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Reconfigurable Computing entails the utilization of a general-
purpose processor augmented with a reconfigurable hardware struc-
ture (e.g. a field-programmable gate array). Normally, a complete
reconfiguration is needed to change the functionality of the FPGA
even when the change is only minor. Moreover, the complete chip
needs to be halted to perform the reconfiguration. Dynamic partial
reconfiguration (DPR) enables the possibility to change parts of the
hardware while other parts of the FPGA remain in use.
In this paper, we propose an additional solution to perform dynamic
partial reconfiguration by providing a methodology to generate bit-
streams for removal of old hardware, and placement and routing
of new hardware within an FPGA. This means that functionality
can be removed from, and additional functionality can be added to
the FPGA at any location. Our solution is able of connecting the
additional functionality to the already running parts of the chip.
More over, bus macros are no longer necessary and no synthesis is
needed to implement the routing. We implemented our solution on a
Xilinx Virtex-II Pro series FPGA, specifically the XC2VP30 on the
XUP board, and demonstrated that the solution works.
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Introduction 1
A modern computer system consists of various separate components with a specific func-
tion. Even novice computer users should know that the processor is the most important
part that governs almost all the operations within the computer system. Many func-
tionalities are integrated on the main board these days, but it is still possible to choose
a vast array of extras, for instance: a fast graphics card, or two of them, network cards
of different quality and speeds, or special hardware RAID cards for fast and big storage
capacity on multiple disks. When the need arises for a new system to be assembled,
there are many of choices to be made. Just for a normal IBM compatible (x86) system
there are processors available from several manufacturers. Although they will all run
normal software, some will have additional multimedia instructions, or 64-bit support,
or multiple cores. Having fixed hardware has its disadvantages:

• Chances are that the main processor will not be replaced during the life time of
the computer system, so the user will be locked into the technology picked.

• If a new hardware feature becomes available, it is impossible to reap the benefits
of it unless you buy this new hardware for your system.

• By now, we are used to update our software on a regular basis. It would be
desirable to have this option for our hardware as well. Of course it is always
possible to change the graphics card or the processor, but most of the time the
user will have to do without these new features until it is time to purchase a new
system.

The ability to update hardware just as easily as software will is quickly becoming a
reality. Field-programmable gate arrays (FPGAs) are chips that contain programmable
hardware. This means that the off-the-shelf component has no functionality what so ever,
but using the hardware description of for instance a microprocessor it can be configured
to become that microprocessor. It could just as well be configured to become a video
processor or a hard disk controller. Until now, FPGAs are used mainly for prototyping
and products with relatively small production numbers. However, more applications for
their use are being found. The C-one reconfigurable computer [11] is a project in which
the Commodore 64, a popular home computer from the 80’s, is emulated by an FPGA.
The same board can also be used to emulate a Amstrad/Schneider CPC46. Similar
projects exist for a number of different home computers which where popular in that
period.

Modern computers are too complex to fit inside an FPGA. An implementation would
take up approximately 10 times more space and would be 3 times as slow, as compared
to a specifically designed chip (ASIC) [6]. However, there are significant advantages of
having a general-purpose processor augmented with an FPGA:

1



2 CHAPTER 1. INTRODUCTION

• It is possible to implement common operations on these kinds of chips.

• This can alleviate the main processor of computationally extensive tasks.

• A hardware implementation on an FPGA is usually faster than software because
it can make more efficient use of the chip resources and it can make better use of
parallelism.

• One of the major advantages is that a new algorithm or new standard does not
mean there is a need for new hardware, just a new hardware description.

The Computer Engineering laboratory has implemented several algorithms in hard-
ware. For MPEG4, AES encryption/decryption and VOIP applications we have devel-
oped hardware accelerators. Imagine a user watching a film over an encrypted connec-
tion. Suddenly, his Internet phone rings. He pauses the film and picks up the phone,
which sets up a secured connection for the conversation. As we have a hardware descrip-
tion for AES, the decoding of the film and the VOIP implementation, the computer can
perform all operations efficiently. Suppose the FPGA is not large enough to hold all three
hardware implementations. As both applications use encryption/decryption, the AES
hardware has to remain configured. Luckily the film has been paused. This means the
MPEG4 decoder can be temporarily replaced with the VOIP hardware. The FPGA can
reconfigure one part of its structure while the rest of the system remains in operation.
This is called dynamic partial reconfiguration (DPR). It is, therefore, possible to replace
the MPEG4 decoder with the VOIP hardware while the AES encryption/decryption
remains in use. The user is of course oblivious to all the processes involved.

The research field of using reconfigurable hardware to augment a computer system
is called reconfigurable computing (RC). It can be expected that this technology will
first manifest itself in embedded devices. For the user it will not be apparent that an
HD-DVD or Blue-Ray player will contain an FPGA. It is not unlikely that future codecs,
with which the films are stored onto the disk, will change over time. The advantage for
the consumer is that they will not need to replace their hardware as often while they can
reap the benefits of new developments. Manufacturers can update their hardware to the
new standard when needed. Whether this technology will make it to desktop systems is
an open issue.

1.1 Reconfigurable Computing

In the early 60’s, there was an interest to look beyond the conventional general-purpose
machines and to develop new computing paradigms. As a result, reconfigurable com-
puting was conceived [12] as a means to extend the capabilities of general-purpose com-
puting. In reconfigurable computing, parts of a program can be described in hardware,
which can result in several hardware implementations for different stages of execution
of a single program. Consequently, during program execution the processor has to re-
configure the hardware to the needed functionality. However, technology in the 60’s was
not mature enough to sufficiently implement the concept of reconfigurable computing.
With the introduction of programmable logic devices in 1984 and field-programmable
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gate arrays (FPGA) in later years, reconfigurable computing became increasingly more
accessible.

When using an FPGA for reconfigurable computing, this is referred to as fine-grained
reconfigurable computing. This means for instance that the FPGA is made up of small
lookup tables which take only a few bits as input to produce single-bit results. All
signals are individually routed through the chip. The advantage is that the hardware
description can be meticulously tuned to the algorithm, but this comes at a disadvan-
tage. The reconfiguration data is very large, which implies that reconfiguration will
take a relatively large amount of time. It also implies that functional densities are low,
which adds delay to the signal paths as they have to travel longer distances and can
pass through multiple switches. Most FPGAs have additional functional units like mul-
tipliers and small RAMs, which are beneficial to many applications to improve their
performance. In course-grained reconfigurable computing [14], the smallest structures
rarely operate on data pathways with less that 4 bits. Architectures vary extensively,
but they have in common that signals are routed through buses instead of individually.
Operations on the data can be performed by anything from programmable arithmetic
and logic units (ALUs) to small ‘processor’ cores. This simplifies routing as the number
of pathways are greatly reduced, but it means the algorithm has to be mapped onto an
existing structure instead of a freely chosen one. It also means that there are a lot less
configuration bits, which is advantageous for reconfiguration times. Some architectures
are running on specially fabricated chips, others only exist in an emulator. Development
for these architectures can therefore be expensive. We will only be targeting fine-grained
reconfigurable computing as we primarily have access to this type of technology.

1.2 Field-programmable gate arrays

FPGAs are integrated circuits composed of programmable logic interconnected with pro-
grammable networks. This allows for the construction of any digital circuit. Compared
to ASICs, FPGAs can be a cost effective replacement if used in relatively small quantities
(less then approximately a thousand to ten thousand units). FPGAs have found their
way into commercial products, often because they ensure a quicker time to market or
improved flexibility. With firmware updates, incorporated FPGAs make it possible to
correct small design errors in the hardware during or after production. They can take
over signal processing functions from DSPs and are bridging the gap between general-
purpose microprocessors or microcontrollers and ASICs. These are all applications in
which the FPGA has a fixed function, the configuration of the FPGA is rarely updated
during the lifetime of the device.

To most people (including most computer engineers), normal digital chips are com-
posed of standard building blocks, like: logic gates, RAM cells, flip-flops, etc. In a full
custom design, these building blocks are freely placeable on the chip. The designers
have full flexibility, but this comes at the price of high production costs, as placing the
structures on the chip requires many production steps. This technology is only attrac-
tive when a large number of the same chip are produced. A cheaper alternative are
sea-of-gate chips, which are entirely composed of these standard building blocks, or even
just transistors. This reduces the production costs significantly because these gates only
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need to be connected with a few metal layers. The disadvantage is that the design has to
be mapped on to the pre-placed components. As a consequence not all components are
being used because it would be impractical, impossible, or too expensive to wire them
up. These chips will therefore be larger and slower than a full custom version, but they
would be cheaper to design and produce.

Field-programmable gate arrays are composed of standard building blocks, like: flip-
flops, multipliers or RAMs, and programmable building blocks in the form of lookup
tables and multiplexors. Where a designer would use an AND and an XOR gate to
make a half adder, in the FPGA lookup tables are set to represent this AND or an XOR
gate. It basically means the component is represented by its logic table. The lookup
tables take multiple inputs and , therefore, can represent more then a single gate. It
would be possible to build an FPGA just out of lookup tables, but by adding a few extra
elements like flip-flops, the functional densities and speed greatly improve. These various
elements are usually combined in a regular structure, that Xilinx for instance calls slices.
To route the signals in the FPGA, switching elements of various composition are used.
This mostly depends on the delay they cause. The critical pathways in a design need to
have the fastest connections. For this reason, there are special pathways for carry, clock,
and global signals. Carry signals use small switches directly connecting to neighboring
slices. Clock and global signals are routed through a fixed network from the center of
the chip outwards. This is to minimize clock-skew. Normal signals are routed through
switch matrices which connect to wires of varying lengths. These can route the signal
to neighboring resources, resources in the vicinity or to chip-spanning wires. As the
switches are connected to hundreds of wires it would become too complex a structure
if it could connect every wire to the other. Usually the pathways a signal can take are
limited.

All these switches and lookup tables are combined with RAMs to contain their con-
figuration information. The FPGA is made of regular tiles containing switches, lookup
tables, and their configuration memories. In Xilinx terminology, these are called complex
logic blocks (CLBs). The manner the configuration memory can be accessed depends
on the implementation. Some devices, like the Atmel 94k series [1], allow for byte-sized
access to the memory. Others, like the Xilinx Virtex series [34], use frames which can be
much larger (+/- 500–1500 bits). Sometimes memory can be written directly, or it has
to be configured serially by moving the data through a large shift register. The speed
and granularity of the device configuration is a major factor in successfully implementing
reconfigurable computing. Some devices can only be configured in their entirety. This
usually involves shutting down the device, rendering it useless for the time it is being
reconfigured. The delay caused by reconfiguring the device can be seconds, which is
substantial for a computer systems which can perform several billion operations each
second. Some FPGAs facilitate a way to reconfigure only a part of the device. In this
way the rest of the device can remain in use while a small portion is set up for the new
functionality. This is used for runtime partial reconfiguration in reconfigurable comput-
ing. The advantage is that reconfiguration delays can be hidden as long as the new
functionality is being set up long before it will be in use. Other functions will remain
accessible to the computational process. The reconfiguration time is also reduced as the
size of the reconfiguration bitstream is related to the size of the structure which is being
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reconfigured. As we only reconfigure a small portion of the chip, the bitstream size will
be much smaller than for reconfiguring the entire device.

1.3 Problem Statement

When reconfiguring an FPGA for a new function, we encounter two problems:

• Changing functionality of the device suffers from lengthy reconfiguration latencies.

Configuring an entire device can take a tenth of a second to several seconds. One solution
is to partially reconfigure the device, replacing only a small portion of the reconfiguration
data to change a functionality or just some parameters. This reduces the reconfiguration
time and can increase functional densities for some applications [13]. It can also be used
to hide reconfiguration latencies by setting up the next hardware accelerator while the
other accelerators are in use.

• For each device within a family and each combination of hardware, a new recon-
figuration bitstream has to be synthesized.

Normally, each device type, even within a family, needs a different reconfiguration bit
stream. Current methodologies for generating partial reconfiguration bitstreams entail
using an ad-hoc manner for generating full device configuration of each device and mod-
ule combination, and extracting the differences at compile time [16]. It is a cumbersome
method to distribute an application, especially when multiple cores are used and inter-
changed, and comes with considerable restrictions:

• Synthesis of device configuration is done in compile time

• Existing methods use fixed floorplans

• Existing methods use bus macros to affix routing

• Existing methods can not place arbitrarily sized modules

1.4 Goal and Methodology

In this thesis, we introduce a solution to overcome these problems. This research is
focused on developing a method that enables (semi-)arbitrary removal and placement of
hardware implementations, and if needed, perform the necessary routing to disconnect
and connect them to other implementations present in the device. It produces full and
partial (re)configuration bitstreams for first time setup and subsequent transitions.

