Area Constraint Propagation in High Level
Synthesis

R. Nane, V.M. Sima, K. Bertels
Computer Engineering Lab
Delft University of Technology
Delft, The Netherlands
Email: (r.nane; v.m.sima; k.l.m.bertels) @tudelft.nl

Abstract—Hardware compilers which generate hardware de-
scriptions from high-level languages are rapidly gaining in
popularity. These generated descriptions are used to obtain fast
implementations of software/hardware solutions in heterogeneous
computing platforms. However, to obtain optimal solutions un-
der certain platform constraints, we need intelligent hardware
compilers that choose proper values for the different design
parameters automatically. In this paper, we present a two-
step algorithm to optimize the performance for different area
constraints. The design parameters under investigation are the
maximum unroll factor and the optimal allocation of resource
types. Experimental results show that generated solutions are
mapped into the available area at an occupancy rate between
74% and 99%. Furthermore, these solutions provide the best
execution time when compared to the other solutions that satisfy
the same area constraint. Finally, a reduction in design time
of 42x on average can be achieved when these parameters are
chosen by the compiler compared to manually selecting them.

Keywords-FPGA, DWARYV 2.0, HLS, unroll, area constraint

I. INTRODUCTION

Heterogeneous multicore architectures are a direct con-
sequence of the end of Moore’s law. In many cases, this
heterogeneity is being implemented by means of FPGA based
custom computing units. The Xilinx Zynq at the embedded
side and the Convey HC-1 on the supercomputing side are
just a couple of the more telling examples. The FPGA blades
allow to provide application specific hardware support which
can even be modified at runtime and thus provide a tailored
support for different application domains. The gain that can
be obtained by combining a traditional processor with a
Reconfigurable Architecture (RA) can be tremendous (e.g.
between 20x and 100x [1]). However, before the potential of
this technology can be fully exploited, a number of challenges
have to be addressed. One of the challenges is the automatic
generation of the hardware units through e.g. C-to-VHDL
generation, while a second important challenge is to have an
efficient way to explore the design space. This paper primarily
focuses on the second challenge.

The strength of RAs is that they offer much more design
freedom than a General Purpose Processor (GPP). In this
work we rely on such architectures to maximize the appli-
cation performance by automatically exploiting the available
parallelism subject to area constraints. In particular, we look

978-1-4673-2845-6/12/$31.00 (© 2012 IEEE

at application loops in more detail as these constructs pro-
vide a greater source of performance improvement, also in
hardware synthesis. Considering the scenario where Hardware
Description Language (HDL) code is automatically generated,
two important parameters have to be explored namely, the
degree of parallelism (i.e. the loop unrolling factor) and the
number of functional modules used to implement the source
High Level Language (HLL) code. Determining without any
human intervention these parameters is a key factor in building
efficient HLL-to-HDL compilers and implicitly any Design
Space Exploration (DSE) tools.

This paper presents an optimization algorithm to compute
the above parameters automatically. This optimization is added
as an extension to the DWARV 2.0 hardware compiler [2]
which generates synthesizable VHDL on the basis of C-code.
The contributions of this paper are:

e The automatic determination of the maximum unroll
factor to achieve the highest degree of parallelism subject
to the available area and the function characteristics.

o The automatic computation of the number of functional
units instantiated by the compiler, to optimize the perfor-
mance given the previously identified unroll factor and
respecting the given design constraints.

o The validation of the algorithm through an implementa-
tion on an operational platform.

The rest of the paper is organized as follows. Section II
presents the background and related research. In Section III
the details of the algorithm are presented, while in Section
IV the experimental results are discussed. Finally, Section V
draws the conclusions and highlights future research activities.

