

Performance Evaluation of Real-Time Message Delivery in RDM Algorithm

Shabnam Mirshokraie1, Mojtaba Sabeghi2, Mahmoud Naghibzadeh1, Koen Bertels2
1Computer Engineering Department

Ferdowsi University of Mashhad
Mashhad, Iran

{mirshokraie, naghib}@um.ac.ir

2Computer Engineering Laboratory
Delft University of Technology

Delft, the Netherlands
{sabeghi, k.l.m.bertels}@ce.et.tudelft.nl

Abstract

Complexity of distributed real-time applications such
as automotive electronics has increased dramatically over
the last couple of years. As a result, developing
communication protocols to address real-time
requirements of these applications such as reliability, in-
time delivery of messages, priority support, and fault-
tolerance needs more sophisticated techniques. To satisfy
these requirements, special communication architectures
have been designed. The most important methods
presented are TDMA (Time Division Multiple Access),
Token Ring and CAN (Controller Area Network).
Recently, a new algorithm called RDM (Round Data
Mailer) has been presented. The focus of this paper is on
the studying of the Round Data Mailer technique and
evaluating its message delivery performance by making a
comparison of the result of simulated RDM and CAN.

1. Introduction

Improvement in many fields of modern technology
like traffic control and atomic reactors depends heavily on
accurate operation of fast software and hardware.
Therefore all these systems need to provide services and
operations with deadline.

A Real-Time System (RTS) is defined as a system in
which the time is significant when the outputs are
produced [1]. The outputs must be produced within
specified time bounds referred to as deadlines so RTS
systems have higher reliability and safety requirements
than other systems. Fault tolerance which is another
important attribute for real-time systems refers to protect
and maintaining availability of system services despite
occurring errors during its operation.

Nowadays, central real-time systems have been
converted to the distributed ones, because many systems
which must be controlled are naturally distributed like
traffic control or communication systems. TDMA, CAN
and IEEE802.5 priority Token ring have been used in
such environment to provide safety and reliability in real-

time systems [2, 3, 4]. With TDMA and CAN protocols,
there is no way to make sure that every message is
delivered in time through an efficient global priority-
based message delivery mechanism. Although IEEE802.5
priority Token ring supports priorities, it has some other
difficulties. The most important problem is about token
traveling. To find the next highest priority message a
token must travel at least one complete cycle. If there are
many nodes in system, it can be a considerable amount of
time. In this paper we explain another method called
RDM which satisfies the requirements of SSDRT (Small
Scale Distributed Real-Time) systems [5]. Although, this
method can be used in general distributed systems, our
focus is on small-scale real-time ones.

2. RDM Algorithm

In RDM, a logical ring is assumed to connect
computers to each other [5, 6, 7]. Most of benefits derived
from the ring topology are related to its logical
characteristics. For example in a ring connectivity data is
quickly transferred without a bottle neck, the transmission
of data is relatively simple as packets travel in one
direction only and adding additional nodes has very little
impact on bandwidth. Because of these benefits, in RDM,
ring topology is considered as a logical level like many
other network protocols.

Critical message moves clockwise or
counterclockwise from one node to its neighbor in
assumed logical ring. Critical message is a message that
carries real-time data/results which is a datum/result that
is captured or produced by a real-time process and there
are one or more real-time processes that need this
datum/result. In RDM there is only one such a message
that travels between nodes. When RDM message reaches
to a node, that node has permission to send critical data,
so it acts like token for each node but with a small
different from known token, because it carries critical data
too, which is not common in other algorithms. Structure
of this message must be known exactly for all nodes in
system.

U1 U2 U3 …. Un

DVkBDIk…BDI2BDV1BDI1 DVkBDIk…BDI2BDV1BDI1

Carriage
return

BCFCDUBNANCCT Carriage
return

BCFCDUBNANCCT

•CF: Check field
•Ui: User i updated field
•DIi: Data Identification i
•DVi: Data Value i
•B: Blank
•Carriage return: Recognize

end of message

•CT:Coordinar Time
•C:Coordinator
•NAN: Number of

Active Nodes
•UB: Updated fields
•CD: Critical Data

Each data in the message has only one producer, but it
can have one or more consumer. When the critical
message reaches to a node, it makes a copy of the whole
message, then removes or updates all data/results loaded
by this node in the previous round and loads all newly
produce real-time data/result on the message. It also
searches in whole message in order to find critical data
which has been sent for this node. Finally, the node will
send the message to its clockwise neighbor. In explained
method because of message structure specifications and
specific behavior of RDM algorithm there is no problem
like token traveling or any other similar difficulties.