Our goal is to show that it is possible to replace a hardware core with another one
by manipulating only the bit streams. We perform operations on the bit streams only
because we want to avoid lengthy synthesis cycles. To achieve this result we take the
following steps:

• We propose a design flow and implementation to replace one hardware module for
another
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• We limit our work to the resources and wiring which are of most interest

• Simple tools are made for manipulating the bitstream with the information ob-
tained

• Tools for isolation of hardware cores, placement and routing are developed

• A framework is build to automate the removal, placement and routing of various
hardware cores.

Our method has several advantages over existing methods:

• It no longer reserves module specific space on FPGA.

• Does not reserve routing paths.

• Does not make prerequisites for the size or shape of the module.

• Does not use bus macros, thereby using less resources.

• Can do free placement as long as the module structure matches the underlying
FPGA resources.

• Can route through existing structures.

• Can place modules on top of existing routing if there is no conflicting use of wires.

The advantage of our solution is we no longer reserve a specific area for the modules,
nor do we make use of reserved routing paths. This means we can truly arbitrarily place
and connect any module to any other module. We do not make use of bus macros, nor do
we place any restriction on the size and shape of the modules, although they do have to
fit on to the device without causing conflicts with the existing configuration. As long as
the router can generate a pathway, routing can go through existing structures. As long as
existing pathways do not conflict with the routing within a new module, modules can be
placed on top of existing routing. We can do 2d placement, enabling more efficient area
usage and routing densities are only limited by the available resources on the FPGA.
Although the developed techniques are intended for on-line bitstream generation, the
Achilles heel is in the computation required for doing routing.

1.5 CE Research in Reconfigurable Computing

Without much doubt, the utilization of reconfigurable hardware adds flexibility and
performance, mainly due to the exploitation of parallelism in hardware. This has been
proven as the reconfigurable hardware can outperform general-purpose computing for a
wide range of algorithms and in some cases by a large margin [29]. It is therefore desirable
to exploit this advantage to accelerate general-purpose computing. Currently, this is done
in an ad-hoc fashion, where specifically designed hardware cores are implemented for each
application. This methodology is very much dependent on the platform it targets and is
impractical for most software developers. The computer engineering (CE) laboratory is
working on various projects to change this.
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1.5.1 Delft Workbench

The Delft workbench project [9] strives to develop a semi-automatic platform for in-
tegrated hardware/software co-design, targeting heterogeneous computing systems con-
taining reconfigurable components. We are developing an integrated environment to
make it possible for a ‘software’ developer to implement applications on a reconfigurable
platform. The process of designing an application not only involves producing a func-
tional implementation, but also entails the identification of the components which will
have the most potential to improve overall execution time, by translating them into
hardware. The workbench helps to identify these components and also helps the de-
signer with the translation process, in which a sequential algorithm has to be rewritten
to make use of the parallelism (hArtes project). This is inherent to a hardware imple-
mentation. It is possible to just use library components to accelerate the application
with hardware. In achieving the best results in optimizing an application it is important
that the developer has knowledge of hardware design, however the group is developing a
compiler that will translate C into a hardware description (MORPHEUS project). This
will offer the designer the ability to find the best trade-off between development time and
application acceleration, which is done by choosing one of these three methods for the
implementation. Because of the close coupling between the general-purpose processor
and the FPGA, there are delays caused by reconfiguring the FPGA. A retargetable com-
piler will have to take care of this issue (RCOSY project), by issuing the reconfiguration
process as soon as possible. The target platform of the Delft workbench is the Molen
reconfigurable processor.

1.5.2 Molen

The Molen architecture [28] is a combination of a general-purpose processor (GPP)
and a reconfigurable processor (RP). This is an architecture in which there is a close
relation between software running on the general-purpose processor, and the hardware
implementations in the FPGA which are meant to accelerate the application. It extends
the instruction set of the GPP with four to seven instructions to add reconfigurable
functionality. The instructions encompass the configuration of the RP, the execution
of the configured functions, the exchange of data between the GPP and the RP and
synchronization between the two.

This research focuses on the replacement of one hardware configuration by another
on an FPGA. The platform we focus on is the Virtex-II Pro, which is a common FPGA
that has (among other features) two PowerPC processors on chip. For this platform we
have an implementation of the MOLEN reconfigurable microcoded processor. We can
utilize our results for an implementation of the ‘set’ instruction, which initializes the RP
for a new function.

1.6 Overview

This thesis is organized as follows. Chapter 2 describes what runtime reconfiguration is,
explains our methods and presents related work. In Chapter 3, we discuss the assump-
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tions made and the methodology followed to arrive at our implementation and the tools
we developed for this. Chapter 4, we give examples to demonstrate how our methodology
evolved and to show that it works. Finally, in Chapter 5 we draw some conclusions and
give recommendations on how to proceed from here.



Background 2
In this section we will present related work by others, and compare them with our own.
Because the only practical design flow up for partial reconfiguration until now has been
XAPP290, and we have developed a new way to do this, we will mainly focus on different
forms of connectivity between hardware implementations on an FPGA and the way this
can be improved by our methods. The related work will show:

• Connectivity can be split up into direct circuit switched, logically circuit switched
and network-on-chip.

• Placement can be 1 Dimensional or 2 Dimensional.

• The area for the placed hardware is fixed, slot based, or has significant restrictions.

• The module sizes are often predetermined and modifications to these require
changes to the floor planning at different levels in the design.

• All forms of partial reconfiguration are using bus macros to affix routing to specific
locations.

• All implementations use the Xilinx tools to generate the bitstreams and require
resynthesizing a project at compile time for each modification.

Although many authors are focused on implementing networks on chip, they need (par-
tial) reconfiguration to produce and modify these. Our methods will present a more
dynamic approach to partial reconfiguration. We propose a method that:

• Will perform partial reconfiguration in a way that can be applicable to any form
of connectivity and hardware implementation.

• It should do away with bus macros as they are a waste of resources.

• It should pose the minimum amount of restrictions on modules size, shape and the
position it can be located at.

• Placement of hardware should be 2 dimensional.

• It should generate partial reconfiguration bitstreams without the use of the Xilinx
tools, to enable migration of device reconfiguration to runtime instead of compile
time.

• The partial reconfiguration has to be dynamic in order to hide reconfiguration
delay.

9
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• The method should be implementable on existing reconfigurable platforms, like the
Molen platform.

• The implementation has to be incorporated into a design flows for application on
future projects.

In this chapter we will also provide an overview of the normal design flow for partial
reconfiguration, we will propose a modified version for our own implementation and we
provide an overview of the known information of the targeted FPGA device.

2.1 Related Work

The result of the work done for this thesis is a method for placing and connecting
modules onto a Virtex-II Pro. If needed old modules are removed to replace one hardware
implementation for another. This is done dynamically using partial reconfiguration to
hide reconfiguration delay. The normal method for placement is 1 dimensional, but
there has been some research on 2 dimensional placement for this family of devices. 1
Dimensional placement, using vertical slots, is the most practical implementation, but
it wastes a lot of space. 2 Dimensional placement, as we propose to do, is superior in
efficient use of area [27]. The method chosen in this thesis for connecting the modules
is a direct connection, also know as direct circuit-switched. Other methods are logical
circuit-switched and network on chip. Network-on-chips are packet switched networks.
Direct circuit switched networks have the least communication delay, as they are short
unbuffered connections, but they can be considered static networks. For pathways that
are not static, but do not change frequently, logical circuit switched networks are a good
alternative to packet switched networks. In logic circuits-switched networks, pathways
are negotiated before use, setting various switch nodes to form a direct link between
modules. Networks on chip (NoC) are packet switched networks, which buffer the packets
between each router, and can therefore be clocked higher as distances between routers
are shorter compared to direct connections. They do however take up a lot of resources
due to their complexity. In the next section we present work by others related to these
subjects.

2.1.1 1 Dimensional Placement, Mostly circuit switched

In Bieser, et al [3] the modules are fixed in dimensions and stretch the height of the
device. The modules are proposed to be IP-Cores which have been tested thoroughly
and can be used as standard building blocks. The routing problem is overcome by using
a shared bus to which the modules attach. This bus makes use of the tri-state drivers
that are in the Virtex-II. This means that only one module at a time can make use of
the bus. The designer can merge the module bitstream with the configuration bitstream
using an application based on JBITS [31]. It is possible to create user defined IPs.

JBITS development has been stopped, there is no support for newer device families
like the Virtex-II Pro. Our implementation could isolate the various modules created
into separate snippets of bitstreams. As there is a fixed bus to connect to, no routing
is necessary. We can produce the bitstreams that dynamically remove and place these



2.1. RELATED WORK 11

modules at runtime. Taking device restrictions into account it can be possible to modify
this implementation to do 2 dimensional placement. Although we refrain from exploring
the use of the tri-state bus structures, it may be possible to extend our methods to make
use of these and reroute them dynamically. Other network topologies are advisable as
communication can only be with one module at a time.

Bobda, et al [5] have proposed two methods for exchanging signals between modules,
also using partial reconfiguration. One is based on 1 dimensional vertical-slot shaped
reconfigurable modules which are connected using a reconfigurable multiple bus (RMB)
, similar to the one suggested by ElGindy [10] . This RMB uses logical circuit-switched
routing in the form of a standard switch matrix for each module, with a controller added
to perform worm-hole routing. The established link can transfer data from source to
destination each clock cycle.

This might be the best trade-off between design complexity and the computationally
intensive approach we take with respect to routing the signals, though direct circuit-
switched networks have a little less delay. The RMB could be substituted by dynamically
reconfigured direct circuit switched networks, using our implementation. This can only
be successful if connections do not need frequent reconfiguration. As with Bieser, et
al, our methods could perform device reconfiguration for this implementation because
this is also a slot-based implementation, though using a different type of bus. The bus
in question can enable multiple modules to communicate to each other. Extending our
methods, the interfaces can be dynamically added or removed and could be modified to
do 2 dimensional placement. The second approach is discussed later on.

Karsteva, et al [20] propose how to relocate part of the bitstream for 2d placement,
although this information is easily deduced from the user guide. They have only im-
plemented a 1 dimensional method of placement and have information on the execution
time for merging bitstreams and producing the partial bitstream for reconfiguring the
device functionality.

This is interesting, as we do not focus on execution time for this research, but it is
a major factor limiting practical implementation of our method. The use of perl-scripts
and the intermediate steps we take makes it impractical to compare our work with this,
as our approach is obviously much slower than an C implementation.

2.1.2 2D Placement, Mostly Network-on-Chip

Sedcole, et al [25] proposed a method for reconfiguring hardware cores, in the form of
modules, that is more flexible than described in the Xilinx application notes [33]. They
provided a way to place hardware cores above each other, whereas the Xilinx method
dictates that modules stretch the entire height of the device. The positions and size
for these hardware cores have been predetermined. The issue with static routes passing
through the modules, were resolved by reserving the long lines as pass through regions in
the modules. Signals are connected to static routing through bus macros. The operations
necessary are performed at a bitstream level with the use of stored configuration data of
the modules.

As the bus and connectivity for the modules is static, no routing has to be done.
Due to the fixed module size however it is inefficient with the usage of the available
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space. By reserving signals for pass-through routing this reduces the effective number of
available wires within a module. It could therefore result in larger modules, operating
with longer wires which have more delay. Our methods will do 2 dimensional placement
without reserving space for it, nor will there be any restrictions on the shape and size of
the modules as long as they fit.

Hübner, et al [17] implemented online routing using regular routing structures which
stretch vertically through the device. A module can be attached to the structure at any
location. In this manner, they provide arbitrary 2D placement of modules of any size, as
long as they do not conflict with the routing structures, vertically interrupting the FPGA
configuration regularly. The routing structures are lookup table based and have to be
reconfigured at the the position it attaches to the module. The number of signals that
pass through the structure is limited, due to the use of lookup tables. The operations
are performed by a C program running on the PowerPC or Microblaze processor using
stored configuration data for the routing structures and modules.

The use of lookup tables adds delay to the routing as the signals pass through quite a
few lookup tables, which is not the case for our directly connecting method. The routing
pathways are configured statically and in advance, hence the length of the pathways is
longer. Its implementation appears to have slot-based modules which are slaves to a
single master controlling this bus structure, indicating that there is no communication
between modules. This is different for their network-on-chip based approach, which is
more complex. Their lookup table based method could be considered a reconfigurable
logical circuit switched network. The modules have restrictions as they may not conflict
with the routing structures. This implementation comes closest to the goals we want to
achieve. It does not provide the highest degree of freedom in using the device resources
and still poses restrictions on the modules and has restricted communication capabilities.

Möller, et al [23] use a modified Hermes network on chip, named Artemis and bus
macro like structures to provide for dynamic reconfiguration of the cores attached to the
router. The routers themselves are part of a fixed network. The reconfiguration support
is added with custom macros which can block signals going through while the modules
are being reconfigured. This stops possible transients caused by the reconfiguration
process from entering the network. They resemble the standard lookup table bus macros
used in the Xilinx method. The method for positioning the modules is stated to be
slow, although it was implemented in C. As we are not focusing on reducing the time to
calculate and reconfigure the device our implementation will not be faster. The modules
have the appearance to be placed in two dimensions, but it may be a clever way to
hide 1 dimensional slot-based placement. Our method can reconfigure both modules
and the network implementation freely, although the suppression of transients caused by
reconfiguration have to be addressed by the designer, incorporating an extra and-gate
to block signals during the reconfiguration phase.