II. BACKGROUND AND RELATED WORK

The MOLEN Machine Organization [5] is an architecture
developed at TU DELFT that facilitates Hardware/Software
(HW/SW) co-design. It includes three main components, a
GPP, Custom Computing Unit (CCU) used as an accelerator
and a shared memory between them. The CCUs are imple-
mented on a reconfigurable (FPGA based) platform. In order
to create an accelerator for this platform, we use DWARV
2.0, a C-to-VHDL compiler, that generates for an application
kernel a CCU. More information about DWARV 2.0 will be
given below. The CCU generated complies with a simple



interface that contains ports to enable the exchange of data
and control information. This allows changing the CCU while
the system is running, without modifying the hardware design,
thus allowing multiple applications and CCUs to execute at the
same time. Given enough resources, multiple CCUs can be
executed in parallel, taking advantage of inherent application
parallelism. To manage the reconfigurable area we divide it
(logically) into slots, in which one CCU can be mapped. Each
slot can be used by a different application. However, these
slots can be combined to allow different sized kernels to be
mapped corresponding to different design goals. For example,
possible layouts include 5 CCUs that each use an equal area
or 2 CCU, having an area ratio of 3/2. Having only one slot
using all the available area is another possible scenario.

DwARyV 2.0 is a C-to-VHDL hardware compiler [2] built
with CoSy Compilers Framework [8]. Compilers built with
CoSy are composed of a set of engines which work on
the Intermediate Representation (IR) generated based on the
input program. The initial IR is generated by the front-
end. To generate VHDL from C code, DWARV 2.0 performs
standard and custom transformations to the combined Control
Data Flow Graph (CDFG). The ROCCC project [4] aims
at the parallelization and acceleration of loops. Catapult-C
[9] and CtoS [10] are commercial high-level synthesis tools
that take as input ANSI C/C++ and SystemC inputs and
generate register transfer level (RTL) code. However, these
compilers are complex and require extensive designer input
in both the applied optimizations and the actual mapping
process, making it less viable for a software designer that
does not have in-depth hardware knowledge. Both Altium’s
C to Hardware (CHC) [11] and LegUp [3] compilers are
intended to compile annotated functions that belong to the
application’s computational intensive parts in a HW/SW co-
design environment.

However, none of these compilers, including DWARV 2.0,
currently possesses any capabilities to generate hardware that
satisfies a particular area constraint, while maximizing perfor-
mance. More precisely, requiring that a function’s generated
HDL takes no more than a given area is not possible. Neither
the unroll factor, nor the number of functional units used are
determined taking into account the execution time or the area.
Performing this optimization automatically would enable high-
level tool-chains to analyse different application mappings in a
shorter amount of time. For example, the algorithm presented
in [7], where the best mapping of CCUs is selected given a
fixed number of resources and fixed kernel implementations,
would be improved if the implementations would be generated
according to some determined area constraint.

III. AREA CONSTRAINED HARDWARE GENERATION

In this section, we present the model that allows the com-
piler to decide the unroll factor and the number of resources.
In the first part we describe and define the problem, while in
the second part we elaborate on the details of the algorithm.
Finally, we conclude the section by showing how this model
has been integrated in the DWARV 2.0 compiler.

A. Motivational Example and Problem Definition

To describe the problem, we make use of a synthetic case
study. We consider a simple function that transforms each el-
ement of an input array based on simple arithmetic operations
with predefined weights. The function has no loop-carried
dependencies as each array element is processed independently
of the others. Figure 1(b) shows this graphically, where L,
marks the beginning of the loop (i.e., compute the new value
for each of the array elements) and the number four in the
superscript represents the total number of loop iterations (i.e.,
we use an input array size of four elements). The body of
the loop is delimited by the rectangle box. Furthermore, we
see that in this body three operations are performed, each
taking one cycle for a total function execution time of 12 cycle
time (Cr). Unrolling once and given there are no loop-carried
dependencies, we can speed up the application by a factor of
two if we would double the resources. However, the overall
speedup will depend on the available hardware resources and
is thus constrained by this. For instance, if we use only one
resource of each type as in the initial case, the speed-up would
be less than the maximum possible (Cr = 8 in Figure 1(c)).
The L. marks the end of the four loop iterations.