One of the important requirements of real-time
systems is reliable and timely data transmission. So, in
RDM algorithm, in order to provide reliability for real-
time data transmission, each node must recover from data
that is damaged or lost by the communication system.
This is achieved by requiring an acknowledgment from
the receiver. If the acknowledgement is not received with
in a predefined period of time, the receiver is checked to
distinguish whether the receiver node is active or not, if
the node is still active and works properly the data is
retransmitted. Whenever a segment containing data is
transmitted, a copy is created on a retransmission queue
and also a timer will be started, when the
acknowledgment for that data is received properly, the
segment is deleted from the queue and the timer will reset,
but if the acknowledgment is not received before the timer
runs out while the receiver is still active the segment will
be retransmitted. In the case that the acknowledgement is
not received after twice repetition of data retransmission,
the receiver will be assumed inactive and the message
transmits to the next node in the logical ring.

2.1. RDM Message Structure

Being familiar with the algorithm of RDM, it is time
to know about RDM message structure and its
specifications. As we described before there is only one
RDM message for whole system that travels between
nodes and carries critical data. Fig. 1 illustrates critical
message structure. Every data which is needed by nodes
will be kept in this message. For fields of message a short
description follows:

Coordinator Time holds the coordinator’s local time
which is updated when the critical message passes
through the coordinator, just before the message leaves it.

Coordinator contains the current coordinator’s
identification number.

Updated fields are a collection of Boolean data, one
per every node. Every Boolean field shows the
corresponding node situation (active or non-active). When
the critical message gets to a node, the corresponding
field will be set, so the coordinator will recognize inactive
nodes. Coordinator’s clockwise neighbor will make sure

if the coordinator is active and in the case that coordinator
is inactive, it will take over the coordinator’s
responsibility and will update the C field.

Critical data includes the actual critical data. Each
critical datum contains data identification and data value.
Data value properties will be recognized by its
identification number. Also, the critical data will be sent
or received based on these numbers.

Check field is used to handle the mistakes, which can
be occurred during receiving data. In this structure, we
assumed that Data identification and Data value have
variable length. The number of subfields may vary as the
message passes through different nodes of the system.
Because of variable length of different field, blanks are
used to distinguish between different parts of message.

 Figure 1. Critical message structure

2.2. RDM Fault-Tolerance

Fault tolerance is one of important characteristics of
real-time systems that prevent system from destruction.
During the system operation, if any changes occur in its
status, system must follow some actions and rules in order
to prevent system from loosing data or total collapse of
mission. In this section, we describe RDM fault tolerance
methods which are applied in critical situations.

Software and hardware methods are two main
procedures that are used for fault-tolerance in systems, but
our focus is on software one. Here we classify system
errors in to 3 major groups: Process inactivity, node
disablement and coordinator inactivity and for each group
we present the fault tolerance mechanisms [8].

In the case that one of system processes became
inactive, since all system requirements and produced data
are defined exactly, first we have to determine all data and
messages which are produced by this process; next step is
to determine if there is any other process in system that
produces the same data. If there is such a process, we can
replace the inactive one with this new process and refer

all processes that need the inactive node data to the
selected process. But in the case that there is no such a
process that can be replaced with disabled one, we can
examine whether it is possible to activate the new copy of
inactive process or not. In order to provide this
potentiality, it is possible to use software or hardware
redundancy in system design [3, 9]. It means that we can
make a copy of system resources and processes based on
their importance. Naturally, if one of system resources
doesn't support redundancy capability and only one copy
of this resource is available, in the case that it becomes
inactive, it may cause critical situation based on resource
effects and its necessity for system. After explained
actions, these changes will be announced to the other
nodes in a reconfiguration message.

Node disablement is another type of change that can
be occurred during the system activity. In this case, all
actions have been described previously must be done for
each process in the disabled node. If it is necessary, a new
system setup will be done to renew nodes connectivity.
And finally, if coordinator becomes inactive, since each
node has one inactive copy of coordinator process, it will
be recognized by its clockwise neighbor and the neighbor
node will be introduced as a new coordinator. It also takes
over the coordinator responsibility and the reconfiguration
process will be done.

3. Theoretic Comparison

In previous section we describe RDM algorithm and
explain how it works. In this part after we compare RDM
with three important protocols including Token Ring,
TDMA and CAN, we refer to the most important
advantages of RDM algorithm and some of its limitations,
in order to obtain general conclusion of RDM behavior.