For the second part of their Journal paper, Bobda, et al [5] assume an FPGA that is
capable of 2d placement, and have build a network on chip that can cope with routing
packets, even though the structure of the network is irregular. They avoid creating ob-
stacles by surrounding each module with a network ring. In this way packets can always
get around modules, no part of the network gets cut off by placing a module at a certain
location. They show that their routing algorithm is probably deadlock-free. They only
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show how this would work for a static configurations, but are working on an implemen-
tation that can handle changing the network configurations. Their use of JBITS means
they can only implement this on older FPGAs. Because their implementation is mostly
based on placing modules within an existing routing mesh, the routing problem has
been transfered to the packet routers. As the interfaces are standardized and connected
automatically by placing the modules at the correct position. Using a more dynamic
network, it might be possible to reduce the number of routers using our methods, as
the networks surrounding the modules can be adapted to the existing structures. This
would greatly improve on the available resources for the modules themselves, because
the routers takes up a lot of resources.

Hilton and Nelson [15] describe a circuit switched network called a programmable
network on chip (PNoC) without going into the specifics of the reconfiguration process,
though they have an implementation for the XC2VP30. They propose logical circuit
switched routers that can handle dynamically changing networks by performing updates
on the routing tables when a change in network occurs. They supply various topologies
for the network as an example, which suggest they do 2 dimensional placement, but as
they focus on the network and not the reconfiguration they only specify the number
of slices and block-rams their router takes up. Because not much information is given
on their implementation except for a desire to apply their network to dynamic module
replacement as it was designed for this purpose. Their current demonstration application
is a static network. Our methods would be well suited as it can deal with varying
shapes and sizes of modules, coping with multiple consecutive substitutions without the
hindrance of a predetermined floor plan.

2.2 Xilinx Virtex-II Pro

Although reconfigurable computing is not a new field, only in the last fifteen years have
we had the opportunity to explore its potential. The technology is showing promise, but
there are still quite a few hurtles to take. One of the problems is caused by the time it
takes to set up the reconfigurable processor (RP) to do a new task. Although a hardware
implementation can be much faster than the equivalent in software, this advantage is
counteracted by time it takes to reconfigure the device, especially compared to the cycles
that the general purpose processor has available in the same interval. Runtime partial
reconfiguration is important for reducing and hiding the delay of reconfiguring for a new
task before it can be used. First we have to look at the reconfiguration process, taking
into account the device we have chosen.

Because reconfiguration bitstream are specific to a device family, we prefer to choose
an accessible common FPGA to work on. Therefore, we chose to target the Xilinx
Virtex-II Pro family. It is in common use, can do partial reconfiguration and the Xilinx
university program board [18] has an attractive price tag. It has an XC2VP30 as its
main device, offering 2 power PC cores 30k+ logic cells 136 multipliers and 428kBit of
RAM. Most importantly, there is an implementation of the Molen processor for it.

Figure 2.1 depicts the arrangement of resources in the XC2VP7, scaled to the num-
ber of bits they use in the bitstream. The most common resource is the complex logic
block (CLB). These logic blocks contain a portion of the hardware description and use
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Figure 2.1: XC2VP7 structures scaled to size in bit-stream
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Figure 2.2: Virtex-II Pro Slice configuration

a switch matrix for routing signals to other resources. Resources like BlockRAMs and
RocketIO interfaces are distributed throughout the matrix column-wise at regular inter-
vals. These are connected by BlockRAM interconnections (BRI) and RocketIO inter-
connections (RII), which are very similar to the switch matrix of the CLB. BlockRAM
interconnections also provide connectivity to the multipliers which do not take any recon-
figuration data and so do not show up in the bitstream. Around the edges of the device
the connection to the outside world is made through IO interconnections (IOI). It can
be seen that there is regularity in the distribution of the resources. The most prominent
feature is the PowerPC core. Although it seems to take a lot of reconfiguration data,
it is highly unlikely that it uses a large portion of this. This indicates the frames are
meant to fit the largest reconfiguration-data structures on the device, and that a lot of
information is discarded for the sake of uniformity of the bit-stream. For now, we will
limit ourselves to the use of CLBs only, although we do take the problems caused by the
heterogeneous character of the device into account.

Complex logic blocks (CLBs) are composed out of 4 slices of which a graphic repre-
sentation is depicted in Figure 2.2 as taken from datasheet [35]. Each slice contains 2
lookup tables, 2 flip-flops, multiplexors and some logic gates. The lookup tables take 4
inputs and produce 1 result, hence taking 16-bits of configuration data. It can represent
logic, slice distributed RAM or a shift register. The multiplexors are used to set the slice
up to perform specific functions. They can be used to produce larger lookup tables build
up out of multiple standard 4-input version. They can also, for instance, be configured
to make use of fast carry logic, enabling fast arithmetic functions using incorporated
logic gates specifically for these types of functions. As a simple construction element of
a larger system, the CLB can perform a great number of tasks.

Figure 2.3 depicts a complete CLB as shown by the fpga editor tool of Xilinx. The 4
smaller squares to the right represent the slices, the large square to the left represents the
switch matrix. Most of the wiring for the slices go through the switch matrix, with the
exception of the wires forming a carry chain, which are directly liked to neighboring CLB
slices. The switches themselves are not fully connected. A single node on the bottom of
the switch matrix has been selected. The yellow connections represents possible signal
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Figure 2.3: CLB as seen in fpga editor

routes leaving the wire. The purple connections represent possible signal routes entering
the node. As can be seen, the switch can not connect every node to another, this would
become too complex a structure for the large number of nodes that are available.

Figure 2.4 depicts the different types of wires connecting the various switch matrices.
According to the datasheet, for each switch matrix there are 16 wires connecting to
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Figure 2.4: Virtex-II Pro wires as taken from the datasheet

the neighboring resources, 40 wires that connect to the resources which are spaced two
and four positions apart and 120 wires that connect to resources spaced six and twelve
positions apart. 24 The wires run in horizontal and 24 in vertical directions. These
numbers are somewhat polished as they represent the maximum number of wires passing
through the CLB, not the number of wires connected to the switch box. In reality, if
we only count outgoing signal pathways, they would come to 16 neighboring wires, 40
‘double’ wires, 40 ‘hex’-wires, and only 4 vertical and 4 horizontal long lines. This still
makes the number of wires available quite formidable.

The long lines span the width or height of the entire device. There are also special
tristate wires. Most of the wires have only a single driver ensuring signals only travel in
one direction, this however is not true for the tristate bus, nor for the long lines. These
can be driven from any point, possibly causing damage if a wire is driven from multiple
locations. On a device-wide level, there are special wires for distributing clock and global
signals throughout the entire device. These run out from the center of the device to the
edges, making sure that the delay to each point is approximately the same as is depicted
in Figure 2.5 , taken from the user-guide. This is to prevent problems with clock skew
and to have specific clock regions.

2.3 Xilinx Design Flow for static configurations.

Xilinx provides an integrated development environment (IDE) for programming their
devices in various descriptions, including VHDL and Verilog, called ISE. As taken from
the ISE help file, Figure 2.6 depicts the normal design flow of the ISE package. This
does not include the design flow for partial reconfiguration as explained in application
note XAPP290 [33].
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Figure 2.5: Virtex-II Pro clock distribution as taken from the user-guide

Figure 2.6: ISE design flow

During the design entry phase, the hardware is described in a high level hardware
description language like VHDL or Verilog. It is also possible to design the hardware
using a schematic representation, but it is not common. A user constraints file (.ucf)
specifies parameters for the entire design process. It allows the user to provide the ISE
package with information it can not derive from the high level description. The user can
specify constraints on placement, timing and synthesis of the hardware design. Placement
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constraints can for instance determine which pins are connected to which signals. Area
constraints determine the location to which the hardware implementation is bound.
The user can also specify timing constraints to ensure the a critical path meets certain
demands for signal delays. Synthesis constraints instruct the synthesis tools to perform
specific operations, usually to improve timing or reduce area. If too little information
is provided in the constraints file, the software package will try to generate a optimal
solution without it. For example, not providing placement constraints on which signals
should be connected to which pins, results in the tools assigning a pin by itself. In
case the design is only simulated, this may not be a problem. When implementing the
hardware description on a device it becomes essential to specify this information.

The xst tool parses the HDL description. It does synthesizes of the design and does
logic optimizations. The hardware descriptions are synthesized to the register transfer
level (RTL) representation of the design for behavioral simulation. It can also be com-
piled to a gate level description. This representation is in terms of generic symbols, such
as adders, multipliers, counters, AND gates, and OR gates, etc., which can be used for a
functional simulation. xst, produces a .ngc-file, which contains the design implementation
mapped to the targeted technology. This is a representation in terms of logic elements
optimized to the target architecture, for example, in terms of LUTs, carry logic, I/O
buffers, and other technology-specific components. For the Virtex-II Pro for instance,
this means the targeted technology uses 4-input lookup tables, dual ported BlockRAMs
and 18x18 bit multipliers. The ‘translation’ step of the design implementation acts as
a linker would for a software compiler. The ngdbuild program takes the netlists, design
constraints and .ngc-files containing the designs, and outputs a .ngd design database.
The mapping process, performed by the map program, fits this to a specific device in
the family, for instance the XC2VP30. It describes the design in the form of the specific
resources of the targeted device, for instance CLBs or IOBs. The Place and Route (par)
process takes a mapped .ncd-file, places and routes the design, and produces an .ncd-file
that is used as input for bitstream generation or post-synthesis simulation. It assigns the
location of the various slices the design has been translated to and performs the routing
to connect them up. For device programming, the finished design database (.ncd-file) is
translated into a configuration bitstream by the bitgen program. This bitstream can be
offered to the device in various ways, for instance through the JTAG interface using the
impact program, or it can be programmed into a configuration ROM which is loaded
automatically after the device is powered up.

2.4 Partial Reconfiguration Using the XAPP290 Design
Flow

XAPP290 describes two methods for doing dynamic partial reconfiguration. The mod-
ular method, as depicted in Figure 2.7 divides the FPGA up into portions for specific
functions. These portions come with considerable restrictions. They must span the full
height of the device. All resources within the module are part of the module, this means
no wires passing through may be present. Pins which fall inside the module can only be
used by that specific module and unused resources like BlockRAMs or multipliers are
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Figure 2.7: XAPP290 vertically stretching modules

unavailable for other modules. The slot size of a module is fixed, this means that only
modules with a similar size and shape can be placed inside that space. Communication
between modules must be done through bus macros situated at the edges of the module.
These are needed to have a fixed position to hook signal routing to, as there is no direct
way to influence the routing paths the Xilinx tools generate. The design flow follows
the normal Xilinx design flow for each module, taking some limitations into account.
These modules are combined in a top-level design in which they are assigned a specific
area and information is provided on the connectivity between modules. Each module
is synthesized separately and can be simulated individually. For each combination of
modules the top-level design is synthesized and tested, using the modules created in the
first step. Of these designs a partial bitstream is created that reconfigures the device for
the next function. For each possible combination of modules, a new design has to be
synthesized. For each transition between configuration a specific partial bitstream has
to be synthesized in advance. If a module does not fit, the top-level floor plan has to be
altered and all modules which fit the same spot or are adjacent have to be resynthesized
to the new dimensions. The difference based method, described as the second method in
the application note, is proposed for small changes to the design. The design is opened in
the fpga editor and the manipulations are done manually. These manipulations usually
encompass changing the LUT contents, loading different content into the BlockRAMs
or changing the I/O standards of the pins. This method is not very well suited to do
big changes to the routing. The application note urges users to use the modular based
approach instead. This makes sense, because changing the routing may lead to damage
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to the device when performing active reconfiguration. This approach would also be too
labor intensive to implement on a large scale.

2.5 Proposed Method for Partial Reconfiguration

We propose to develop a more idealized method of partial reconfiguration. It will have
to be able to handle modules of varying shapes and sizes which will be combined at
runtime. In this way, as long as there is binary compatibility between devices within the
same family there is no need to resynthesize a module for each device. It also means
there is no precompiled bitstream to do the transitions of the various combinations, they
are generated at runtime. It would become possible for the system to ‘load’ a module
instead of setting up the reconfigurable device in a predetermined way.