Doubling only one resource type, as for example the ad-
dition unit (Figure 1(d)), and keeping the initial assumption
that each of the three computations takes the same number
of clock cycles (i.e., one clock cycle), does not decrease the
execution time while increasing the area. This is a suboptimal
allocation of resources for the achieved execution time. It is
important to note that this scenario can falsely allow one to
draw the conclusion that for such loop body types, the number
of resources that should be used for each type is the number
corresponding to the resource with the minimum count in the
loop. However, this is true only for the case where all resources
compute the output in the same number of cycles. However,
if this is not the case which is a fair assumption for real world
applications, having different counts of resources is possible
without obtaining a suboptimal resource allocation. This is
illustrated in Figures 1(e) and 1(f). In the first illustration, we
have the scenario when one resource of each type is used,
while in the second only the number of division units is
doubled. This leads to a decrease in Cr from 12 to 10 because
the number of cycles for one loop iteration is decreased by 1
due to the availability of a second division unit that can be
used before the first division finished execution.

Finally, fully unrolling the loop and using only one resource
of each type achieves yet a better execution time. This is
illustrated in Figure 1(g) where Cp has been reduced to 6
cycles. Nevertheless, the best execution time (Cp = 3) is
achieved when fully unrolling the loop and using the maximum
possible units for each operation as shown in Figure 1(h).
However, this can increase the area past the available area
for the function. This is specially important in our scenario,
where the reconfigurable area is divided among differently
sized slots. For example, in the current implementation of the
MOLEN machine organisation, we have available a maximum



%: & |

QI
c | | [8s. ] [E283
| : 3 3 : i
; s ’ § , @ § O D,
. o. 4 : : §§;
! ¥ i 7 ¥ ! . ¢ .
&) ©w ) w © © ©
(@ Cr=Cmn (b)) Cpr =12 (c) Cr =38 d) Cr =8 (e) Cpr =12 () Cr =10 (g Cr =6 (hy Cr =3
Fig. 1. Motivational Examples: a) Formal Representation; b) No Unroll and 1+, 1*, 1/ units; ¢) 2 Unroll and 14, 1%, 1/ units; d) 2 Unroll and 2+, 1%, 1/

units; e) 2 Unroll and 1+, 1%, 1/ units; f) 2 Unroll and 1+, 1%*, 2/ units; g) 4 Unroll and 1+, 1*, 1/ units; h) 4 Unroll and 4+, 4*, 4/ units;

of 5 slots. Given runtime and partial reconfigurability, the
slots can be merged or split depending on the application’s
requirements. This would lead to different area requirements
for one kernel. Therefore, it is necessary to have hardware
compilers that generate automatically hardware designs that
map onto the available area given as an input constraint.
This would avoid iterating over the design choices to find the
optimal unroll factor and the maximum number of resources
of each type, thus reducing the design space exploration time.

Summarizing, there is a trade-off between the number of
unrolls one can do and the number of resources used for
each unroll. The goal of our model is to compute the best
combination given performance as the main design objective.
Given the general form of applications with loop body types
as shown in Figure 1(a), we define the problem as follows: be
the loop delimited by L;' and L iterating n times, performing
operations that use m different hardware modules, IP; to
IP,,, for which we know the sizes and latencies c¢; to ¢,,
respectively, determine the unroll factor and the maximum
number of modules for each of the m IP types such that
the input area constraint is satisfied while the performance
is maximized.

B. Optimisation Algorithm

The algorithm consists of two parts, one for each parameter
that needs to be determined. In the first step, we determine the
unroll factor based on the available FPGA area as well as the
area increase due to wiring when more parallelism is available
after an unroll is performed. To obtain the unroll factor (uf)
we solve inequality (1) for the maximum value of uf:

A +ufxwi <= A (N

,where A;, A; and wi represent the initial area of the kernel,
the total area available for the kernel on the target FPGA
and the wiring increase per unroll, respectively. Furthermore,
we have uf € N and have obtained both A; and wi after a
complete compilation and estimation of the kernel’s generated
HDL. The initial kernel refers to the code ’just as is’, i.e.,
the code without any unroll optimization applied and using
the minimum number of resources for each of the required
IPs necessary to implement its functionality. The compiler
is executed once without activating any specific optimization
regarding the number of IPs and unroll. The compiler is

executed a second time with the loop unrolled once. Then,
the ws is the difference between the estimated area of these
two generated kernels. The estimation is based on [6].

