
DWARV 2.0: A CoSy-based C-to-VHDL Hardware
Compiler

Razvan Nane∗, Vlad-Mihai Sima∗, Bryan Olivier†, Roel Meeuws∗, Yana Yankova∗ and Koen Bertels∗
∗Delft University of Technology

Email: 〈r.nane, v.m.sima, r.j.meeuws, y.d.yankova, k.l.m.bertels〉@tudelft.nl
†ACE Associated Compiler Experts bv

Email: bryan@ace.nl

Abstract—In the last decade, a considerable amount of effort
was spent on raising the implementation level of hardware
systems by automatically extracting the parallelism from input
applications and using tools to generate Hardware/Software co-
design solutions. However, the tools developed thus far either
focus on particular application domains or they impose severe
restrictions on the input language. In this paper, we present
the DWARV 2.0 compiler that accepts general C-code as input
and generates synthesizable VHDL for unrestricted application
domains. Dissimilar to previous hardware compilers, this imple-
mentation is based on CoSy compiler framework. This allowed us
to build a highly modular compiler in which standard or custom
optimizations can be easily integrated. Validation experiments
showed speed-ups of up to 4.41x when comparing against another
state of the art hardware compiler.

Keywords-DWARV; HW Compiler; FSM; C-to-VHDL;

I. INTRODUCTION

Even though hardware compilers which take as input a High
Level Language (HLL) and generate a Hardware Description
Language (HDL) are no longer seen as exotic technology,
they cannot yet be seen as a mature technology to the same
extent as e.g. software compilers. Hardware compilers are
especially used to develop application specific hardware where
for various application domains the computational intensive
part(s) are accelerated. They are a vital component of the
Hardware/Software (HW/SW) co-design effort needed when
FPGA based kernels are involved. In this paper, we specifically
look at FPGA based platforms where parts of the application
will stay on the General Purpose Processor (GPP) and other
parts will be transformed into Custom Computing Unit (CCU).
To perform fast Design Space Exploration (DSE), it is nec-
essary to evaluate the different mappings of the application,
with their corresponding HDL implementation, on the hard-
ware platform. To this purpose, hardware compilers allow the
designer to immediately obtain a hardware implementation and
skip the manual and iterative development cycle altogether.

However, current hardware compilers suffer from the lack
of generality in the sense that they support only a subset
of a HLL, for example no pointers or Floating Point (FP)
operations accepted. Even more, only a few allow the ap-
plication programmer to use other function calls inside the
kernel (i.e. unit) function. This leads to manual intervention to
transform the input code to a syntax accepted by the compiler,
which is both time consuming and error prone. These problems

are caused by the fact that hardware generators are typically
bound to one particular application domain or are implemented
in compiler frameworks that provide cumbersome ways of
generating and processing the Intermediate Representation
(IR) of the input code. Our contribution is threefold:

• Provide a redesign of the DWARV hardware compiler [2]
using the CoSy compiler framework [8] to increase the
coverage of the accepted C-language constructs.

• Provide a general template for describing external Int-
electual Property (IP) blocks, which can be searched and
used from an IP library to allow custom function calls.

• Validate and demonstrate the performance of the DWARV
2.0 compiler against another state of the art research com-
piler. We show kernel-wise performance improvements
up to 4.41x compared to LegUp compiler [3].

The rest of the paper is structured as follows. In Section II
we present an overview of existing HDL generators. Section
III gives details about the compiler tool-flow and the template
descriptor used for external IP blocks supporting custom
function calls. Section IV validates DWARV 2.0 by presenting
the comparison results, while Section V draws the conclusion.