2.5.1 Proposed Design flow, Building the Modules

The design flow for the modules is similar to the module based reconfiguration method
in XAPP290, but with much less restrictions. We propose to combine the modules at
runtime, so the configurations are not synthesized in advance. This allows us to have no
restrictions on the specific size of a module, as long as it can fit the design when it needs
to be configured. The modules no longer need to span the entire height of the device, as
we aim to do 2D placement. For this we do need to do routing at runtime as the specific
location and routing paths can not be predetermined. The design flow would not need
to be specifically module-based, as long as hardware cores have area constraints, though
it would be more natural for developers to use the module based approach. There is no
need to add bus macros as we do not need the routing to be at the edges, because we
have control over the routing. The modules can be simulated and tested using regular
methods. More over, changing the floor plan has less influence on the modules already
synthesized, as they can be repositioned at design time. In the design flow described in
XAPP290 this would mean a complete rebuild of all the modules and top-level designs.
The information needed to extract the hardware core can be taken from the Xilinx
files. The .ucf-file contains area constraints which can be used to determine where the
hardware core is placed on the device. The .ncd-file can be translated into a bitstream
but the content of the database can also be dumped in a more readable eldif-format by
the xdl tool. From the output of this tool we can determine the names of the routed
nets, as used in the high-level language. For this thesis we do not retrieve the names of
the nets, nor do we extract information form the constraints files. The netlist combining
the various cores can be determined from the top level design.

2.5.2 Proposed Approach to Runtime Partial Reconfiguration

Replacing a hardware core for another one during runtime is depicted in Figure 2.8. As a
minimal set for the reconfiguration we require a description of the current configuration,
an isolated configuration file of the new core, as well as a netlist for the signals that have
to be routed between the new core and the existing design. For reconfiguration we first
need to extract the current configuration of the FPGA from the device, or use a copy of
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1. Stored or extracted device

configuration

2. Within a designated area the hardware

configuration and used signals are

identified

3. Hardware and signals are removed

4. A new hardware core is selected and

assigned to the empty space

5. The hardware is placed keeping

alignment into account

6. The new signals are routed

Figure 2.8: Exchanging one hardware core for another

the file it was configured with. We have to identify the hardware core, which has to be
removed from the bitstream. This can be done by specifying an area in which it is known
to reside. It is also possible to search for a specific core in the bitstream by comparing
it with the stored version. For this thesis we assume it is known where the core resides
and we have the binary file for it.

In the designated area we isolate the hardware core and we can trace internal wires
and external signals. As we only plan to make use of the lines that have a single driver,
the communication signals between the modules can only be incoming or outgoing. We
have to take into account that incoming signals can be in use on multiple locations of
the core. Outgoing signals can be eliminated, taking into account the possible internal
use of the same signal. The bits that have been found to be a part of the hardware
core or its internal wiring can be subtracted from the bitstream. The extracted list
of communication signals is used to unroute the connectivity between the remaining
configuration and the module which has been removed. To make sure there are no
damaging effects when directly switching from one core to another, it is advisable to
first use this bitstream to remove the core before configuring the new one.

The bitstream for the new core has been previously isolated in a separate bit file.
When placing the new core it is important that it is aligned properly. The matrix of CLBs
is interrupted by a column of BlockRAMs and multipliers at an interval of 6 columns.
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These have a height equivalent of 4 CLBs. If BlockRAM resources are used by the core
it is important that positioning it in the vertical direction is done in steps of 4. Most
of the time horizontal displacement can only done with multiples of 7 because of the
column of BlockRAMs and multipliers. The last step involves routing the signals to and
from the core. These do not have to be in the same position as the previous core, nor do
they have to connect to the same terminals of the hardware remaining in use. With the
aid of a netlist the routing is automatically generated and added to the bitstream. The
resulting bitstream is the complete description of the new device configuration. This is
compared with the original configuration and the intermediate configuration where the
old core is removed. Only the frames that are different will be reconfigured, effectively
only removing the old core and reconfiguring the new.

2.5.3 Advantages and Disadvantages

The advantages of this technique are mainly due to the routing. An existing configura-
tion can be reused, and new routes can pass through existing structures on the FPGA.
Because there is no use of bus macros or other techniques for affixing the routing to a
predefined position, the delay of the signals through the wires can be less because they
are expected to be shorter. We can arbitrarily place modules anywhere on the device
as we are not dependent on specific routing structures, though we are dependent on the
heterogeneous distribution of the device resources. The density of the routing is also
higher compared to bus macros or other solutions as they make use of the lookup tables
and can only route 8 signals for each CLB. The biggest disadvantage also comes from
the routing process, as it is very computationally intensive to do. It is, therefore, less
practical to do in a real world application. It is, however, a good starting-point from
which to develop techniques which accelerate this process. For instance, free routing has
to be used, only if the routing problem can not be solved by general routing structures.
These general routing structures can be made with common bus structure made out
of regular ‘modules’, consisting only of regular wiring, which can be placed after each
other. By gaining insight in the actual wiring structure, the bits and frames involved,
and the processes that are needed to generate the pathways, we have the possibility to
develop better methods of producing efficient standard building blocks. We can develop
techniques to manipulate modules by rerouting conflicting pathways before placing them
or to rearrange a module to better fit the design.

Another problem has to do with runtime reconfiguration. The runtime combined
modules have not been simulated and tested as a complete system, and therefore timing
problems may occur which could have been detected and resolved by applying some test
vectors. All runtime reconfiguration solutions suffer from this problem, but just as the
approach of XAPP290 can simulate the entire system, the configurations could actually
be simulated in the ISE package as might be able to recreate all the bit manipulations
using the fpga editor or the xdl program. Analysis after a problem has occurred can be
done, however it is more important that such a timing problem never happen. Other
problems are general to applying 2d-placement to the Virtex-II Pro FPGA. As we config-
ure frames, we actually overwrite configuration data over the entire height of the device.
As long as this data is the same as was already there, this will not be an issue because in
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this case is stated to be transient free in the datasheet [35]. In BlockRAMs, and in some
cases the lookup tables as well, configuration data is actually used as a storage element.
When writing a frame to configure one part of the device, all configuration data in that
frame is overwritten. When the configuration bits are used as storage elements, they are
replaced while being in use. This is an unwanted side effect which cannot be avoided
with this device. The Virtex 4 family addresses this issue by dividing the frames up into
regions. With the Virtex-II Pro, adding or removing routing to the configuration is not
a problem, as the storage elements do not share frames with the routing configuration
data.

2.5.4 Conclusion

All current methods rely on fixed interfaces between the modules and the routing paths,
in the form of a bus macro or lookup table based primitives. We propose a method
which does true direct switched routing of the signals. This provides more flexibility,
as there are no predetermined routing paths or dedicated wires. It makes it possible
to route through existing structures even though they do not have specifically reserved
space for this. The lack of using bus macros or LUTs saves resources and reduces
delays. Furthermore, the number of signals that can be connected is limited only by
the available resources of the FPGA itself. We do 2d placement of arbitrarily sized and
shaped modules. We do not reserve specific areas for the modules. As long as there
are no conflicts with existing structures and configurations, a module can be placed and
connected anywhere on chip. As all operations are done on a bitstream level, not using
3rd party tools, they can be implemented on the PowerPC or Microblaze. We make use
of stored configuration data for the module and have a database of configuration data for
the switch settings, used for routing the signals. Wires crossing boundaries in to other
modules are not a problem, as long as they do not directly conflict with the wiring of the
other module. Transients cased by reconfiguration have to be resolved in the modules
themselves. Adding a logic gate, disabling communication during reconfiguration can be
enough.
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In this chapter we will discuss the technical background of the work that has been done.
Our goal is to show that it is possible to replace a hardware core with another one
by manipulating only the bitstreams. We perform operations on the bitstreams only
because we want to avoid lengthy synthesis cycles. To achieve this result we take the
following steps:

• A device to use for our approach has already been selected in the previous chapter

• An overview of the structure and composition of it’s resources has been presented
in the previous chapter

• We will need to obtain a more detailed description of all the internal structures

• We limit our work to the resources and wiring which are essential to achieve our
goal

• The bitstream is decomposed for routing and the resources of interest

• Simple tools are made for manipulating the bitstream with the information ob-
tained

• Tools for isolation of hardware cores, placement and routing are developed

• A framework is build to automate the removal, placement and routing of various
hardware cores.

3.1 Resources in the FPGA

As there are many internal structures in an FPGA, limits have to be set to only work on
the resources which are the most important. It would take too much time to completely
decompose the configuration options the entire device. For now, research has been
limited to the use of CLBs only. The method can be expanded to take the use of the
other resources into account. The slice configuration data is taken as-is. We use the
normal ISE tools to do synthesis. Most effort has been put into deconstructing the
wiring. Even so, some wiring structures are ignored. There are special tri-state bus
structures, which could be used to connect multiple modules to the same bus. There are
also long lines, which span the width or height of the entire device. To prevent accidental
damage to the device we will not use wires that can be driven from multiple locations.
This means we exclude the utilization of long lines and tri-state lines.

25
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3.2 Operating System and Programming Language

The default operating system on CE workstations is Linux. It is also the OS of choice for
the particular MSC student doing this research. As Xilinx offers a Linux version of its
software there is no need for using Microsoft products. As for the programming-language
of choice, due to the different file formats used by the Xilinx software and the various
descriptions that have to be developed, the choice was made to use Perl. It also provides
a good excuse to have a taste of a different language.

3.3 The XUP Evaluation Board

The Molen polymorphic processor has been implemented on Xilinx ML310 and XUP
evaluation boards. The specific FPGA device on these boards is the XC2VP30. At
the CE department we have several Xilinx University Program (XUP) board made by
Digilent, Inc. All experimentation has been done on this board. It features various
interfaces and expansion ports, including Ethernet, VGA(XSGA), audio and general
purpose I/O. Most of these features have not been used in this research.

Programming is done though the on-board USB Jtag interface, which is probably
equal to the ds300 programming cable. As we prefer to run the software on Linux, and
Xilinx is inconsistent with their support, there have been difficulties getting this interface
to work. The drivers supplied by Xilinx have been developed for the 2.4 kernel. Most of
the recent distributions use the 2.6 kernel. Even though Xilinx provides a download [32]
for this new kernel it contains an older version of windrvr which does not compile with
newer 2.6 kernels. A newer version can be obtained from the Jungo [19] web-site. Only
the source in the /redist directory needs to be compiled and installed. The xpc4drvr
driver for the parallel Xilinx JTAG is also necessary. Recently a new package has been
made available by Xilinx containing newer versions of the xpc4drvr and windrvr6 (v8.01)
software. This new package also contains versions for 64-bit systems. None the less
this package does not install correctly on the departments Fedora core 5 systems and
therefore the preferred solution is compiling all the packages ourselves. There is no
suitable solution yet for installing the driver for 64-bit systems.

The on-board programming cable uses a FX-2 (EZ-USB) 8051 micro controller made
by Cypress [8]. When plugged into a USB port the micro controller receives its firmware
from the USB driver. Linux uses hotplug services to facilitate automatic driver loading
for USB devices. Newer distributions use udev instead of hotplug. We have developed
scripts to facilitate the use of udev as well, because newer Fedora distributions lack
hotplug support. For loading the firmware we needed to install the fxload [7] package.
The Xilinx software installs hotplug scripts and firmware, but the ones that came with
early versions of the 7.1 software needed some tweaking with device id’s. This has also
been addressed by Xilinx with the newer patches. There might be some issues with
user rights to access the file handle to the device in /dev. We had to tweak the udev
configuration to fix this. This did not solve all of our problems with this interface. The
windows driver seemed to function without any problems. It was first thought that there
was a difference between the firmware loaded into the FX-2 micro controller. After using
a USB sniffer and comparing the packets under Linux and Windows it was determined
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that they where identical. By accident it was noticed that the windows driver releases
the USB device twice. Normally, when the USB device is plugged in for the first time
the firmware is loaded in to the micro controller and the USB device is released. The
microcontroller boots the firmware and reestablishes the USB connection. Apparently
it is necessary to temporarily break the connection after this to make the interface run
properly. When this is recreated under Linux by manually unplugging and reinserting the
device there where no more problems. Recently this issue has been resolved with version
1025 of the microcontroller firmware. The information obtained to get the interface
working has been added to an online wiki: http://gentoo-wiki.com/HOWTO Xilinx

3.4 Building the Dataset

3.4.1 Extracting Switch Settings/Building Wire Databases

Although Xilinx does provide some information on the bitstreams needed to reconfigure
the device, this only covers how the stream is divided into commands and frames. There
is no detailed description on which bits to set to provide a pathway for a signal. To
obtain this information, we therefore need a way to build low level device configurations
and relate this to the bitstream. The fpga editor program in the ISE [30] software
package allows for manual manipulation of the FPGA resources. It provides a visual
interface depicting the internals of the FPGA. It also has a scripting facility to store
and repeat manipulations. Among its functionalities there is a way to specify the wires
over which a signal has to be routed, selecting each individual segments along the path.
We can use this mechanism and can derive all the wires which the signals can possibly
take through inspection. This provides enough information to build ad-hoc scripts that
systematically generates pathways and produce the bitstreams using the fpga editor.
From the bitstream, we have determined which bits are responsible for selecting a specific
route. This information is stored in a wire database. In hindsight it would have been
much better to use ”xdl -report -pips” to determine the device structures and use ”xdl
-xdl2ncd” to generate the .ncd files as this would be a lot less device dependent or labor
intensive. Unfortunately this option came to the attention when the data was already
gathered and we wanted to move on.

