-way parallelism is faster than 8-way parallelism.

• Parallel comparators provide a speedup ranging from
5.14 to 5.52 using 4-way parallelism.

This paper is organized as follows. Related work is dis-
cussed in Section 2. Different algorithms to calculate the
histogram function and the proposed techniques are dis-
cussed in Section 3 and Section 4, respectively.. Experi-
mental results are presented in Section 5, and conclusions
are drawn in Section 6.

2 Related Work

Existing techniques to calculate the histogram function
can be divided into two groups based on how they deal with
memory collisions. The first group contains techniques that
accept the conflicts. For example, such a method was pro-
posed by Suehiro et al. [12]. It is called the retry method.
This algorithm detects store conflicts and stores them in a
retry queue, which stores conflicting keys for later retry.
This technique is a vectorization algorithm that has been
developed for vector computers based on gather and scat-
ter operations. This algorithm has some limitations such as
it requires additional memory for the retry queue and extra
computation for detecting store conflicts.

The second group consists of techniques that try to avoid
store conflicts. For instance, Ahn et al. [1] have discussed

such techniques. They have explained three software meth-
ods : sorting, privatization, and coloring. In the sorting
method, to avoid memory collisions, the data is first sorted
so that identical values are stored consecutively. Thereafter,
the sum of data for each memory address is calculated be-
fore writing it to memory. In the privatization technique
there are 2bpp iterations and each iteration computes the
sum for a particular gray level. In the coloring scheme each
color contains non-colliding elements. Then each iteration
updates the sums in memory for a particular color.

Ahn et al. [1] have also proposed a hardware scatter-add
operation for vector architectures. The scatter-add unit con-
sists of a controller with multiplexers, a functional unit to
perform the necessary operations, and a combining store.
The combining store is used to guarantee that the scatter-
add operations are performed atomically. The scatter-add
unit avoids the memory collisions by comparing the mem-
ory addresses with each other. The performance of the hard-
ware scatter-add depends on the distribution of data. When
the range of indices is small, the performance of the scatter-
add is reduced due to the hot bank effect. This effect causes
some of the scatter-add units to be idle. Furthermore, in [1]
the performance of the scatter-add unit was compared to the
performance of the sort and privatization algorithms. Based
on our results these are not the fastest algorithms.

SIMD instructions have been used to implement many
media algorithms such as the (I)DCT [11, 8]. To the best
of our knowledge, however, they have not been used to im-
plement the histogram function. Compared to other works,
we make the following contributions. First, we focus on the
use of SIMD instructions to calculate the histogram func-
tion. Second, in order to use SIMD instructions and to pro-
vide n-way parallelism, we propose two techniques, hierar-
chical structure and parallel comparators. Finally, we have
designed and implemented indirect SIMD load and store in-
structions as well as a special-purpose instruction.

3 Background

In order to calculate a histogram for an image size
N×M , five algorithms have been implemented in C. These
methods are : fully scalar, mixed scalar/SIMD, privatiza-
tion, modified privatization, and using merge sort to cal-
culate the histogram. In the fully scalar algorithm, a sin-
gle pixel value is processed in each iteration. In the mixed
scalar/SIMD algorithm eight pixel values are loaded using
the SIMD load instruction. Thereafter, the pixel values are
processed as in the scalar algorithm. Privatization algorithm
scans the entire image 2bpp times. In each iteration it com-
putes the total number of pixels of a particular gray level.
In the modified privatization algorithm, we put all of the
same values close to each other during the calculation of
the histogram. This means that after the calculation of the
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Figure 2. Speedup of the different algorithms
over the privatization algorithm for different
real images with 8 bpps on the Pentium 4.

histogram, the image pixels are sorted in ascending order.
The merge sort algorithm has also been used to compute
the histogram. First, the image pixels are sorted. Then the
sum of data for each memory address is calculated before
writing it to memory.

In order to determine which algorithm is fastest, we have
executed these algorithms on some real images. All pro-
grams were compiled using gcc with optimization level -O2
except the SIMD part of the mixed scalar/SIMD algorithm.
This algorithm was implemented using MMX [9]. As ex-
perimental platform we have employed a 3.0GHz Pentium
4 processor. Performance was measured using the IA-32
cycle counter [6].