In the second step, we determine the component counts
necessary to fit the hardware design onto the FPGA area
available. This step assumes the IP sizes are available and
can be loaded from an external library. However, if these
are not available, the netlist of the IP should be synthesized
for the specific device and the number of slices required
for it should be saved in the external database. Furthermore,
the available parallelism for each IP has been fixed by the
previous step which unrolled the loop body. That means that
no more than some value n of IPs of type m can execute
in parallel. The second constraint according to the problem
definition involves the area of the IPs itself, which leads to
the constraint that the sum of all IP sizes multiplied by the
number of their instantiations should not exceed the total area
given as a parameter. Finally, the objective is to minimize
the time it takes to compute each level in the graph by
instantiating as many resources of that type possible. This is
expressed as minimizing the number of cycles the slowest level
in the CDFG takes. Furthermore, the candidate solutions are
selected from those which satisfy the area constraint. Note
that minimizing the number of cycles only for a level in the
CDFG would be ineffective if the other levels with different
operations are not minimized as well. The complete set of
equations is shown in (2):

min : MAX{countIP;/x; + countI P;%zx;?1 : 0}
Yoz xarea{IP} <= A,
i=1

r; <=trp, xuf (2)
countI Py = MAX{t;p, *uf}
x; € NNVie{l,...,m}

,where area is the area of the component accounting for both
the number of slices and dsps it requires. x;s are the variables
which represent how many IPs of type i can be used inside
the total area available (A;). Furthermore, ¢;p, represents how
many instances of type [ P; are used in the initial version of
the code when no unroll has been performed.

C. Integration in DWARV 2.0

Figure 2 shows how the compiler flow has been extended
to compute the predefined algorithm values and how the



,,,,,,,,,,,,,,,,,,, ‘
DWARV20 |

I vhdl |5
I
I

A,

Parameters

[EEHEES extraction

Estimation tool

Fig. 2. Algorithm Integration with DWARV 2.0 Compiler.

algorithm has been integrated in DWARV 2.0. In the upper
stripped box we see the internals of the DWARV 2.0 compiler
as it was described in section II. This is composed of a series
of loosely integrated engines, executing different optimizations
and transformations on the globally available IR. The small
engine box denoted Plug-ins represents the implementation of
our algorithm, which performs no action if there are no input
parameters, i.e. for the first two runs to obtain the parameters
for the initial area and the area of the kernel with the loop
unrolled once. The difference between these estimated areas
gives us the wiring increase for unrolling.

After these preliminary compilations (maximum two), the
algorithm can be applied. Using the computed wiring increase
and the initial area obtained, the unroll factor can be computed
by solving inequality (1). The solution is feed into the unroll
engine which obtains a new intermediary version of the code
with an increased parallelism. Note that the unroll engine
is encompassed by the “Plug-ins” engine which was built
around it, i.e., it is composed actually of two smaller engines
corresponding to the two steps. One it is run before the unroll
engine, the other after. However, due to space reasons we show
this chaining as one engine in Figure 2. Finally, based on the
determined parallelism, the inequalities in (2) are solved.

IV. EXPERIMENTAL RESULTS

In this section, we describe the experimental environment,
the test cases and provide a discussion of the obtained solu-
tions for the different design options available.

A. Experimental Environment

The environment used for the experiments is composed of
three main parts: i) The C-to-VHDL DWARV 2.0 compiler
[2], extended with an optimization engine applying the two-
step algorithm described in the previous section, ii) the Xilinx
ISE 12.2 synthesis tools, and iii) the Xilinx Virtex5 ML510
development board. This board contains a Virtex 5 xc5vfx130t
FPGA consisting of 20,480 slices and 2 PowerPC processors.
From these, 9600 slices are allocated to the reconfigurable
part of the MOLEN design as presented in section II, and
constitute the maximum area that DWARV 2.0 generated
designs target. More precisely, we use in the experiments 1920,
2880, 4800 and 9600 slices corresponding to 20%, 30%, 50%
and respectively the full area of the reconfigurable part to test

the capability of the algorithm to generate designs that during
synthesis will fit within these pre-defined area constraints.