3.4.2 fpga editor

The fpga editor program of the ISE package allows for low level manipulation of FPGA
resources. It has a graphical user interface depicting the layout of the resources in the
device. This can provide an abundance of information on the device we are studying.
It also provides a means of manipulating the resources, allowing the user to manually
place and route components. It seems to be the only tool that can be used to direct the
pathway of routing. The manual routing of a few traces is possible in the fpga editor,
but it is too labor intensive a process to perform on large structures with a large number
of lines and destinations. It involves manually selecting all the wires along the path, but
due to the limited possibilities of wires to chose from at each switch box, the chances of
winding up at the correct endpoint are not great. We will concentrate on deriving all the
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information necessary for automating routing. We need a way to extract the information
from the program. It would be too much work to manually copy the information by hand.
Fortunately the program provides scripting facilities. These scripts are a transcription
of all the actions done by the user. It includes selection of wires, adding hardware, nets
and routing.

Figure 2.3 provides a view of a single CLB in the fpga editor program. On the right
side, 4 smaller boxes represent the slices in a CLB. Each slice contains two 4-input
lookup tables as well as two flip-flops. The lookup tables can also be configured to work
as a small RAM or a shift register. There are some direct paths between the slices
and neighboring slices, for producing fast carry chains. We are not going to do any
synthesis so the actual structure of the slices is of less importance to us. We are mainly
interested in the types of wires and the switch settings that are possible. Normal signals
are connected to a large switch box as depicted on the left. As far as we have been able
to determine by inspection, the CLB switches connect to 435 wires, most of them are
input or output only. As far as could be determined, there are 3264 connections possible
between these wires. Each of the 160 outgoing signals can be connected with between 4
to 37 incoming signals.

The types of wires displayed by the fpga editor are depicted in Figure 3.1. For normal
signals, they are divided into five groups:

• Wires connecting to neighboring cells, including wires that connect two of them,
forming a square excluding one of the CLBs.

• Wires connecting to the second and fourth CLB, called double lines.

• Wires connecting to CLBs spaced 3 and 6 away, called hex lines. A few of these
are fully connected to all 6 CLBs, which the wire passes. Both double and hex
lines sometimes have an extra CLB connection at the end, offset by one row.

• Long lines, for routing critical paths over large distances, which stretch the entire
width or height of the device. These have only 4 connections for each CLB, but
there are 24 running along the column or row. The CLBs connected to the same
signal are spaced 6 CLBs apart from each other. Long lines can be driven from
each connection, so care has to be taken to prevent a double driven wires.

• Wires to create tristate buses in the chip. These involve special drivers depicted
at the top of Figure 2.3. As the same problem can occur with tristate buses these
are also types of wires we which use should be careful of, although these might be
better protected against damaging themselves. We will refrain from using these
wires all together to prevent accidental damage to the device.

As the switch is not fully connected we need to derive all the possible switch settings
that can be done for each wire. Fortunately the fpga editor program provides a visual
way of determining this, which was intended as an aid for choosing the right path when
manually routing a signal. These connections have been copied down to a file manually.
Later it was discovered that there was an easier way to determine this, using the ”xdl
-report -pips” command. The depiction of the FPGA is largely dominated by the wires
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Figure 3.1: Virtex-II Pro wires as shown in fpga editor

running through the device. Each wire has a unique address of 2 numbers referring
what seems to be an x and y position. Inspecting the sequence of addresses for these
wires we observed that there is some correlation between the addresses of the wires
with the same type, but there are lots of discrepancies. These discrepancies seem to be
caused by underlying structures which are not always visible. It was decided that we
needed a wire database containing the addresses of most of the wires. This database has
been obtained by trying to interpolate all the addresses as good as possible. Using the
scripting facilities of the fpga editor program the addresses did not have to be copied
down manually, but could be determined from the script recordings. The wires have to
be selected in sequence. The erratic jumps where mainly in the direction the wires where
running, so a horizontal wire showed anomalies in the X coordinate. This enabled the
interpolation of most of the wires in the Y direction. Ad-hoc scripts, interpolating the
data, where refined as the process went along. A number of discrepancies where resolved
by manually correcting the errors. This method has been successful resulting in the
addresses of 1,005,054 wires, although it has been rather labor intensive and only covers
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the wires connecting the CLBs, and BlockRAM interconnects. This is all the information
needed to generate the software for routing pathways automatically. The relation of the
routing to the bitstream, configuring the device, is the last step of information we need
to realize our goal.

3.4.3 Bitstream Description

Figure 3.2: Virtex frame buffer

The Virtex-II Pro has an internal interface for reconfiguration: the ICAP interface.
It is a derivative of the external SelectMAP interface. The 8 bit interface accepts re-
configuration bitstreams consisting of synchronization, commands, data and padding as
specified by the user guide [34] . The configuration logic uses a frame buffer to hold the
data, which was read to and from the device memory (Figure 3.2). The size of the frames
depends on the number of CLBs in a column. In the XC2VP30 it takes 6529 bits or
824 bytes per frame. When constructing the reconfiguration bitstreams, it is important
to use padding frames. For instance, the first frame which is read from the interface
contains what is left over in the frame buffer, and is therefore not useful. When writing
a single frame to the device the contents of the frame buffer has to be shifted out while
the new data is shifted into the buffer. This is followed by shifting the configuration
data from the buffer to the device. While shifting the configuration data from the buffer
to the device, the frame buffer is being filled up by a padding frame which is part of the
reconfiguration bitstream.

Xilinx have developed their own layer on top of the ICAP interface, known as XPART
[4], hiding the generation of reconfiguration bitstreams and the IO necessary to interface
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with the ICAP interface. This has been implemented in software as an API for the
Microblaze and Power PC architectures. It provides seemingly random read/write access
to CLBs, as well as the option of copying them from one location to another. It can also
manipulate individual bits of a CLB. This API has never been released. Another option
of applying the bitstream manipulations is to use JBITS, which is a java-based tool to
reconfigure and manipulate the bitstream. Unfortunately this software only supports the
Virtex-II and older devices, not the Virtex-II Pro and up. We will be using the JTAG
interface to deliver the bitstreams with the impact program. This means we have to
generate the bitstreams ourselves. As the bitstream for all interfaces is the same, the
method of delivering them is not important.

Source file: top.ncd, part: 2vp30ff896, date: 2006/04/12, \

time: 11:17:46, length: 82100 bytes

30008001 Type 1 packet, write 1 word(s) to CMD : RCRC

3001c001 Type 1 packet, write 1 word(s) to IDCODE 0127e093

30012001 Type 1 packet, write 1 word(s) to COR 00053fe5

30008001 Type 1 packet, write 1 word(s) to CMD : SHUTDOWN

30000001 Type 1 packet, write 1 word(s) to CRC 00007a94

20000000 Type 1 packet, 0 word(s) to CRC

20000000 Type 1 packet, 0 word(s) to CRC

20000000 Type 1 packet, 0 word(s) to CRC

20000000 Type 1 packet, 0 word(s) to CRC

30008001 Type 1 packet, write 1 word(s) to CMD : AGHIGH

30008001 Type 1 packet, write 1 word(s) to CMD : WCFG

30002001 Type 1 packet, write 1 word(s) to FAR \

ba:0 mja:3 mna:4 byte:0 -> CLB 1

300040ce Type 1 packet, write 206 word(s) to FDRI

0,3,4 IOB : 0300 ***********

0,3,4 IOI 082: 0000 0000 0000 0000 0000

0,3,4 CLB 081: 0000 0000 0000 0000 0000

0,3,4 CLB 080: 0000 0000 0000 0000 0000

0,3,4 CLB 079: 0000 0000 0000 0000 0000

0,3,4 CLB 078: 0000 0000 0000 0000 0000

0,3,4 CLB 077: 0000 0000 0000 0000 0000

0,3,4 CLB 076: 0000 0000 0000 0000 0000

0,3,4 CLB 075: 0000 0000 0000 0000 0000

0,3,4 CLB 074: 0000 0000 0000 0000 0000

0,3,4 CLB 073: 0000 0000 0000 0000 0000

0,3,4 CLB 072: 0000 0000 0000 0000 0000

0,3,4 CLB 071: 0000 0000 0000 0000 0000

0,3,4 CLB 070: 0000 0000 0000 0000 0000

...

Figure 3.3: Text representation of a bit file partially reconfiguring the 5th frame of the
first column

The .bit-file used for configuring the device consist of a header containing informa-
tion about the targeted device, source files, date of compilation etc., followed by the
configuration bitstream. Using the information provided by Xilinx in the user guide [34]
for the device family, we have constructed the anabit.pl program that reads the binary
bit file used for configuring the device and translates it in a more human readable form,
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displaying the commands and showing the frame content in a hexadecimal notation. The
data sheet also provides the information to show which frame relates to which column in
the device. As the number CLBs in a column is known and they are distributed evenly
over the device it can be deduced to which row the bits in a frame are related. Each line
of frame data in the text file therefore contains 80 bits, which are all the bits related to
a CLB in a certain row. The data is preceded by the frame address, the type of data,
and the row number. The output showing the first 28 lines of a bit file used for partially
reconfiguring a XC2VP30 is depicted in Figure 3.3. The mkbit.pl tool translates this
human readable form back to a bit file which can be used to program the device.

The hexadecimal representation of commands are depicted first. The word size is 32
bits. The packet type determines the maximum size of a the packet. Type 1 packets
are used for commands and short sequences of frames. Type 2 packets are used only
for frame data and can be long enough to contain a complete device configuration.
The number of words written are displayed as well as the register to which it is written.
Commands written to the command (CMD) register are translated into a human readable
text. Addresses written to the frame address register (FAR) are translated to a readable
representation of their position in the bitstream, as well as the column it represents in
the device, including the column type. Frames are followed by a CRC code which can
be a dummy value if CRC checking is disabled. We have refrained from using the CRC
checking feature of the bitstream. Due to a buffer being used by the device the last
frame written to the device is a padding frame to facilitate the writing of the last data
to the actual device configuration memory.

Replacing the bits of a certain CLB therefore becomes equivalent to replacing certain
lines in the textual representation of the bit file. Addition or subtraction of bits from the
bitstream for a certain CLB means adding or subtracting these bits to or from a few lines
of the text file. For the convenience of not doing these manipulations manually there
are the addstr.pl, substr.pl and repstr.pl programs for adding, subtracting and replacing
bits within a bitstream. They take the textual representation of a bitstream and a list
of address and row numbers of the frame data to which the manipulation is applied.
The tools detect the frame and row addresses at the beginning of the line and perform
the operation on the data in that line.They produce a bitstream identical to the input
bitstream, except for the manipulations that are applied to it.

3.4.4 Extracting Switch Settings/Building Wire Databases

With the information of the types of wires, the possible switch settings and the addresses
the wires have in fpga editor we can systematically generate pathways which contain a
CLB with only a single switch setting. For this we generate all pathways possible starting
from the same point. We limit the number of switches taken to a predetermined value.
A number of criteria are applied to this list, to form a list of pathways we are going to
synthesize. The pathways which will be investigated are chosen in such a way that only
CLBs are used, none of the other device structures are of interest. If it contains a switch
setting which is not in the wire database and only contains that single setting at the
CLB of interest, it is a candidate for further investigation. The pathways are translated
into a script for the fpga editor which opens a clean device configuration, routes the
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specific path and saves the configuration in an .ncd-file. The device is cleared and the
next path is generated and saved in a new configuration file. The resulting .ncd-files can
be translated in a .bit-file by the bitgen application. These .bit-files are translated into
a .txt-file by the anabit.pl tool. When generating the pathways, a separate information
file is also generated which contains the location of the CLB of interest and the switch
setting it represents. Using another script the bits for this specific switch setting at the
given location are extracted from the .txt-file and stored in a separate file containing
only the bit patterns of the lines which contain data, and a frame number. Curiously
almost all switch setting need only two bits to be set. We have determined 3264 possible
connections for the switch matrix, in this process we had to generate 7588 paths, generate
the associated .bit-files and analyze the data.
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Figure 3.4: Hexadecimal count of bit occurrence in the frames of a CLB

The distribution of bits over the frames is depicted in Figure 3.4. It can be clearly
seen that the bits in certain frames are used more often then others. These bits are used
for wires which can be connected up to more position than other wires.

With this wire database, the knowledge of the switch settings, and pathways the
wires can take, we have built a tool chain that facilitates the manipulation of bitstreams.
As the tools are meant for an academic environment, the bitstreams are translated to a
format better suited for viewing and manual manipulation. The tools can handle this
text-based readout after which the bitstream is translated back into a binary format that
can be used to program the device.
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3.5 Building Bit-Manipulation Tools

The snippets of bitstream, stored in the wire database, are represented in a similar
format as the human readable output of the anabit.pl tool. Adding a new signal path to
the bitstream is the equivalent of prefixing the appropriate address for frame and row to
the lines in the wire database and use the tools to add the bits to an existing bitstream.
Similarly, the wire database can be searched for the bits encountered in the bitstream,
thereby extracting the switch settings used for a signal path. With these switch settings
the routing of a signal in the current configuration can be retraced. We have constructed
programs that extract switch settings and can backtrack these settings to deduce a wire
list.