3.1. Comparison with Token Ring

1) In Token ring, complex operations must be done in
order to manage and control the media especially when
we have priorities [10]. In this case token must travel at
least one complete cycle in order to identify the next
highest priority sender [11, 12], but in RDM without any
complex operation, in each moment the bus owner is
defined [5, 6, 7, 13].

2) In a SSDRT system, correct execution of a request
often depends on the freshness of the data that are
received from other nodes. Freshness of data is the Data
Life-Time which is the time interval between data
production in source node and data consumption in
destination node. with the Token ring every data is
delivered separately, while with the RDM a collection of
data are encapsulated in one message and then it is ready
to send, so data delivered by the RDM is fresher than

data delivered by Token ring. This is a major advantage of
the RDM over the Token ring [5, 13].

3) Unlike RDM, in Token Ring the exact time of send
and receive is not computable, which is really important
for hard real-time systems and could be a major
deficiency for Token Ring, but in RDM it is possible to
present an exact formula for computing these times [5, 6,
13].

3.2. Comparison with CAN

1) In CAN, exact computation of response time is
difficult and depends on many environmental factors, but
in RDM it is possible to compute accurate request and
response time by presenting exact formulas [14].

2) In CAN because of using message broadcast
mechanism, all nodes on the network receive the source
node message [14, 15, 16] which strongly eliminates data
security. But in RDM we can establish some limitative
rules to provide secrecy [5]. The explanation of RDM
security scheme is out of the paper scope and can be
described in details in future works.

3) In RDM, add or remove nodes increase the system
complexity which makes it more complicated than CAN
[14].

4) In RDM practically there is no limitation on
message length as far as its round trip doesn't exceed
maximum circulation period, but in CAN message length
is bounded to 8 bytes and fragmentation is required for
messages longer than 8 bytes [5, 15].

3.3. Comparison with TDMA

1) In TDMA time span allocation for each process is
based on worst state of message transmission and because
of this it is not possible to use the band width efficiently
[5, 17], however in RDM because of special mechanism
which is used in send and receives (just one node uses
media in each moment) optimal use of band width is
possible.

2) Operation of TDMA is based on time accuracy.
Clock synchronization to provide time accuracy increases
system cost and overhead, while in RDM there is no need
for clock synchronization [5, 18].

3) Unlike RDM, TDMA is a static method and doesn't
support dynamic models [5, 19].

4) Because of time accuracy in TDMA start and end of
each process job can be measured exactly and this is a
major advantage of TDMA toward other protocols [20].

3.4. RDM characteristics

After comparison of RDM with other protocols, we
summarize most important specifications of RDM. The
followings are advantages of using the RDM:

• The types of real-time data that are transferred
between processes are known in advance and the RDM
makes use of this information to design a specific
message structure with capability of saving message
delivery time.
• The RDM technique can be used in small-scale
distributed real-time systems which contain independent
data and control sharing processes [13].
• RDM uses special message structure in order to keep
all critical data in one message, so there is no need to
deliver each data separately like Token ring [21]. Because
of this, data delivered by RDM is fresher than Token ring.
• One node is the coordinator and it has the
responsibility of system establishment and timing
considerations. When the system is going to become
active, the coordinator will introduce all real-time data to
all nodes. It will also recognize inactive nodes. If the
coordinator becomes inactive, it will be recognized in the
shortest possible time and replacement will be done.
• Because of special design of RDM, There is no need
for clock synchronization. This will save tremendous
amount of overhead.
• Because of special manner of RDM, in each moment
the bus owner is known, therefore there is no problem to
identify the next sender.
The followings are limitations of using the RDM [5]:
• If message length becomes very long, it will have
negative effect on message round time and triggers to
increase it.
• Increment of message length leads to message
buffering in nodes and it can increase sending time.
• Automatic adding nodes may cause system
complexity which is against RDM nature, so manual
adding must be done.

4. Simulation

In this section, first we describe simulation of RDM
and CAN algorithms over TCP/IP. It should be mentioned
that we just considered the message passing
characteristics of this two. And because of that we call
them algorithm here rather than network protocol. For the
purpose of system setup first step is to specify coordinator

After defining coordinator, system processes and their
important parameters like execution time, period and
deadline must be defined exactly. After process definition,
each process specifies data that consumes or produces.
These data and information organize in a source list which
is kept in coordinator. Based on this source list,
coordinator makes a system source table which controls
access authorities. In this stage Coordinator distributes all
processes in to different work stations. It also makes a
logical circular ordering of nodes that connects stations to
each other and assigns data movement direction. Based on
the nodes location, an identification number assigns to

them and by this assigning, all nodes communicate with
each other according to id numbers. In last step of system
setup, all these organized information and details which
are needed for activities such as sending, receiving and
allocating of data during processes operation, will be sent
to all nodes.