II. PREVIOUS WORK

Plenty of research projects addressed the issues of auto-
mated HDL generation. The ROCCC project [4] aims at the
parallelization and acceleration of loops. Catapult-C [6] and
CtoS [7] are commercial high-level synthesis tools that take as
input ANSI C/C++ and SystemC inputs and generate register
transfer level (RTL) code. The optimizations set of the SPARK
[5] compiler is beneficial only for control-dominated code,
where they try to increase the instruction level parallelism. In
addition, the explicit specification of the available hardware
resources such as adders, multipliers, etc. is required. In
contrast to these compilers, DWARV 2.0 does not restrict the
application domain and it is able to generate hardware for both
streaming and control intensive applications. Furthermore, it
does not restrict the accepted input language. DWARV 2.0 al-
lows a large set of C constructs including pointers and memory
accesses. Finally, no additional user input is necessary.

Altium’s C to Hardware (CHC) [11], LegUp [3] and DWARV
2.0’s predecessor [2] are the compilers that resemble the
closest to DWARV 2.0. They are intended to compile anno-
tated functions that belong to the application’s computational



intensive parts in a HW/SW co-design environment (although
the latter can compile the complete application to hardware
as well). They are therefore intended to generate accelerators
for particular functions and not autonomous systems. This is
typical for Reconfigurable Computing (RC) Systems and the
same assumption is true for DWARV 2.0 as well. However,
there are also two major differences, the IP reuse and the more
robust underlying framework. The first feature allows custom
function calls from the HLL code to be mapped to external
IP blocks provided they are available in external IP libraries.
The second feature enables seamless integration of standard
or custom optimization passes.

III. DWARV 2.0

In this section, we describe the DWARV 2.0 compiler by
highlighting the improved aspects comparing with the previous
version. We present the engine flow, the new features and
describe the IP library support.

A. DWARV 2.0 Engines: The Tool-Flow

DWARV 2.0 targets reconfigurable architectures following
the Molen [1] machine organization and is built with CoSy [8].
Compilers built with CoSy are composed of a set of engines
which work on the IR of the input program. The initial IR is
generated by the C front-end, which is a standard framework
engine. To generate VHDL from C code, DWARV 2.0 performs
standard and custom transformations to the combined Control
Data Flow Graph (CDFG) created in the IR by the CFront
engine. Figure 1 depicts this process graphically, highlighting
on the left side the three main processing activities required for
C-to-VHDL translation. On the right side of the same figure,
we show in clock-wise order an excerpt of the most important
engines used in each activity box shown on the left side.

The CFront (ANSI/ISO C front end) creates the IR. The
cse and ssa engines perform common sub-expression elimina-
tion and static single assignment transformations. The match
engine creates rule objects by matching identified tree pat-
terns in the IR, while the psrequiv engine annotates which
register/variable actually needs to be defined in VHDL. fplib
searches and instantiates HW templates found in the library.
hwconfig reads in parametrizable platform parameters, e.g.
memory latency. setlatency places dependencies on def/use
chains for registers used by IP cores. It sets the latencies on
memory dependencies as well. sched schedules the CDFG and
dump prints IR debug information. Finally, the emit engine
emits IEEE 754 synthesizable VHDL. The engines given in
bold in Figure 1 are custom and thus written specifically for
VHDL generation. The rest are standard framework engines.
Because a total of 52 (43 standard - 9 custom) engines were
used in the design of DWARV 2.0 and considering space
limitations, we did not give the complete list of engines used.

B. New Features and Restrictions

Table I summarizes DWARV 2.0’s new features. Leveraging
the availability of generic lowering engines, which transform
specific constructs to basic IR operations, most of the previous

psrequiv

IR
emit

cse

CFront

fplib

match

ssa

hwconfig

setlatency

sched

dump

C file

VHDL file

Legend:
• Modifies IR: 
• Engine Flow:
• Input/Output:

C file

VHDL Generation

CDFG Scheduling

CDFG Building

VHDL file

Fig. 1: DWARV 2.0 engines. Clock-wise sequential execution
of engines starting from CFront.

TABLE I: DWARV 2.0 New Features.

Data Types Statements IP Library Fields
Integer 64 bit div, mod IP name

Real Floating Point case, label, switch input ports names
Multi-dimensional arrays function calls output port names

Struct while, do-while operation type & size
Union return, break latency & frequency

syntax restrictions were removed. The best example is the
support for structured aggregate data types. Another major
development was the FP and the template library. This not
only facilitates the addition of FP operations, but provides
also a generic mechanism to support function calls.