B. Test Cases

To validate the correctness and usefulness of the algorithm,
we used three real case studies. These are a simple vector
summation of 128 elements, a 10x2 with a 2x10 matrix
multiplication and a 5-tap-FIR filter computing 27 values. The
vector summation contains 64 additions in parallel, the matrix
multiplication iterates 100 times to compute each element of
the 10x10 resulting matrix by doing two parallel multipli-
cations followed by an addition, whereas the FIR test case
consists of 5 parallel multiplications and 2 parallel additions
for each computed element. All the arithmetic operations are
done on floating points numbers, therefore the IPs of interest
in the experiments are floating point adders and multipliers.
However, the general approach described in the previous
section can apply to any IP block, not just floating point adders
and multipliers.

C. Discussion

To gain insight in the results and understand why the design
process benefits from such an optimization, we look at the
generated hardware under various area constraints, different
unroll factors and number of IP cores. That is, we analyse
the Pareto points obtained for different configurations. Due
to space reasons, we discuss only the matrix multiplication
example and give for the other two only the final results. This
function consists of a loop iterating 100 times to compute each
of the elements of the resulting 10x10 matrix. Each iteration
contains one addition and two parallel multiplications. Fully
unrolling this code would lead to a maximum of 100 additions
and 200 multiplications to execute in parallel. Clearly this can
easily lead to a HDL implementation that would not fit into
the available area. Therefore, we perform an analysis with the
DWARYV 2.0 compiler extended with the optimisation engine
and investigate its capability to generate CCUs that fit into
different sized slots available in the current MOLEN design.

We begin by constraining the available area for the CCU to
the smallest size slot that has 1920 slices accounting for 20%
of the available reconfigurable FPGA area. Figure 3 shows
different points corresponding to different configurations of the
matrix function. To explain the points in the graph, we define
the tuple (x,y*,z+) notation which represents the solution
point with the loop body unrolled x times, instantiating y
multipliers and z adders. In the graphs, the first element of
the tuple is represented by a different shape and color. For
example, the most left side point in the figure is (1, 2%, 1+)
denoting the implementation of the initial code (i.e., no unroll)
and using two multiplication and one addition units. This
implementation executes in 20030 ns and occupies 299 slices.
Note that the implementation using the minimum number of
resources, i.e., (1,1x,14) is slower (21030 ns) and occupies
29 slices more. The execution time is bigger because using
only one multiplication core we do not take full advantage of
the available parallelism, whereas the increase in area is due



(1%,14) ]
20000 'B
@r1n = (50%25+)
; o i no unroll
N
=2} * 2 unroll
) (1276
15000 ) A 4 unroll
9]
m (1%,1+) < A5 unroll
=y
) (10%,5+) 5
» 10 unroll
3 10000 Y Caess) (8%4+) &
g (9%,5+) 20 unroll
] (1%,1+)
- 16 »25 unroll
A @)
5000 (1%,1%) (1%,14) 50 unroll
- 1%,1+) 1
(10%,5+) 20%,1{ W 100 unroll
(1*%,1+) ‘
Yol <
0
o o o o
o o o o
~ ~ ~ ~
— —
Area (slices)
Fig. 3.  Matrix multiplication: 20% area design constraint.
o
2100 (@]
= (1%,14)
w
1900 ()
e
&
1700 f w25 unroll
s}
1500 <%
™ L JeARE) g
S 1300
: E (2%,14) 4 50 unroll
9
g " (14%,7+) (17+,9+)
) 7+ "9+
§ T E o gy
(13%,7+) (18%,9+) 100 unroll
700 (@24
(6%,3+) L 2 *
. w9 ¢ 'S 63
(13%,7+)
300
o o o o o o
o o o o o o
N < © @ o N
N N ~N N ™ o™
Area (slices)
Fig. 4. Matrix multiplication: 30% area design constraint.

to the more slices required to route multiple inputs to one unit
compared to the increase obtained by duplication.

The vertical line on the right of Figure 3, denoted by
max area, represents the threshold after which the generated
configurations will not fit into the requested area constraint.
The fastest solution obtained by fully unrolling the loop and
using the maximum number of cores for both operations, i.e.
(100, 200+, 100+), does not meet the design constraint of 1920
slices being situated on the right of the threshold line. The
rest of the points show representative design configurations.
That is, for each possible unroll factor we show the mini-
mum (i.e., using one core of each unit) and the maximum
implementations. However, for each unroll we can have more
configurations than the minimum and maximum, for example
the (20, 10%, 5+) and (25, 8+,44) solutions, with the second
being faster and smaller.