In previous descriptions we referred to system setup
and configuration, now we want to explain software
environment and processes specifications in our
simulation. In this simulation we assumed eight real time
processes with different specifications in execution time
and deadline (deadline is the time in which the process
should be finished). The characteristics of each process
are selected by a program and completely random. Table
1 shows the list of these processes and their details.

In RDM we assumed three main nodes and different
processes were distributed on these nodes. Process 1, 2
and 3 are placed in the first node, process 4 and 5 are
placed in the second node and process 6, 7 and 8 are
distributed in the third node.

In CAN all processes were placed on a common bus
and their settlement ordering is based on their numbers. In
CAN another process is also assumed which is called
Monitor. This process has the responsibility of system
controlling during the system operation.

TABLE 1. System Processes Specifications

Process
No

Execution
Time(s) Deadline(s)

Time
interval

between two
requests(ms)

1 6 8 11
2 8 11 16
3 13 16 18
4 9 14 22
5 11 15 25
6 16 18 28
7 12 16 34
8 15 18 39

5. Simulation Results

We simulated RDM and CAN with explained

specifications. We also considered 100 requests for each
process during processes execution. In this simulation our
main goal is to compute average Response Time and
Average Data Life-Time in RDM and CAN and then
compare the results. Response Time is the amount of time
that is passed, since the request is sent, until the response
is received. Data Life-Time is another factor which means
time interval between data production in source node and
data consumption in destination node. After data storage
during simulation, we also compute maximum Data Life-
Time and maximum Response Time by statistical
operations.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000
1100000
1200000

Av
er

ag
e

Da
ta

 L
ife

-
Ti

m
e(

M
ic

ro
se

co
nd

)

1 2 3 4 5 6 7 8

Process Number

CAN

RDM

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000
5500000
6000000
6500000
7000000
7500000
8000000
8500000
9000000

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e(

M
ic

ro
se

co
nd

)

1 2 3 4 5 6 7 8

Process Number

CAN
RDM

Figure 2. RDM and CAN comparative chart for average

data life tim

Figure 3. RDM and CAN comparative chart for average
response time

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000
1100000
1200000
1300000
1400000
1500000
1600000

M
ax

im
um

 D
at

a
Li

fe
Ti

m
e(

M
ic

ro
se

co
nd

)

1 2 3 4 5 6 7 8

Process Number

CAN

RDM

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000
5500000
6000000
6500000
7000000
7500000
8000000
8500000
9000000
9500000

10000000
10500000
11000000
11500000
12000000

M
ax

im
um

 R
es

po
ns

e
Ti

m
e(

M
ic

ro
se

co
nd

))

1 2 3 4 5 6 7 8

Process Number

CAN
RDM

Figure 4. RDM and CAN comparative chart for

maximum data life-time
Figure 5. RDM and CAN comparative chart for

maximum response time

The average Data-Life Time and average Response

Time results are shown in Fig. 2 and 3 and the maximum
Data-Life Time and maximum Response Time results are
shown in Fig. 4 and Fig. 5 (Time measurement unit is
microsecond).

As we can see in these figures RDM acts better than
CAN based on all measured factors, however there is no
big difference between these two algorithms in Average
and maximum Data Life-Time, it is obvious that there is a
considerable difference between RDM and CAN in
average and maximum Response Time. The main reason
behind this difference is RDM special message structure
and the way that each node sends its real-time data to the
destination. In fact in CAN each message is delivered
separately, while in RDM there is only one message that
circulates around the logical ring and carries all real-time
data. In other words, a collection of data is encapsulated
in one message and then it is made ready to send, so in
RDM we can achieve better use of bandwidth than CAN.

Just as we can see in the obtained results from average
and maximum Data-Life Time, RDM and CAN
algorithms have similar efficiency in this factor with a
little improvement in RDM in comparison with CAN. But
as it is obvious in Response Time results, RDM with its
short Response Time can be an ideal choice for systems
with short intervals. Furthermore RDM algorithm seems
much more suitable for systems with short deadline time,
especially in hard real-time systems. Its special
mechanisms in message passing decreases the probability
of deadline expiration and falling system in a critical
situation, so it increases data freshness (freshness is Data
Life-Time which is the time interval between data
production in source node and data consumption in
destination node), security and generally system safety
which is really important for real-time systems. With
comparing results, as a general conclusion in real-time
systems with few numbers of nodes and longer deadlines,

RDM and CAN have approximately similar efficiency,
but in distributed real-time systems with short deadlines
specially heard real-time types RDM is a very good
choice with much more efficiency and can guarantee to
transmit data to the proper destination in appropriate time
without deadline expiration.