The dumpswitch.pl program takes the text representation of the .bit-file and matches
each switch configuration with the database. The program takes the first bit out of a list
containing the switch configuration and searches the database to find all switch settings
which contain this bit. It determines the setting matching the maximum number of
bits. These bits are taken out of the list and it searches for other switch settings in the
remaining bits. The output is the frame and row of the switch, and the switch settings.

The dumpwire.pl does the same internally, but also backtracks the switch-settings to
to the root node, starting from a random switch. It then forwardtracks all the switches
in the wire and removes all of them from the list of switch settings, and repeats this
process until all switch settings have been moved to the wire list. The wires are printed
in a random order. Each line first contains the root node and the destination nodes,
followed by the switches used in the pathway, traversed in a top-down manner. The
addresses of the switches are now X-Y locations, and we have developed programs which
can translate these setting back to the bits needed to configure them. We also have a
program that can translate the switch settings back to a fpga editor script which selects
the wires involved. This enables us to generate bitstreams and check them against the
same manipulations done in the fpga editor program to prove them correct.

3.5.1 Generating Routing

short wires

long wires

chosen route

conflicting route

Figure 3.5: A simple implementation for routing 2 points

With the the information gathered we can also route a signal between two points. It is
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fairly cumbersome to do routing by hand as is the case with the fpga editor tool. We have
developed a simple implementation of a router which is able to generate a path between
two points. The employed algorithm as depicted in Figure 3.5 searches for all possible
routes between the two points. As this is incredibly inefficient, the search space has
been limited. We differentiate between short lines connecting only to neighboring CLBs
and longer lines connecting CLBs spaced 2 or 6 positions apart from another. For short
distances we only search the short lines in the surrounding area. For larger distances we
only allow usage of short wires near the points we want to route between. The search
space for long lines is restricted to the rectangular area between the points, excluding
the area in the middle. We also employ a restriction on the number of switches used
relative to the distance traveled from the source and we have an absolute maximum to
the number of switches. The paths generated are steel square shaped. The parameters
can be tweaked if no suitable route has been found. The resulting router is far from
optimal and very slow, but as building good routers is in a field of its own, for now we
are not interested in improving it.

The input of the router is a wire list, containing the root and destinations of the net.
It also takes an existing device configuration in text representation. It first maps the
wires in the existing configuration and only routes the wiring that is not present already.
If the generated routes meet an existing wire that has the same root, the route up till
that connection is removed from the list. Because the routes are sorted to length these
will automatically be preferred as they are the shortest. Routes that encounter switch
settings with a different root are removed all together. The first item of each of the lists
of routed nets are tested for conflicts. If these occur, the next in line is selected for the
route causing the most conflicts. This is repeated until a suitable combination is found
or a threshold is met, in which case the routing has failed. The output is a list with the
switch settings of each wire per line. This can be translated to a bit representation or a
fpga editor script.

3.6 Advanced Tools

These tools would be enough to combine various modules by hand. From existing con-
figuration files, the slice configuration data can be cut and paste. The wiring can be
extracted and repositioned by replacing it at the correct location. New routes can be
generated using the router. Of course this is a cumbersome method, and has only been
done to test the methodology for correctness and feasibility. All work done up to this
point was the basis for the ProRISC2006 publication. There was a need to develop tools
to automate this process. For isolating the various modules from an existing design we
have developed a tool that takes a configuration text file and the region the module re-
sides in. It extracts just the configuration data of the module and a list of nodes through
which it communicates externally. A placement tools relocates the configuration data to
another location on the chip. It performs all the necessary checks to test if placement
is possible. An unrouting tool takes a device configuration and a netlist containing the
source and destination(s) of the routes that have to be removed. This can be a subset
of the destinations a particular net has, it only produces a list of switch settings which
have to be removed for those particular pathways. Finally a tool has been build that
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combines all operations. It takes a configuration description accepting multiple instances
of various modules at a user specified location. It takes a netlist and performs all the
necessary operations for placing and routing. If a modification is made to the configu-
ration description it rebuilds the bitstreams, removing the old configuration and placing
the new. It calculates only the differences and produces a bitstream that does partial
configuration.

3.6.1 Hardware Core Isolation

It is observed that all bits for configuring the routing are positioned from the 3rd frame
on in the 22 frames for a column of CLBs. This indicates that the first three frames
are used for configuring the slices. This data is treated as-is, it contains the hardware
description. We want to isolate a portion of the configuration data, essentially preparing
it for use as a macro which can be placed anywhere in the device. For this we need to
designate the area the hardware resides in. The ISE software allows for assigning an
area for a specific piece of hardware with the floor planner. All we need to extract the
module are the coordinates in which the hardware resides. In this area we can identify
the CLBs that contain hardware, the internal wiring, the incoming and outgoing signals
and wires which just pass through the area. Isolating the hardware encompasses the
discrimination of these wires, detecting the actual area hardware resides in (as it can
be smaller than the actual designated area), and removing all the unwanted elements.
As the internal wiring can be larger than the area the hardware resides in, and the ISE
software does not allow for limiting the area of this wiring, we also have to determine
the area in which these are placed. This has been accomplished by an extra addition
to the wire-tracing algorithm. Not only the root of each switch node is determined, but
also a list of destinations is attached to the switch node. The combination of root and
destinations is matched to criteria to determine if a switch-node is part of an external
network or part of the internal wiring.

A windowed bitstream is created based on the area in which hardware has been
detected. This bitstream is empty, except for this area, which is copied from the original
bitstream. Subtracted from this bitstream are wires which are just passing through,
wires that have a root inside the area, but only destinations outside the area, and wires
which have a root outside of the area. To this bitstream, we do have to add wires have
both root and destination inside of the designated area, but which partially traverse a
pathway outside of it. The outgoing signal wires need some special attention, as they
can also be for internal use. The resulting data is a portion of reconfiguration data,
containing the hardware and internal wiring only. All wires which are only passing
through are removed, as well as the incoming and out-going signal wires.

The isolate.pl program takes a text representation of a bitstream and an area in which
the hardware core resides, and produces a file containing the inputs and output positions
of the signals, and the configuration data within the designated area. As an input signal
can be used at multiple locations these are placed on the same line, for later routing. The
same program can be used to remove an existing core from the device configuration. For
this, the hardware core which has to be removed is isolated. These are subtracted from
the existing device configuration, still leaving the routing of the signals to and from the
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module configured. These have to be identified and removed separately. It is be better
to store the data of the placed hardware core for easy subtraction afterwards, instead of
deducing it from the bitstream every time.

3.6.2 Unrouting

As a derivative of the isolation tool, an unrouting tool was also developed. It takes a text
representation of a configuration file and a netlist of routes that have to be removed.
It determines the existing configuration and produces a list of wires which meet the
requirements of the removal netlist. These wires can be translated into bits which can
be subtracted from the bitstream.

3.6.3 Hardware Core Placement

Placement of hardware is simply repositioning the data to the appropriate location. The
problem resides in the heterogeneous character of the Virtex-II Pro. Every six columns of
CLBs are interrupted by a Column of BlockRAMs and multipliers. This means that we
have to check that no CLB data in the hardware core are positioned at the position of a
BlockRAM and vice versa. Likewise a BlockRAM/multiplier has an equivalent height of
4 CLBs. If a BlockRAM is used in the design vertical shifts are limited by multiples of 4
and horizontal shifts are limited to multiples of 7. For the wiring, checks have to be made
testing if the additional wiring does not conflict with the current device configuration.
The implementation of the place.pl program takes an existing device configuration, an
isolated module and the X-Y location of the bottom left corner for the new location of
the module. As the module is only isolated, and is not normalized to a standard location,
the hardware and wiring area have to be redetermined using the same techniques as in
hardware core isolation. The repositioned data is stored in exactly the same format as an
isolated module, all frame-addresses and signal positions are skewed to the appropriate
location. In this manner we can reuse the relocated core as an input-file. It is up to
the user to determine problems with distributed RAM and BlockRAM corruption when
doing partial reconfiguration. No checks are made as this will not pose a problem for
full-device configuration, only in runtime partial reconfiguration.

3.7 Device Composition Description

To fully automate the placement and exchange of hardware cores, a tool has been devel-
oped that uses the previous described tools to do just that. A file format has been spec-
ified in which the user can assign multiple instances of various modules to user-specified
locations. It also has a netlist describing the signals between the various modules. A
default configuration bitstream and signal positions are used as a base configuration.
This is needed to arrange for communication with the world outside of the clique of
modules, for instance to set the drivers of the various IO pins. Eventually this could be
a full configuration of the Molen platform. The arrangement of cores, the netlist and
base configuration bitstream determine the composition of the full device configuration.
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The build.pl scripts takes this composition file and uses a cache directory to store its
data. If the cache is empty, a full device configuration will be generated. All modules
are relocated and stored separately in the cache directory. The list of input and output
signals are related to the netlist in the composition file. From this, a netlist for the router
is generated. In a second step, all the modules are combined with the base configuration
bitstream to form a configuration with all the modules placed. The router is used to
generate the connectivity between the modules. After adding the configuration bits
produced during routing to the bitstream, the generation is finished. The composition
file is stored in the cache directory for later use. When an alteration is made to the
composition file, this can be compared with the stored version. The bitstreams of the
modules that have to be removed from the composition file can be removed from the
full configuration file by subtracting the cached versions of them from the bitstream.
New modules can be stored in temporary files. A new netlist is generated from the new
composition. This is compared with the old netlist which was previously stored. From
this a removal list is derived, with which the switch settings that have to be removed
are extracted by the unroute tool. These bits are also subtracted from the current
configuration file. This forms an intermediate configuration with all the hardware and
wiring no longer used in the new composition removed. This is stored for later use.

The new modules are placed on this intermediate configuration file, and the router
takes this and the netlist to produce the new connectivity between modules. As the router
only routes pathways which are not yet in the existing configuration, only the new routes
are generated. These are added to the bitstream to form the final new configuration.
In the cache directory we now have the old, intermediate and new configuration. To
prevent damage to the device, the partial reconfiguration bitstream between the old
configuration and the intermediate configuration is produced. The same is done for the
intermediate and the new configuration. These are combined to form a single partial
reconfiguration file, removing the old and configuring the new modules. For now we
will take this conservative approach, but it might be possible to reduce the size of the
bitstream for this process. The result of all the work done has been the basis of the
FPL2007 paper.

3.8 Partial Reconfiguration

The partial.pl program takes 2 full device configuration bitstreams as input and deter-
mines the differences between their frames. It produces an output which only reconfigures
the frames which are different. This is the essence of partial reconfiguration. It is up
to the user to produce the bitstreams, there is no consideration for conflicting switch
settings which may occur during reconfiguration. The bitgen program can do the same
for a .ncd- and a .bit-file, but not two .bit-files. It does however employ a bitstream
compression technique in which it combines frames with the same content into a single
write operation. We have not implemented this feature. A large portion of the partial
reconfiguration data is padding, which has to do with the sequence of events for writing
data to random frames. This starts with writing the starting address to the frame ad-
dress register, followed by the frame data for the consecutive frames, and ending with
a padding frame to write the last frame residing in the frame buffer to the correct lo-
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cation. As the frames containing differences are mostly non consecutive, this involves
using a lot of padding frames. The compression techniques writing the same frame to
multiple locations can therefore save a lot of data, by not only reducing the amount of
data written but also the number padding frames.

3.9 Verification of Data and Methodology

During the whole process, proof of correctness is difficult. Some of the data, as for
instance the possible switch settings, was copied down manually. This is a process that
is prone to error. As the scripting facilities of the Xilinx tools where used for gathering
data, an error or lack of output while processing these scripts was an indication that
there was an error in the data already obtained. Because we can translate the generated
pathways to bits in the bitstream or to a script for fpga editor, we can test if these
produce identical bitstreams. As long as both methods produce the same results we can
be confident that our bitstream is correct. The data was also tested for duplicates and
discrepancies where investigated and corrected. An interesting result was obtained with
the use of long lines, as these sometimes take 3 configuration bits and sometimes 2. It
is suspected that this has to do with a driver that has to be enabled for driving the long
line, but as the use of long lines has been abandoned for this project this has not been
investigated. Testing if a pathway can be taken involves inspecting if a wire is already
driven from another source. As there is no specific knowledge of the internal structures
of the FPGA we can only derive some conclusions from the bitstream itself. Inspecting
the bits for configuring the switch matrix reveals that each bit only has involvement with
driving a specific wire. The bit combinations themselves select a source. Because of this
it is unlikely that a switch setting for driving one wire will have a conflicting influence on
the switch settings for another wire, they seem to be independent. Therefore we only test
for driving conflicts on the basis of the wire driven. Fully testing interdependence would
involve generating over five million scripts for fpga editor, which would take too much
time. This test is used for determining if a configuration does not cause any electrical
conflicts, and is used in various of the tools but also in a special erc.pl program, to test
if a configuration file can cause damage to the device.