Analysing all these solutions manually is very time consum-
ing, therefore the benefit of having the compiler perform this
automatically has tremendous effects in terms of saved design
time. Considering the 20% area constrained matrix example

1150 8
L 2 =2
(2,14 @
o
2
950 J
I
S | 50unroll
w750 ?ﬂ
< g
g , Solution g
> (4%2+) E
&) 20%,10
) ¢ (20%,10+)
L s S, VERTH
" W 20%,10+) (25*v15‘)'(25*,12+> (3. 6%) + 100unroll
*
(6%,3+) (8% 4+) (34%17+)
350
*
(10%5+) (25%,13+)
® e
150
o o o o o o o
o o o o o o o
~ (=2} — (v} n ~ (=]
™ ™ < < < < <
Area (slices)
Fig. 5. Matrix multiplication: 50% area design constraint.
180
%]
[}
[}
g
(40%,20+) (50%,24+) 5
170 o
S
%)
c[? (67*,33+)
10 B u 100 unroll
= <
(= é (67%,34+)
; 150 g
o
c
o
S 140 * MAX
(200%,100+)
130
120
o o o o o
(=] o (=] o o
[} o o] (52} o)
~ o] 0 o o
Area (slices)
Fig. 6. Matrix multiplication: 100% area design constraint.

and assuming a binary search through the design space, we
would need to evaluate at least seven designs manually to ob-
tain the (25, 10, 5+) optimal solution. Assuming 30 minutes
to obtain the bit stream for each implementation, we would
need at least 210 minutes to arrive at the optimal solution. The
automation of this search and running the compiler along with
the estimator takes on average five minutes. This leads to an
average speed-up in design time of 42x.

Figure 4 illustrates the design points for the 30% area
constraint. For this experiment, the figure shows only con-
figurations after the loop body was unrolled by at least a
factor of 25 because from the previous experiment with the
smaller area constraint we know that the design choices up to
25 unroll factor cannot be the optimal solution. Therefore,
we highlight several possible implementations for the 25,
50 and full unroll factors. Analysing the performance for
these implementation we observe that unrolling has a bigger
impact on performance than using more parallelism with a
smaller unroll factor. For example, the (50,6%,34) kernel
implementation is faster and occupies less area than the one



TABLE I
EXPERIMENTAL RESULTS OF THE TEST CASES AND THEIR CORRESPONDING SOLUTIONS FOR DIFFERENT AREA DESIGN CONSTRAINTS.

[ Function [ Case | Uf | Max IPs [ Solution [ Area (slices) [ Occupancy (%) | Latency (ns) [ Freq. (MHz) [ Power (nW) |

20% 64+ 10+ 1888 98 925 213 106

30% 64+ 22+ 2817 97 885 240 126

VectorSum | 55 | NA | gy, 64+ 4526 04 865 338 294
100% 64+ 64+ 5581 78 865 338 294

20% 25 50%, 25+ 10%, 5+ 1854 96 990 300 95

Matrix 30% 50 100%*, 50+ 12%, 6+ 2805 97 590 283 140
50% 100 200%,100+ | 20*,10+ 4797 99 220 280 324

100% 100 200%,100+ | 50%25+ 8470 88 160 280 403

20% 14 70%,28+ 8*, 3+ 1897 98 1020 250 106

FIR 30% 14 20*,28+ 14*, 7+ 2738 95 900 325 155
50% 28 140*,56+ 28% 12+ 4738 98 500 339 245

100% 28 140* 56+ 47*,19+ 7174 74 480 327 293

represented by the (25, 18*,9+) point. However, if we unroll
too much we might not obtain any valid solutions as is the case
with all the 100 unroll points. Therefore, finding the optimum
unroll factor is a key step in the area constraint driven HDL
generation. The optimal solution obtained for the 30% area
constraint is the (50, 12x, 64) implementation point.

Finally, Figures 5 and 6 illustrate design points for the
50% and 100% area constraint, respectively. The solutions
obtained are close to the minimum latency achieved when all
200 multiplications and 100 additions are used in the fully
unrolled version. However, because of the high number of
arithmetic units required by this implementation, and given the
maximum number of slices available in the current setup, this
best solution cannot be achieved. Therefore, a compiler that
cannot handle area constraints and always fully unroll loops
to achieve the highest code parallelism using the maximum
possible resources, will always fail to give a valid solution.