To add support for the basic FP arithmetic, we first use
the Xilinx tool coregen to generate FP cores (e.g. for mul-
tiplication). We describe then these generated IP cores in a
library that DWARV 2.0 is able to search for an appropriate
core for each of the floating point operations. Table I third
column lists the important fields that DWARV 2.0 must know
in order to find the proper core, instantiate and schedule it
in the design. The same syntax can be used to describe and
support generic function calls as well. The only exception is
that for the operation field name, instead of using an operation
type identifier, we simply use the function name.

Although the new version provides new features, there are
still some restrictions. The first two restrictions are related
to the fact that there is no stack on an FPGA. This implies
that functions can not be recursive and that static data is
not supported. Implementing a stack would be possible, but
would defeat the purpose of hardware execution because it
will limit the available parallelism. The third restriction is that
mathematical functions present in the standard C library are
not available. This restriction could be lifted in the future,
using the function call support described.

IV. EXPERIMENTAL RESULTS

To assess the performance of DWARV 2.0, we compared
cycle, frequency and area information obtained by generating



and simulating the CCU hardware for eight kernels against the
hardware IP produced by the LegUp compiler from Toronto
University [3]. In this section, we briefly describe the LegUp
compiler, the platform and the comparison experiments.

LegUp Compiler

LegUp [3] is a research compiler developed at Toronto
University which was developed using LLVM [9]. It accepts
standard C-language as input, and generates Verilog code
for the selected input functions. Its main strength is that
it can generate hardware for complete applications or only
for specific application functions, i.e. accelerators. In this
latter case, a TigerMIPS soft processor [10] is then used to
execute the remainder of the application in software. The
connection between these two main components is made
through an Avalon system bus. This is similar to the Molen
machine organization, therefore comparing the execution times
of accelerators generated by this tool is relevant to assess the
performance and development state of DWARV 2.0. LegUp
was reported [3] to perform close to an industrial HLS
compiler, i.e. eXCite [12], which, assuming transitivity of
results, was another reason to use LegUp as our benchmark.

Experimental Platform

To compare the DWARV 2.0 and LegUp compilers, we
followed a two step approach. First, we simulated the gen-
erated kernels to obtain the cycle information. The simulation
infrastructure for DWARV 2.0 is designed in such a way
to return only the execution time for the individual kernel
invocation. However, for the LegUp simulation, care has to
be taken to obtain only the execution time for the kernel
itself and not for the complete test-bench as it is when the
hybrid execution is chosen. To obtain the correct number, the
ModelSim wave-form had to be opened and the difference
between the start and finish signals had to be computed.

Subsequently, we ran a full post-place and route synthesis
to obtain the maximum frequency and area numbers for
the Xilinx Virtex5 ML510 development board. To obtain a
meaningful comparison, we needed to integrate the kernels
generated by LegUp in the Molen work-flow to target the
same board. To this purpose, we wrote wrappers around the
LegUp interface. Note that these wrappers do not influence
the performance comparison. We use these wrappers only for
integration purposes to be able to target a different platform
than the one for which LegUp kernels were generated. Doing
so, we are interested only in the area numbers obtained for
Xilinx instead of Altera board. The performance numbers are
computed thus in the original setting without any wrappers
included. Given that the tools target similar heterogeneous
platforms with the accelerated kernels running on the Xil-
inx board as co-processors of the PowerPC processor vs.
Altera/TigerMIPS platform, the mismatch in interfaces was
minimal and easy to correct. Both interfaces contained ports to
start the accelerator, query its status and read/write data from
the shared memory. Therefore, bridging the gap between these

Speedup

Page 1

sr
a

lo
op fft fir

sa
td

id
ct

gr
id
Ite
r

fil
te
r

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

DWARV Speed-up @ Maximum Frequency

Post Place and Route Metrics

S
p

ee
d

-u
p

Fig. 2: DWARV 2.0 Speed-ups vs. LegUp times.
interfaces was only a matter of connecting the proper ports to
each other, e.g. DATA ADDR to memory controller address.