3.10 Conclusion

The pathways of all 435 wires connecting to a CLB switch-matrix have been determined
and their regularity has been observed. As far as could be determined through inspection
in fpga editor, there are 3264 connections possible between these wires. Each of the 160
outgoing signals can be connected with between 4 to 37 incoming signals. Through
interpolation and ad-hoc scripting we have determined the addresses of 1,005,054 wires
in fpga editor, although it has been rather labor intensive and only covers the wires
connecting the CLBs and BlockRAM interconnects. The bitstream was decomposed in
commands and frames. The bits associated with individual CLBs have been determined,
to be able to relate specific switch settings to specific parts of the bitstream. We have
determined the CLB bit settings to all 3264 possible connections for the switch matrix,
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in this process we had to generate 7588 paths, generate the associated .bit-files and
analyze the data. It is observed that all bits for configuring the routing are positioned
from the 4th frame on in the 22 frames for a column of CLBs This indicates that the
first three frames are used for configuring the slices. It is also observed that almost all
switch settings connecting one type of wire to another involve setting only two bits in the
bitstream. Tools have been built to manipulate bits in the bitstream, to determine switch
settings throughout the bitstream and to traverse wires within the bitstream to produce
a wire list. A primitive router has been created to take a netlist and produce the wiring
needed, as manual routing is hardly possible. To unroute full and parts of a net, an
unrouting tool has been created that takes a netlist and produces a bitstream with these
nets (or just the parts connecting to specific points) removed. For isolating a hardware
core from the bitstream a tool has been created that, provided with the area in which
the hardware core resides, determines the communication wires with outside structure,
removes any unnecessary wiring, and produces a windowed bitstream containing just
the hardware core and its internal wiring. This is combined with the information of
the LUTs to which external signals have to be routed to. A placement tool has been
created that performs checks to make sure a hardware core is allowed to be placed at
the desired location, not conflicting with existing configuration data or device resources,
and produces a bitstream with the hardware core added. For partial reconfiguration we
have produced a tool that takes two bitstreams, and produces a partial reconfiguration
bitstream that reconfigures the frames which differ between the two input bitstream. All
these tools are combined in a framework that takes a base bitstream for the fixed parts
of the device configuration, a list of module instances and their location, and a netlist
on how to connect them. It produces a full bitstream configuring the device for the first
time. When the framework is rerun with a change to the composition it will detect the
changes and produce a partial bitstream, dynamically reconfiguring only the parts that
have changed. The work presented has resulted in a publication for ProRISC2006 and
FPL2007.
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In this chapter we present the tests and results to prove that the methods we developed
are feasible, and perform as expected. We start out by testing out partial reconfiguration
of routing using the difference based technique of XAPP290. Analyzing the bitstream
for partial reconfiguration, we tested if partial reconfiguration bitstreams are shifted into
the configuration on a frame by frame basis, or instantaneously after all data has been
clocked in. With the data gathered and part of the tools built, we had to test if we could
extract routing pathways and replace them by alternative routes on a bitstream level.
Next, we test the feasibility of placing and routing a AND gate at an arbitrary position
using both our own methods, and an identical approach in fpga editor to compare the
resulting bitstreams. Using manual manipulation we then replace a AND gate with a
XOR gate at a different location, after which we reproduce the same results using an
automated framework.

4.1 Testing Feasibility

When starting this project, it first had to be tested if it where possible to reroute
signals using difference-based partial reconfiguration. A simple test was devised, routing
two switches to two LEDs on the XUP board. The routing was done manually using
the fpga editor program. A second instance was made using almost exactly the same
routing, but reversing the LED connectivity. This involved a minor change to only a
single switch box. Using the partial reconfiguration option of the bitgen program a
transition of one configuration to the other was tested, which worked. This simple test
encouraged further research into this method of partial reconfiguration. The two routes
are depicted in Figure 4.1.

4.2 Testing Runtime Reconfiguration for Building Partial
Bitstreams

Later on during the design process, we used the previously described bitstreams for
partial reconfiguration to test if these changes are applied during device configuration,
or if they are postponed until the last command of the bitstream. Using the anabit.pl
program a dump was made of the reconfiguration bitstreams from route1 to route2 and
vice versa. These bitstreams where alternated multiple times, intertwined with large
fields of NOPs. In this manner we created a bitstream that would either alternate the
settings a few times a second if the partial reconfiguration is applied during the processing
of the bitstream, or just a single transition or none at all if it is applied after the last
frame was configured. Testing this theory proved that in partial reconfiguration frames
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Figure 4.1: Routing two switches to two LEDs and reversing the connections

are applied immediately after they have been loaded into the device configuration, as
the LEDs where alternating during the device configuration. This is a good result, as we
can combine operations to remove old configurations and place new configurations using
a single partial bitstream, an advantage over using two separate streams.

4.3 Comparing Bitstreams of Routes with fpga editor

The previous tests have been done by manual routing. To test the switch-position extrac-
tion, a dump was made or the wiring in the previous bitstream. The wire configuration
of route 1 was subtracted from its bitstream and the wire configuration extracted from
route 2 was added. This should result in an identical bitstream to that of route 2, as
was the case. Proving we can transpose one configuration to another by just adding and
subtracting the bits of wire pathways. This has been done on both a bitstream and an
fpga editor level, although this required some minor manual manipulations as we did not
have all addresses of the wires in the I/O interconnect (IOI). This also provided insight
in the composition of the switch matrix in the IOI and BlockRAM interconnect (BRI).
They seem to be connected almost identically to the switch matrix for CLBs allowing
for the assumption that they can be configured as if they where CLBs, simplifying the
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routing problem. The original plan was to use a default configuration, which makes the
external signals available through wiring which we can access, now we just need the CLB
equivalent of the lines which holds the signals in the IOI area. As this specific switch
matrix has not been elaborately studied we will not make any specific claims to this.
The same holds for the BlockRAM interconnect (BRI) switches. Because we only use
these for pass-through routing, not connecting directly to the resource, they too will be
treated equally to a CLB switch matrix. The plan was also to program the router not
to use these switches at all, in the end this was not necessary.

4.4 Simple Example (3 Input AND) for Verification

As a first example of placing a module we use a 3-input AND gate, which can be mapped
to a single LUT. The ISE tools are used to assign the hardware to a specific LUT and
generate the appropriate .ncd and configuration files. Using the .bit-file we can extract
the wiring and determine the sources and destinations of the wires. The resulting netlist
is fed into the router and the switch settings are produced as an output. These switch
settings can be translated in bits or can be translated to a script file for the fpga editor
to do the same thing with the dump2scr.pl tool. The manipulations on the bitstream
encompassed subtracting the existing pathways and adding the new pathways. The
AND-gate remained in place. Figure 4.2 depicts the routes as generated by ISE and by
our own router. The resulting .bit-files are essentially the same and produce the same
result.

4.5 Partial Reconfiguration, Replacing the AND With An

XOR Gate

The easiest way to replace the 3 input AND gate with a 3 input XOR gate would
be to only replace the content of the lookup table. Because we are implementing the
reconfiguration of entire cores, we have to develop a method that has to be a little more
sophisticated. Similar to the 3 input AND gate a 3-input XOR-gate has been generated
using the ISE tools. We have developed tools to isolate the modules from the rest of
the bitstream and to generate a bitstream from these files which places them at a new
location. The isolated AND and XOR-gates are stored as a separate hardware core using
the isolate.pl tool. We then place the XOR gate at a different location from the AND
gate using the placement tool. We can simulate these manipulation with the fpga editor
tool by placing it in ”read/write” mode and dragging the slice content to the appropriate
location. We use our routing tool to generate the new pathways and we generate the
new .bit-file and the script for implementing the routing in the fpga editor. The resulting
bitstreams are compared to see if they are equal. We can test this new configuration
with the XOR-gate separately, they both function the same

Next we can have the bitgen tool produce a partial reconfiguration bitstream to
substitute the 3-input AND gate with the 3-input XOR gate. Because this takes a
.ncd- and a .bit-file, we could not be able to use this tool in our own tool chain, as we
only generate .bit-files. We have therefore developed a program that produces partial
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bitstreams. The partial reconfiguration files produced by partial.pl are not identical to
the ones produced by the bitgen tool. The latter user a bitstream compression technique.
The results of applying the partial reconfiguration bitstreams to a device are equal. The
pathways generated are depicted in Figure 4.2.

Figure 4.2: AND-Routing by ISE (left), our router (middle) and XOR-routing (right)

Because some manipulations have to be done manually, and there is a desire to
automate as much as possible, as a last step a fully automated build.pl program has been
developed. No comparison is done against the fpga editor results, just a functionality
test.

4.6 Automating the Process, Using a Composition File

The ultimate goal of this research is to develop a better technique to do partial recon-
figuration. This not only involves showing the possibilities but also to implement them
in a reasonably usable fashion. Up till now some steps needed manual manipulations
to produce the proper bitstreams. As a last step we automate the bitstream generation
process.

As a starting point for this process the previous example is used. This involves having
a pre-generated ‘empty’ configuration bitstream, in this case configuring the IOBs to take
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.cache=./cache

.mods=./mods

.basis_strm=./basis_strm.txt

.basis_nodes=./basis_nodes.txt

.reconfigstrm=./update.txt

.define 3and.txt and1(46,16)

.define 3xor.txt xor1(47,16)

* in in in out

and1 sw0 sw1 sw2 led0

xor1 sw0 sw1 sw2 -

Figure 4.3: Device composition input file

the signals from the switches and drive the LEDs properly. There has to be a file to
indicate the location or pads of these signals on the chip. Default modules are created
using the isolate.pl tool for the 3-input AND and XOR gates. These already contain the
information for the signal locations. Finally we need a file that describes how all these
parts fit together. The composition file, depicted in Figure 4.3, can change some default
values for:

• the cache directory

• the directory in which the modules reside

• the default configuration stream in which the modules are placed

• the file describing the signals involved with communication for this default config-
uration

• a file name for the output stream

The actual composition is described in the definition of instances for a specific module,
with a user specified location, and a netlist for these instances. The signal names are
free to choose. There is a special token: ‘-’, for describing an unconnected signal.

The first time the build script is run it produces a full configuration bitstream. The
device can be programmed using this bitstream and the impact program. If a modifi-
cation is done to the composition file, a partial reconfiguration bitstream is calculated,
resulting in a modification to the new configuration. A test has been conducted using
two different types of modules, the 3-input AND and XOR gates used earlier. As a series
of tests, the 3-input AND is placed at a random location, it is replaced by a XOR at
another location. The AND port is then placed again at the same location, but only
the incoming signals are routed. After this, the LED is connected to the output of the
3-input AND. Finally the output of the AND function is used as an input to one of the
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XOR functions and the output of the XOR is re-attached to the LED. All these transi-
tions, while taking a lot of time for calculating the routing, are functional as expected.
This concludes our tests.

Figure 4.4: logic functions of 3 input AND, XOR and a combination
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4.7 Conclusion

Inspecting our results we can conclude that our methods are performing as expected.
The data we have gathered, and the tools produced are complete enough to perform
the operations necessary for removing, placement, routing and unrouting of structures
on an FPGA. This can be done partially during runtime. The frames are immediately
shifted into configuration memory as the stream is processed, so care has to be taken
in preventing damage to the device by first removing existing hardware configurations
and routing before configuring new ones. The automatic framework producing these
bitstreams takes care of the order, combining two partial bitstreams which first remove
existing structures and then place and route a new ones.
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Conclusions and

Recommendations 5
5.1 Conclusions

In Chapter 2, we have shown that all current methods for partial reconfiguration rely on
fixed interfaces between the modules and the routing paths, in the form of a bus macro
or lookup table based primitives. We propose a method which does true direct switched
routing of the signals. This provides more flexibility, as there are no predetermined
routing paths or dedicated wires. It makes it possible to route through existing structures
even though they do not have specifically reserved space for this. The lack of using bus
macros or LUTs saves resources and reduces delays. Furthermore, the number of signals
that can be connected is limited only by the available resources of the FPGA itself. We do
2d placement of arbitrarily sized and shaped modules. We do not reserve specific areas for
the modules. As long as there are no conflicts with existing structures and configurations,
a module can be placed and connected anywhere on chip. As all operations are done on
a bitstream level, not using 3rd party tools, they can be implemented on the PowerPC
or Microblaze. We make use of stored configuration data for the module and have a
database of configuration data for the switch settings, used for routing the signals. Wires
crossing boundaries in to other modules are not a problem, as long as they do not directly
conflict with the wiring of the other module. Transients cased by reconfiguration have
to be resolved in the modules themselves. Adding a logic gate, disabling communication
during reconfiguration can be enough.