6. Conclusion

In this paper, we explained the RDM algorithm, its
message passing mechanism and its message structure.
We weight up the pros and cons of the RDM technique by
making a comparisons between RDM and other
algorithms. We also referred to our simulation results for
RDM and CAN which shows the better performance of
RDM than CAN in hard real-time systems with short
deadlines.

References

[1] M. Joseph, “Real-time Systems: Specification, Verification
and Analysis”, Prentice Hall International, London, 1996.

[2] ANSI X3T9.5, “FDDI Token Ring Media Access Control”,
May 1987.

[3] H. Kopetz, A. Damm, C. Koza. M. Mulazzani, W. Schwabl,
C. Senft, and R. Zainlinger, “Distributed Fault-Tolerant Real-
Time System,” The Mars Approach, IEEE Macro, Feb. 1989,
pp25-40.

[4] L. M. Pinho, F. Vasques and L. Ferreira, “Programming
Atomic Multicasts in CAN,” 10th International Real-Time Ada
Workshop (IRTAW'2000), Avila, Spain, Sept. 2000, pp18-22.

[5] M. Naghibzadeh, “Round Data Mailer Message,” IEEE
International Conference on Systems, Man and Cybernetics,
Hammamet, Tunisia, Oct. 2002, pp586- 591.

[6] M. Sabeghi, M. Naghibzadeh “Performance Assessment of a
Distributed Real-Time Control System Utilizing RDM and
RDM+ Protocols for Communication,” 2nd International
Conference on Future Networking Technologies (CoNEXT06),
ACM SIGCOMM, December 2006.

[7] M. Sabeghi, M. Naghibzadeh, K.L.M. Bertels, “RDM+: A
New Mac Layer Real-Time Communication Protocol,” IEEE
Sarnoff Symposium, April 2007., in press.

[8] S. Punnekkat, Schedulability Analysis of Fualt Tolerant
Real-Time Systems, University of York, UK, June 1997.

[9] M. Baleani, A. Ferrari, L. Mangeruca, M. Peri, S. Pezzini,
and A. Sangiovanni-Vincentelli, “Fault-tolerant platforms for
automotive safety-critical applications,” International
Conference on Compilers, Architectures and Synthesis for
Embedded Systems, CASES'03, San Jose, USA, November 2003.

[10] S. D. Cote, CCP, CNE, “Token-Ring Architecture (The
Details Count When Choosing a Topology),” 1996,
http://www.bralyn.net/ techpages/ papers/ token.ring.html.

[11] The Institute of Electrical and Electronics Engineers, IEEE
Standards for Local Area Networks: Token-passing Bus Access
Method and Physical Layer Specification, IEEE, New York,
1985.

[12] The Institute of Electrical and Electronics Engineers, IEEE
Standards for Local Area Networks: Token Ring Access Method
and Physical Layer Specifications, 1985.

[13] H. Abachi and M. Naghibzadeh, “A message-passing
protocol for small-scale distributed real-time systems,” World
Automation Congress, Spain, 2004.

[14] R. Bosch, CAN specifications ver 2.0, Postfach 50, 1991.

[15] L. Feng-Li, J. R Moyne, D.M Tilbury, “Performance
evaluation of control networks: Ethernet, ControlNet, and
DeviceNet, ” Control Systems Magazine, IEEE Volume 21,
Issue 1, Feb 2001, pp. 66 – 83.

[16] M. Schofield, Controller Area Network - How CAN Works,
1996.

[17] S. Tanenbaum, “Computer Networks”, Prentice Hall,
Fourth edition, 2003.

[18] V. Claesson, H. Lnِn, N. Suri, “An Efficient TDMA
Synchronization Approach for Distributed Embedded Systems,”
International Symposium on Reliable and Distributed Systems
(SRDS), 2001, pp. 198-201.

[19] L. Farman, U. Sterner, O. Tronarp, “Analysis of capacity in
ad hoc networks with variable data rates,” Vehicular Technology
Conference 2004 IEEE 59th, VTC 2004-Spring 2004, Milan,
Italy, May 2004, pp. 2101-2105.

[20] G. Grunsteidle, H. Kopetz, “A reliable Multicast Protocol
for Distributed Real-Time Systems,” 8th IEEE workshop on real-
time operating systems, Atlanta, GA, USA, 1991.

[21] D. E. Commer, “Internetworking with TCP/IP”, Prentice-
Hall, 1996.