Figure 2 depicts the speedup of the different algorithms
over the privatization algorithm for images of size 512×512
with 8-bpp. As this figure depicts fully scalar is the fastest
algorithm. In the mixed scalar/SIMD algorithm, many in-
structions to transfer data from media registers to scalar reg-
isters are needed. Furthermore, many shift instructions are
needed to separate different subwords. The performance
of the privatization and modified privatization algorithms
depend on the distribution of the data. For example, for
“Mountain” which is an almost black and white image,
modified privatization is about 6.97 times faster than pri-
vatization. The “4pvs” is a generated image where each
square of size 256 × 256 is assigned the same pixel value.
In this case modified privatization is only 1.33 times faster
than privatization. The performance of merge sort does
not depend on the distribution of data and for all cases its
speedup is about 2.65. In this paper, we use the fully scalar
algorithm as the reference implementation.

4 Vectorization of the Histogram Function
In this section we propose two techniques to vectorize

the histogram function, hierarchical structure and parallel
comparators.

4.1 Hierarchical Structure Algorithm

To provide n-way parallelism, a hierarchical structure of
three levels is proposed. In the first and second level, aux-
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Figure 3. Providing 8-way parallelism using
hierarchical structure.

iliary arrays consisting of n and n/2 subarrays are used,
respectively. The primary histogram array is used for the
last level. Each subarray has 2bpp elements, the same as the
primary histogram array. In addition, the elements of the
auxiliary array in the first level are of type byte (unsigned
char), the elements of the second level auxiliary array of
type short, and the elements of the third level primary array
of type int. The elements of each two subarrays are added
together and the results are stored in a subarray of the next
level. At the end, the calculated histograms are stored in
the primary histogram array. Figure 3 depicts an example
of hierarchical structure to provide 8-way parallelism with
bpp = 8.

We load n pixel values using an SIMD load instruction.
For example, 8 pixel values are read using the movq in-
struction of the MMX ISA. These pixel values are used as a
set of pointers for an indexed load from the auxiliary array.
This is called an SIMD indirect pointer, allowing to retrieve
data from multiple locations at the same time. For instance,
the indexed load takes an index vector and fetches four el-
ements into an SIMD register. The first element is fetched
from the first subarray, the second one from the second sub-
array, and so on. In this way, different memory addresses
are accessed even if some or all of the indexes in the index
vector are the same. Figure 4 illustrates the indexed load op-
eration with bpp = 8 bits. It can be seen that the addresses
of the elements are obtained by adding the base address of
the auxiliary array to the offsets given in the index vector
and constant displacements.

As this figure shows the result of the indexed load is ad-
jacent elements in a vector register. After these elements
are computed using SIMD instructions, they can be stored
in their memory locations by an indexed store, using the
same index vector.

4.2 Parallel Comparators

The second technique proposed to avoid memory colli-
sions is to count the different subwords in a media register
using parallel comparators. After counting the number of
subwords that are the same, the sums are added to the values
in the histogram array simultaneously. If there are n sub-
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Figure 5. Using parallel comparators to count
the similar values within a media register.

words within a media register then (n−1)+(n−2)+ ...+1
comparators are needed. In addition, this hardware unit
needs n − 1 encoders and a few OR gates. Figure 5 de-
picts an example, where there are 4 subwords in each media
register and each subword is 8-bit. For simplicity, write and
clock signals and also the functionality of the encoders have
been omitted.

A special-purpose instruction for this hardware unit has
been implemented. It is referred to as parallel count within
a register (pcwar). This instruction has two operands.
The source operand consists of an SIMD vector of input
values and the destination operand contains of an SIMD
vector register of the counted number of the similar sub-
words. Let the source operand be denoted by s with sub-
words s0, s1, . . . , sn−1 (from left to right). Similarly, the
destination SIMD register is denoted by d with subwords
d0, d1, . . . , dn−1. Then di will be set to the number of sub-
words sj that are identical to si. Furthermore, if si = sj

with i < j, then dj will be set to zero.

5 Experimental Evaluation

In this section, first our methodology is explained and
then we compare the performance obtained by the proposed
techniques to the performance of the fully scalar version.

5.1 Simulation Environment

In order to evaluate the proposed techniques, we have ex-
tended the sim-outorder simulator of the SimpleScalar
toolset [2] using the SSIT and SSAT tools [7].