DWARV vs. LegUp Comparison

We perform two kinds of comparisons: one that focuses on
speed-up and area consumption and one on the restrictions
imposed on the C-code. To measure the speed-up and area,
we have selected eight kernels for testing. The first four, i.e.,
loop, sra, fft, fir, were extracted from the examples directory
in the LegUp distribution, whereas the other four were taken
from DWARV 2.0’s test bench. All eight functions compiled
without any C-language syntax modifications in both tools.
Furthermore, the approach described above was followed. The
results are summarized in Table II, whereas Figure 2 shows
DWARV 2.0 speed-up information for all test cases relative
to the times obtained for LegUp. The computed speed-ups
were obtained by considering the number of cycles at the
maximum frequency reported by the Xilinx post place and
route synthesis, except for the idct kernel. For this kernel, the
initial maximum frequency estimation was used. LegUp idct
kernel could not be synthesized targeting Xilinx because it
contained an instantiation of an Altera proprietary/specific IP
block used for integer division. We compared the execution
times at kernel level only which gives an indication of the
quality of the generated HDL.

Analysing the last column in Table II, we observe that
performance wise, DWARV 2.0 gave a speed-up for four
kernels, icdt provided no improvement or degradation (6th
column), whereas the other three functions incurred a de-
crease in performance. These speed-up numbers were com-
puted by first calculating the Execution Time achieved At
Maximum Frequency (ETAMF) reported for the two hard-
ware versions, i.e., ETAMF = Cycles/Max.Freq.. Next,
Speedupdwarv = ETAMFlegup/ETAMFdwarv.

With respect to the hardware area, DWARV 2.0 produces less
than optimal hardware designs because no optimization passes
that target area reduction were used. Our primary focus was
functional correctness and to obtain a basis for comparison
with future research. As an example of such future research,
consider the loop case study. Only by integrating the standard



TABLE II: Evaluation Numbers - DWARV 2.0 vs. LegUp.

Kernel Slices Cycles Max. Freq ETAMF1 Speedup Max. Freq ETAMF Speedup
(xst2) (xst) (xst) (real3) (real) (real)

sra-legup 370 70 261 0.27 0.82 202 0.35 0.82
sra-dwarv 338 64 290 0.22 1.22 225 0.28 1.22
loop-legup 122 292 352 0.83 1.24 251 1.16 1.30
loop-dwarv 122 380 368 1.03 0.80 252 1.51 0.77

fft-legup 1980 7377 125 59.02 0.76 98 75.28 0.71
fft-dwarv 3198 8053 180 44.74 1.32 150 53.69 1.40
fir-legup 320 223 124 1.80 0.33 80 2.79 0.23
fir-dwarv 1063 127 213 0.60 3.02 201 0.63 4.41
satd-legup 1189 132 175 0.75 1.29 150 0.88 1.31
satd-dwarv 1201 265 272 0.97 0.77 230 1.15 0.76
idct-legup N/A 24004 88 320.05 1.00 N/A N/A N/A
idct-dwarv 9519 41338 151 273.76 1.00 75 551.17 N/A

gridIterate fixed-legup 455 471348 102 4621.06 0.26 100 4713.48 0.33
gridIterate fixed-dwarv 1343 355810 294 1210.24 3.82 226 1574.38 2.99

filter subband fixed-legup 342 21464 158 135.85 1.46 103 208.39 1.17
filter subband fixed-dwarv 386 55137 278 198.33 0.68 226 243.97 0.85

1Execution Time At Maximum Frequency
2Estimated Maximum Frequency after Behavioural Synthesis
3Real Maximum Frequency after Post Place and Route Synthesis

CoSy framework engines loopanalysis and loopunroll, which
annotate respectively unroll simple loops, we decreased the
number of cycles for this kernel from 380 to 113. Given the
new obtained frequency of 256 MHz, we were able to obtain a
speed-up of 1.90 for this example as well (initial numbers are
given in Table II were we can see that the first implementation
in DWARV 2.0 gave a 0.77 slowdown). Figure 2 shows the final
results obtained after this simple optimization was applied.
Even though the loopunroll engine can provide considerable
performance benefits, determining an unroll factor is not a
trivial problem. If the unroll factor is too big, the generated
VHDL will not synthesize due to lack of available area. Future
research will address this problem.