The same experiments were subsequently performed for
the VectorSum and FIR case studies as well. The results are
summarized in Table I. The third column shows the unroll
factor obtained in the first step of the algorithm, while the
next column gives the maximum operations of each type that
could be executed in parallel for the previous unroll factor.
The solution of the second step of the algorithm for how
many instances to use for each operation is shown in the
fifth column. The next two columns highlight the number of
slices for the obtained solution as well as the occupancy rate
for the given area constraint (column two). Kernel latency
and frequency information is shown in columns eight and
nine. Last, power metrics for the solutions are given. The
dynamic power consumed by the unoptimized, base kernel
implementations is 81 mW, 8 mW, and 38mW for the vector
summation, the matrix and the FIR function respectively.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we presented an optimization algorithm to
compute the optimal unroll factor and the optimum allocation
of resources during the HLL-to-HDL generation process when
this is subject to area constraints. The described algorithm
was added to an existing C-to-VHDL hardware compiler and
three case studies were used to validate the optimisation. The
experiments showed that the generated solutions are mapped
into the available area at an occupancy rate between 74% and

99%. Furthermore, these solutions provide the best execution
time when compared to the other solutions that satisfy the
same area constraint. Furthermore, a reduction in design time
of 42x on average can be achieved when these parameters are
chosen automatically by the compiler.

Future research includes analysing other applications and
investigating how different graph characteristics influence the
optimisation presented. Another model extension involves
dealing with variable loop bounds. In addition, more accurate
prediction models for the wiring increase as well as for the
power consumption are needed.

ACKNOWLEDGEMENT

This research is partially supported by the Artemisia iFEST project (grant
100203), the Artemisia SMECY project (grant 100230), and the FP7 Reflect
project (grant 248976).

REFERENCES

[1] Z. Guo, W. Najjar, F. Vahid and K. Vissers. A quantitative analysis of
the speedup factors of FPGAs over processors. Proceedings of the 2004
ACMY/SIGDA 12th international symposium on Field programmable gate
arrays (FPGA ’04): 162 - 170 .

[2] R. Nane, V.M. Sima, B. Olivier, R. Meeuws, Y. Yankova and K.

Bertels. DWARV 2.0: A CoSy-based C-to-VHDL Hardware Compiler. To

Appear in Proceedings of the 22nd International Conference on Field

Programmable Logic and Applications (FPL ’12).

A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson, S.

Brown and T. Czajkowski. LegUp: high-level synthesis for FPGA-based

processor/accelerator systems. Proceedings of the 19th ACM/SIGDA

international symposium on Field programmable gate arrays (FPGA ’11):

33-36.

[4] Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers. Optimized Generation

of Data-Path from C Codes for FPGAs, Proceedings of the conference

on Design, Automation and Test in Europe - Volume 1 (DATE ’05):

112-117.

S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov and

E. M. Panainte. The molen polymorphic processor. In IEEE Transactions

on Computers(November 2004). pages: 1363-1375.

[6] R.J. Meeuws, C. Galuzzi and K.L.M. Bertels. High Level Quantitative
Hardware Prediction Modelling using Statistical methods. In Proceed-
ings of the International Conference on Embedded Computer Systems:
Architectures, Models, and Simulations (SAMOS ’11): 140-149.

[71 VM. Sima, EM. Panainte, K. Bertels. Resource allocation algorithm
and OpenMP extensions for parallel execution on a heterogeneous
reconfigurable platform, Proceedings of the 18th International Conference
on Field Programmable Logic and Applications (FPL ’08): 651-654.

3

—

[5

—_

[8] Associated Compiler Experts ACE: CoSy compiler platform. [Online].
Available: www.ace.nl

[9] Catapult C Synthesis Overview. [Online]. Available:
http://www.mentor.com/esl/catapult/overview

[10] C-to-Silicon Compiler. [Online]. Available:

http://www.cadence.com/Community/tags/CTOS/default.aspx
[11] Altium Designer 10. [Online]. Available: http://www.altium.com/