The main parameters of the modeled processors are de-
picted in Table 1. We modeled processors with issue widths
varying from 1 to 4 instructions per cycle. So, when four
SIMD instructions are issued simultaneously, up to 32 data
operations are executed in parallel. When the issue width
is doubled, the number of functional units is scaled accord-
ingly except for the integer and SIMD multipliers, of which
there are at most 2. The latency and throughput of SIMD
instructions is considered to be equal to the latency and
throughput of the corresponding scalar instructions. This
is a very reasonable assumption given that the SIMD in-
structions perform the same operation but on narrower data
types. In addition, we set the latency of indirect load and
store accesses larger than normal load and store. Although
indirect accesses are less efficient than unit-stride accesses,
in our case the sparseness of the indices is not very much.
For example, the distance between two index patterns is at
most 1022 bytes.

Two versions of each algorithm have been implemented.
One program is completely written in C. To calculate the
histogram function in this program we have used the fully
scalar algorithm as was discussed in Section 3. This pro-
gram was compiled using gcc (version 3.3.2) with optimiza-
tion level -O2. The other program was implemented using
MMX and our new SIMD instructions. As input we use ran-
domly generated images with 4 and 8 bpps. The correctness
of the MMX codes has been validated by comparing their
output to the output of the C program.

5.2 Experimental Results

Figure 6 depicts the speedup and the ratio of commit-
ted instructions of the 8-way hierarchical structure over the
fully scalar implementation for different image sizes and 4
and 8 bpps. The speedup ranges from 3.17 to 7.37.

Parameter Value

Issue width 1/ 2/ 4
Integer ALU, SIMD ALU 1/ 2/ 4
Integer MULT, SIMD MULT 1/ 2/ 2
L1 Instruction cache 512-set, direct-mapped 64-byte line

LRU, 1-cycle hit, total of 32 KB
L1 Data cache 128-set, 4-way, 64-byte line, 1-cycle

hit, total of 32 KB
L2 unified cache 1024-set, 4-way, 64-byte line,

6-cycle hit, total of 256 KB
Main memory latency 18 cycles for first chunk, 2 thereafter
Memory bus width 16 bytes
RUU (register update unit) entries 64
Load-store queue size 8
Execution out-of-order

Table 1. Processor configuration.
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Figure 6. Speedup and ratio of committed in-
structions of the 8-way hierarchical structure
over the fully scalar implementation for differ-
ent image sizes and bpps on the single issue
processor.

When increasing the image size from 128 × 128 to
1024×1024with the same bpp, the speedup of our approach
slightly increases. It can also be observed that the speedup
for 4 bpps is higher than for 8 bpps. The most important
reasons for this are the following. First, for small bpps the
auxiliary arrays are small. Hence, the number of iterations
to merge the subarrays for 4 bpps is 16 times less than the
number of iterations for 8 bpps. For example, for 4 bpps, the
auxiliary arrays in the first and second level of the hierarchi-
cal structure have 8× 16 and 4× 16 elements, respectively.
For 8 bpps, on the other hand, those arrays have 8×256 and
4×256 elements, respectively. Second, to merge two subar-
rays, many overhead instructions are needed for unpacking
the subwords. For instance, to merge the subarrays from the
first level to the second level for 4 and 8 bpps, 32 and 512
unpack instructions are needed, respectively. As a result,
using the 8-way parallelism is more efficient for small bpp
than for large bpp.

Figure 7 depicts the speedup of the 8-way parallel imple-
mentation that uses the hierarchical structure over the fully
scalar algorithm on out-of-order processors with different
issue widths. Obviously, when increasing the issue width
from 1- to 4-way the speedup increases. However, increas-
ing the issue width yields diminishing returns. For exam-
ple, for the image size of 128 × 128 and for 4 bpps, the
speedups are 6.90, 12.92, and 22.95 for issue width of 1, 2,
and 4, respectively. For the image size of 1024× 1024, the
speedups are 7.37, 11.78, and 16.14, respectively. The main
reasons for this are following. First, in the main loop body
of the program, there are four SIMD instructions, three of
which are load and store instructions. With increasing is-
sue width and image sizes the memory stall time will in-
crease. In other words, the memory stall time for a small
issue width is less than for a large issue width. Second, ILP
exploitation with increasing issue width is limited, due to
data dependencies between instructions.