The second comparison we made focused on the extent
that the compilers are capable of compiling a large subset of
the C-language without requiring substantial rewrites. To do
this, we used our internal benchmark, which is a database of
324 kernels from a wide variety of application domains. For
example, the cryptography domain contains 80 kernels and
the mathematical domain contains 70 kernels. Other domains
available in the benchmark are physics, multimedia, DSP,
data processing and compression. Simply invoking the two
compilers with this database, we observed that DWARV 2.0 is
able to generate synthesizable VHDL for 82.1% of the kernels,
whereas LegUp for 65.7%. However, LegUp does not support
FP operations and, as such, the ability to correctly generate
VHDL for our kernel library is degraded. When we ignored
FP operations, the performance increased to 87.7%.

V. CONCLUSION

In this paper, we presented the DWARV 2.0 compiler and
we did a performance comparison with another academic
hardware compiler. We conclude that the current version
provides a good basis for future research of hardware related
optimizations. One of the most important advantage of DWARV
2.0, compared to the previous version, is that it is highly

extensible. Extending the compiler can be achieved by includ-
ing standard CoSy or custom (new) engines, or can involve
extensions in the IR. CoSy’s mechanism of extending the IR
guarantees that the correctness of the code already written is
not affected.

ACKNOWLEDGEMENT

This research is partially supported by the Artemisia iFEST project (grant
100203), the Artemisia SMECY project (grant 100230), and the FP7 Reflect
project (grant 248976).

REFERENCES

[1] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov and
E. M. Panainte. The molen polymorphic processor. In IEEE Transactions
on Computers(November 2004). pages: 1363-1375.

[2] Y.D. Yankova, G.K. Kuzmanov, K.L.M. Bertels, G.N. Gaydadjiev, J. Lu
and S. Vassiliadis. DWARV: Delft Workbench Automated Reconfigurable
VHDL Generator, Proceedings of the 17th International Conference on
Field Programmable Logic and Applications (FPL ’07): 697-701.

[3] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson, S.
Brown and T. Czajkowski. LegUp: high-level synthesis for FPGA-based
processor/accelerator systems. Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays (FPGA ’11):
33–36.

[4] Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers. Optimized Generation
of Data-Path from C Codes for FPGAs, Proceedings of the conference
on Design, Automation and Test in Europe - Volume 1 (DATE ’05):
112–117.

[5] S. Gupta, N. Dutt, R. Gupta and A. Nicolau. Spark: A High-Level Syn-
thesis Framework For Applying Parallelizing Compiler Transformations.
Proceedings of the 16th International Conference on VLSI Design (VLSI
’03): 461-466.

[6] Catapult C Synthesis Overview. [Online]. Available:
http://www.mentor.com/esl/catapult/overview

[7] C-to-Silicon Compiler. [Online]. Available:
http://www.cadence.com/Community/tags/CTOS/default.aspx

[8] Associated Compiler Experts ACE: CoSy compiler platform. [Online].
Available: www.ace.nl

[9] The LLVM Compiler Infrastructure Project, 2011. [Online]. Available:
http://www.llvm.org.

[10] Univ. of Cambridge. The Tiger MIPS processor 2010. [Online]. Avail-
able: http://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html

[11] Altium Designer 10. [Online]. Available: http://www.altium.com/
[12] Y Explorations (XYI), San Jose, CA. eXCite C to RTL Behavioral

Synthesis 4.1(a), 2010