In Chapter 3, the pathways of all 435 wires connecting to a CLB switch-matrix have
been determined and their regularity has been observed. As far as could be determined
through inspection in fpga editor, there are 3264 connections possible between these
wires. Each of the 160 outgoing signals can be connected with between 4 to 37 incoming
signals. Through interpolation and ad-hoc scripting we have determined the addresses
of 1,005,054 wires in fpga editor, although it has been rather labor intensive and only
covers the wires connecting the CLBs and BlockRAM interconnects. The bitstream was
decomposed in commands and frames. The bits associated with individual CLBs have
been determined, to be able to relate specific switch settings to specific parts of the
bitstream. We have determined the CLB bit settings to all 3264 possible connections for
the switch matrix, in this process we had to generate 7588 paths, generate the associated
.bit-files and analyze the data. It is observed that all bits for configuring the routing are
positioned from the 4th frame on in the 22 frames for a column of CLBs. This indicates
that the first three frames are used for configuring the slices. It is also observed that
almost all switch settings connecting one type of wire to another involve setting only
two bits in the bitstream. Tools have been built to manipulate bits in the bitstream,
to determine switch settings throughout the bitstream and to traverse wires within the
bitstream to produce a wire list. A primitive router has been created to take a netlist
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and produce the wiring needed, as manual routing is hardly possible. To unroute full
and parts of a net, an unrouting tool has been created that takes a netlist and produces
a bitstream with these nets (or just the parts connecting to specific points) removed. For
isolating a hardware core from the bitstream a tool has been created that, provided with
the area in which the hardware core resides, determines the communication wires with
outside structure, removes any unnecessary wiring, and produces a windowed bitstream
containing just the hardware core and its internal wiring. This is combined with the
information of the LUTs to which external signals have to be routed to. A placement
tool has been created that performs checks to make sure a hardware core is allowed
to be placed at the desired location, not conflicting with existing configuration data or
device resources, and produces a bitstream with the hardware core added. For partial
reconfiguration we have produced a tool that takes two bitstreams, and produces a partial
reconfiguration bitstream that reconfigures the frames which differ between the two input
bitstream. All these tools are combined in a framework that takes a base bitstream for
the fixed parts of the device configuration, a list of module instances and their location,
and a netlist on how to connect them. It produces a full bitstream configuring the
device for the first time. When the framework is rerun with a change to the composition
it will detect the changes and produce a partial bitstream, dynamically reconfiguring
only the parts that have changed. The work presented has resulted in a publication for
ProRISC2006 and FPL2007.

In Chapter 4, inspecting our results we can conclude that our methods are performing
as expected. The data we have gathered, and the tools produced are complete enough
to perform the operations necessary for removing, placement, routing and unrouting of
structures on an FPGA. This can be done partially during runtime. The frames are
immediately shifted into configuration memory as the stream is processed, so care has to
be taken in preventing damage to the device by first removing existing hardware config-
urations and routing before configuring new ones. The automatic framework producing
these bitstreams takes care of the order, combining two partial bitstreams which first
remove existing structures and then place and route a new ones.

5.2 Main Conclusions

• Our methods showed that we can remove a portion of the hardware configuration
on an Virtex-II Pro FPGA and replace it by another.

• This involves the removal of the configuration data and the routing of the old
hardware core, after which a new one is placed and connected.

• These manipulations are done at a bitstream level without the use of the Xilinx
tools.

• We have tested our methods with simplistic hardware to show that it works on a
functional level.

• We have developed tools to automate the process for developing the bitstreams
used in runtime partial reconfiguration.
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• The advantage of our solution is we no longer reserve a specific area for the modules,
nor do we make use of reserved routing paths. This means we can truly arbitrarily
place and connect any module to any other module.

• We do not make use of bus macros

• We do not place any restriction on the size and shape of the modules, although
they do have to fit on to the device without causing conflicts with the existing
configuration.

• As long as the router can generate a pathway, routing can go through existing
structures.

• As long as existing pathways do not conflict with the routing within a new module,
modules can be placed on top of existing routing.

• We can do 2d placement, enabling higher densities [27]. The Virtex-II Pro is
however crippled in this department and it can be argued that doing 2d placement
is not a suitable solution for this device family. It is better to concentrate efforts
on the Virtex 4 family as it has region based partial reconfiguration, better suited
for the purpose.

Although the developed techniques are excellent for use in on-line bitstream gen-
eration, the Achilles heel is in the computation required for doing routing. We
propose a number of steps which can be taken in the future to further develop and
implement this technique.

5.3 Future Work

5.3.1 Bitstream Generation in Hardware

We propose to add a simple hardware implementation to the reconfiguration interface
that can produce the desired reconfiguration stream independent of the processor. This
will ensure that the reconfiguration process can run simultaneously with the software,
hiding reconfiguration delay from the program. The Virtex-II Pro has an internal in-
terface for reconfiguration: the ICAP interface. It is a derivative of the external Se-
lectMAP interface. The 8 bit interface accepts reconfiguration bitstreams consisting of
synchronization, commands, data and padding. When constructing the reconfiguration
bitstreams, it is important to use padding frames, but these could be easily generated
instead of stored. The hardware is to be kept simple at first, serving more as a cache for
the reconfiguration bitstream. The technology can later be extended with an instruc-
tion set that can do more complex manipulations, exporting the actual placement of
hardware to the ‘reconfiguration processor’, instead of generating these reconfiguration
bitstreams off-line. For further development, the reconfiguration processor could use a
standard dataset. The synthesized module data could be mapped to this standard set.
The mapped data can then be translated to device specific implementations using the
standard set of data. This enables the loading of the module onto devices of different
families, although this might come at the price of larger and slower modules, just as full
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custom chips are smaller and faster then their sea-of-gates counterpart. If the critical
path is mapped to a device specific implementation, and the less critical components
are mapped onto a standard dataset, these problems may be overcome. Using standard
building blocks, it may also be possible to modify the shape of a module without much
penalty, as the critical paths can be ’fixed’ and there is a relative degree of freedom to
the placement of the non-critical components.

Oliver and Makell [24] aim to create a low overhead dynamic execution environment.
They propose a hardware description based on what they call an object-oriented design.
The objects in question are small modules, performing small functions. The hardware
is described in terms of these functions. Combining functions entails placing them after
each other in such a manner that the interfaces connect. The practicality remains to be
seen as the hardware has to be mapped onto these standard blocks and it seems unlikely
that they will fit neatly in each other. The interfaces are in a fixed position, which
already suggests limited freedom in the placement of functional blocks. The techniques
developed in this thesis can overcome these problems. Their proposed functional blocks
are replacements of software functions. This is intended as a software to hardware
translation, but if the modules are made smaller, it will probably be more efficient to
map to HDL.

5.3.2 Reduction of Reconfiguration Time

None of our efforts have been in reducing the size of the partial reconfiguration bit-
streams. There has been some related work on this matter, some of it can not be applied
to the Virtex-II Pro as it would involve changes to the interface, but we can make use
of, and expand on these methods.

Malik and Diessel [21] suggest the modification of the reconfiguration interface to take
the previous contents of the memory and reuse most of it when partially reconfiguring the
device. This greatly reduces the reconfiguration data, and the current configuration can
be read back through the ICAP interface, but if we have to modify the interface anyway
it makes sense to suggest more modifications for the benefit of partial reconfiguration
which would not add to much complexity. Malik and Diessel [22] propose compressing
the bitstream with Golomb encoding or run-length encoding. As bitstreams are largely
composed of 0’s this is highly effective in reducing the amount of reconfiguration data.
Although it by no means accelerates device reconfiguration, as in practice decompressed
reconfiguration bitstream still needs to be offered to the normal interfaces. The proposed
architecture does reduce the reconfiguration time to within approximately 15%. It shows
that it is very profitable to compress bitstreams for any case. Stepien and Vasilko [26]
suggest making placement and routing algorithms aware of the columns based frames of
the FPGA instead of a uniform structure. This reduces the usage of the number of frames
up to 60%, it does however increase timing with 8-20%. This is mainly important for
frame based organization of the FPGAs configuration memory. The previous mentioned
‘standard’ dataset could also be implemented in hardware, for instance by adding a
single frame which configures these building blocks for the entire CLB. This can involve
both standard slice configurations as well as standard connectivity configurations. The
connectivity configurations can involve standard bus structures to quickly reconfigure
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chip-wide connections as well as local connectivity. This could involve assigning signals
to default wires, much like bus macros are meant to affix a signal to a know location,
but without making use of LUTs. As an addition or completely separate from this,
the configuration bits can be sorted to default pathways. This can reduce the number
of frames which have to be reconfigured. It can be looked upon as a combination of
coarse and fine grain reconfiguration. The only way to properly implement this is if the
placement and routing algorithms are adaptable, which probably involves building an
proper version of them.

5.3.3 Routing

For partial reconfiguration it can be advantageous to have default routing structures
preconfigured. With proper placement and a router that can make use of these structures,
this could reduce the number of reconfiguration frames. It can even be possible that a
good implementation only requires placement of a module to connect it up to a standard
bus. The effects of transients on the routing during partial reconfiguration is unexplored.
If communication through a signal pathway can be temporarily stalled this could open
up the possibility of rerouting these structures while in use.

The current router implementation is not that good. As it was not our intention to
build a fully featured, efficient router this will do for now. It is a good idea to make the
software work with VPR [2], an academic router based on simulated annealing. This will
undoubtedly be a faster implementation. Due to the way VPR is implemented, a change
of a single wire will result in a completely different structure. The Xilinx router behaves
in the same way, and may be based on VPR. A different behavior in which the synthesis
is more consistent in the output it produces has its advantages. It can be made aware of
previous and next configurations, it could be made aware of already existing, and future
structures and even damaged portions in the FPGA matrix and route around these.

5.3.4 Network on Chip

The methods developed for this thesis are ideal for direct circuit-switched networks on
chip. The development of standard routing buses could accelerate the routing problem
to a level that is acceptable for on-line routing. It is up to the module designers to
cope with the transients which are present during the reconfiguration of the new bus-
structures. Logic circuit-switched networks can be made to cope with this phenomenon
by default. Signals indicating a reconfiguration in process can be partially reconfigured
themselves, thereby giving the ability to guide reconfiguration process through use of
the bitstream only. Packet switched networks can be implemented as a combination of
a circuit-switched network and a router module. None of these networks are mutually
exclusive and there might be a way to combine them. Transitions between the various
forms of networks may become a challenge. It would be possible, based on profiling
or statistics gathered during runtime, to adjust the bus-width to cope with changing
network traffic.
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5.3.5 System Integration

The interaction between hardware and software has been described by the Molen plat-
form. The device reconfiguration has been conceived as a single instruction for the
processor. No specific implementation of the set instruction has been developed yet. As
there are many mechanisms involved in reconfiguration we would like to suggest a com-
plex interaction between the operating system and a caching reconfiguration processor.
Decisions on where to place modules and the routing to connect them are best left to
the operating system, much like memory management. These operations are computa-
tionally intensive and better left to the main processor, possibly augmented by hardware
acceleration. The generation of the specific bitstreams are better left to a reconfiguration
processor. This can also cache the various transitions so repetitive reconfiguration does
not require recalculation every time they occur. This system in itself can become very
complex, in the case of multi-core systems and multiple hardware core reconfigurations
are performed at the same time.
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I have started this project with the attitude that it is fin-
ished when I have something proper to show for my efforts.
It has therefore taken longer and involved a little more work.
This also has to do with the fact that this is research, not
an internship. Apart from that, I am easily distracted to
do other things, and was often asked to perform tasks which
where not related to my subject. The Xilinx tools proved to
be a total nightmare. Each system upgrade presented new
problems and I was constantly consulted on getting the USB-
interface and drivers up and running. This became so com-
monplace that the system administrator granted me root ac-
cess. The work has translated into a poster/paper for ProR-
ISC 2006, a as of yet unpublished article for the Maxwell and

a poster/publication for FPL 2007. Apart from this I’ve organised some social events,
namely a karting event and borrel middagen. For SARC and ICS I have set up small
and large teleconferencing systems used for paper-reviews. This included a streaming
web-cast with a web-cam and a separate stream for what was on the computer screen
and beamer. For the SAMOS conference I have set up and maintained a mailing list
of over 22.000 possible participants, over a third have been harvested by myself. This
included a script used for bulk-mailing the list. I was also involved in administrating the
group website, having set up the calendar function of the social pages and keeping the
internship pages up to date. I also sometimes helped with the occasional Linux prob-
lems people had. As a side project I’ve made an RF-ID transmitter, needed for another
project. Aside from involvement with the department, during this project I wanted get
my drivers license and I have spend a year on the governing board of O.J.V. de Koorn-
beurs as the secretary. I was determined to do these things before I graduated. As a
hobby I also participated in the UK championships and other Robotwars events with a
2 person team, competing with a feather and a heavy weight robot.