In the 4-way parallel implementation the auxiliary array
consists of 4 subarrays. As in the 8-way parallel imple-
mentation, we load 8 pixel values using an SIMD load in-

Figure 7. Speedup of the 8-way hierarchical
structure over the fully scalar implementation
on a single issue processor for different is-
sue widths.

Figure 8. Speedup and ratio of committed in-
structions of the 4-way hierarchical algorithm
over the fully scalar implementation for differ-
ent image sizes on the single issue proces-
sor.

struction. These 8 values are divided into two groups, low
and high values. These four low and four high values are
used as indices to the auxiliary array for reading eight dif-
ferent elements. This means that we use two times as many
indirect SIMD load and store instructions in each loop it-
eration as the 8-way parallel implementation. We therefore
expect that the ratio of committed instructions is larger than
the speedup because of memory stalls. Figure 8 depicts the
speedup and the ratio of committed instructions of the 4-
way hierarchical structure over the fully scalar implementa-
tion for different image sizes and 4 and 8 bpps.

As this figure shows, the ratio of committed instructions
ranges from 7.06 to 7.19, while the speedup is 5.77 and
6.19. In contrast to the 8-way hierarchical implementation,
there is not much difference between the speedups for dif-
ferent image sizes and bpps. This is because of the follow-
ing reasons. First, the code of the main loop body is the
same for all image sizes. Second, although the auxiliary
array for 4 bpps are smaller than for 8 bpps, the merge op-
eration of the subarrays from the second level to the third
level is performed once for both. Comparing Figure 6 to
Figure 8 shows that the 8-way hierarchical implementation
is faster than the 4-way implementation for 4 bpps, while
for 8 bpps it is much slower.

Figure 9 depicts the speedup and ratio of committed in-
structions of the implementation based on parallel compara-
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Figure 9. Speedup and ratio of committed in-
structions of the implementation based on
parallel comparators over the fully scalar im-
plementation for different image sizes and
bpp on the single issue processor.

Figure 10. Speedup of the 8-way hierarchical
implementation over the 4-way hierarchical
algorithm and the implementation based on
parallel comparators for different image sizes
and bpps on the single issue processor.

tors over the fully scalar algorithm for different image sizes
and bpps. With increasing image size the speedup slightly
decreases from 5.52 to 5.14. On the other hand, the ratio of
committed instructions slightly increases from 5.94 to 5.99.
We have used 4-way parallel SIMD instructions. This im-
plies that the elements of the histogram array are of type
unsigned short. In each iteration, 8 pixel values are loaded
using an SIMD load instruction as in previous algorithms.
The special-purpose instruction pcwar is used two times
for low and high values in each iteration.

Figure 10 depicts the speedup of the 8-way hierarchical
implementation over the 4-way hierarchical algorithm and
over the implementation based on parallel comparators. For
4 bpps, the 8-way hierarchical implementation is faster than
both other algorithms. On the other hand, for 8 bpps both
the 4-way hierarchical implementation and the implementa-
tion that uses parallel comparators are faster than the 8-way
hierarchical implementation. Additionally, the 4-way hier-
archical implementation is faster than the implementation
based on parallel comparators. This can also be seen in Fig-
ure 8 and Figure 9. The main reason for this is that the
number of committed instructions of the parallel compara-
tors technique is larger than the number of instructions of
the 4-way hierarchical implementation.

6 Conclusions

In this paper, two techniques to avoid memory collisions
in the histogram functions have been proposed. In the first
technique different subarrays are used in the first and sec-
ond level of the hierarchical structure in order to provide
subword parallelism. Indirect SIMD load and store instruc-
tions have been designed to access the different elements
of the subarrays simultaneously. The different subarrays in
the lower levels are merged and finally at the end, the cal-
culated results are stored in the primary histogram array in
the last level. In the second method, we have used a special
hardware unit of parallel comparators to count identical val-
ues of different subwords in a media register. The sums are
added to the values of the histogram array in parallel. Ex-
perimental results obtained by extending the SimpleScalar
toolset have shown that the proposed techniques improve
the performance compared to the fastest scalar version by a
factor of 7.37 and 5.52, respectively.
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