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ABSTRACT
Sequence alignment is one of the fundamental tasks in bioin-
formatics. Due to the exponential growth of biological data
and the computational complexity of the algorithms used,
high performance computing systems are required. Although
multicore architectures have the potential of exploiting the
task-level parallelism found in these workloads, efficiently
harnessing systems with hundreds of cores requires deep un-
derstanding of the applications and the architecture. When
incorporating large numbers of cores, performance scalabil-
ity will likely saturate shared hardware resources like buses
and memories. In this paper we evaluate the performance
impact of various configurations of an accelerator-based mul-
ticore architecture with the aim of revealing and quantifying
the bottlenecks. Then, we compare against a multicore us-
ing general-purpose processors and discuss the performance
gap. Our target application is ClustalW, one of the most
popular programs for Multiple Sequence Alignment. Differ-
ent input data sets are characterized and we show how they
influence performance. Simulation results show that due to
the high computation-to-communication ratio and the trans-
fer of data in large chunks, memory latency is well tolerated.
However, bandwidth is critical to achieving maximum per-
formance. Using a 32KB cache configuration with 4 banks
can capture most of the memory traffic and therefore avoid
expensive off-chip transactions. On the other hand, using a
hardware queue for the tasks synchronization allows us to
handle a large number of cores. Finally, we show that using a
simple load balancing strategy, we can increase performance
of general-purpose cores by 28%.
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1. INTRODUCTION
Bioinformatics is the discipline that applies computational

techniques to solve biology problems [15]. Due to the huge
and steadily growing amount of data involved, high perfor-
mance computers are used to assist biologists. In recent
years, many algorithms and software tools have been pro-
posed to analyze large amounts of biological data. Multiple
Sequence Alignment (MSA) is one of the essential tasks in
bioinformatics. When having a group of DNA sequences an
MSA can reveal sections that are common to most of the se-
quences in the group. This information has many uses, for
example, it can indicate evolutionary relationships between
species or, in the case of protein analysis, it may determine
a protein’s function based on other known functionalities in
the reference group.

ClustalW [29] is a widely used application to perform mul-
tiple sequence alignment. Unlike pairwise sequence align-
ment tools like BLAST [5] and FASTA [2], ClustalW aligns
a set of sequences together as a group to produce an MSA.
Given the intractability of computing an optimal MSA, Clus-
talW uses a heuristic known as progressive alignment. The
program is divided in three main phases, namely: Pairwise
Alignment (PW), Guide Tree (GT) and Progressive Align-
ment (PA). This paper focuses on ClustalW-PW, the most
time consuming application phase (see Section 3).

Improvements in sequencing technologies have led to an
exponential growth of biological databases. Figure 1 shows



Figure 1: SwissProt database growth.

the SwissProt [8] database size over the years, currently
containing 184,241,293 amino acids in 522,019 protein se-
quences. Gene databases such us the EMBL-Bank [9] con-
tain significantly more sequences, i.e. 195,241,608 in 1TB
of data. As these databases grow, analyses become more
ambitious and the need for computational power increases.
On the other hand, the use of expensive multiprocessor ma-
chines to meet the performance demands has two main lim-
itations: only few can afford buying them and their energy
consumption is extremely high. In the search for efficient
solutions, previous studies have proposed accelerating Clus-
talW using off-the-shelf FPGAs, GPUs and chip multipro-
cessors (CMP). Most of the reported results show signifi-
cant performance improvements with expected energy and
cost reductions. However, future systems are very likely to
contain large numbers of cores that impose pressure on the
shared hardware resources like buses, caches and memories.
Although the trend to steadily increase the number of cores
seems to be certain, the characteristics of the cores that
should be used is still an open issue. While the general-
purpose stream is considering application-specific improve-
ments to achieve efficiency, the embedded world leans to-
wards a more general-purpose style to increase flexibility.
In this paper, we investigate various multicore architec-

ture configurations to study performance scalability. We
map ClustalW onto a multicore that uses either general-
purpose processors or application-specific accelerators. This
allows us to project state-of-the-art processors and acceler-
ators performance into scaled future systems and determine
the requirements in terms of shared hardware resources. Al-
though the fundamental pros and cons of the two approaches
are known (flexibility and ease of programming vs. higher
throughput and energy efficiency), this paper aims at inves-
tigating the performance consequences of using each of them
and analyzing the sensitivity to various hardware compo-
nents (e.g. memory, cache, bus). Experimental results show
that an accelerator-based multicore can still achieve high ef-
ficiency when using hundreds of cores. Furthermore, because
those accelerators can be run at lower frequencies, they will
be able to stay within the allowed power budget (and will
dramatically reduce energy consumption as well).
In any case, performance will be largely determined by

the available parallelism in the application, which in some
cases may depend on the input data characteristics. In this
paper we take input data sets from BioPerf [11] and char-

acterize them against three additional input sets that we
build ourselves. Conclusions are made on the performance
implications when exploiting the application’s parallelism.

The main contributions of this paper are:

• The characterization of various types of input data sets
and their impact on performance when exploiting par-
allelism;

• The quantification of bandwidth and synchronization
requirements;

• The performance scalability comparison of a multicore
based on general-purpose processors against one based
on application-specific accelerators;

• The load balancing improvement for high number of
cores processing a small input data set.

The use of a hybrid high-level/cycle-accurate simulator
setup allows us to abstract out the parts of the system that
do not affect our analysis. This, in turn, enables high speed
simulations enabling the modeling of systems with hundreds
of cores. The content of this paper is organized as follows.
Section 2 gives an overview of the related work. Section 3
describes the target application and its parallelization. In
Section 4, the simulation setup and the multicore architec-
ture are explained. Finally, Section 5 analyzes the results
and Section 6 draws some conclusions.

2. RELATED WORK
Various works are found in literature with respect to Clus-

talW parallelizations. They have used different implemen-
tation platforms: from multiprocessor machines and GPUs
to FPGAs and custom made ASICs. In [14, 13], results of
distributed memory parallelizations (using MPI ) of Clus-
talW are presented. The PW and PA stages were paral-
lelized targeting computer clusters and reported speedups
without any analysis. In [14], the performance scalability
is fairly good up to 8 processors while in [13] it lasts up to
16 processors. The main reason for this difference is that
the input sequences used in [13] are about 4 times longer on
average. This results in the PW phase taking much longer
than the other phases. As a consequence and since PW is
the most scalable ClustalW phase, the overall performance
scalability improves. The main performance bottleneck is
the long computation time needed for each PW alignment
because of the use of sequential codes running on a rather
old processor (Pentium III). More recently, other works [27,
30, 19, 20] have studied ClustalW’s performance on the Cell
BE [21]. Results show that despite of a non-trivial program-
ming model, specific Cell BE features like the Local Stores
(LS) and the SIMD processing can achieve significant per-
formance improvements for bioinformatics applications, in-
cluding ClustalW. Besides, ClustalW-PW is shown to scale
well up to the 8 SPE cores available in a Cell BE. Our work
aims to extend the analysis of parallelism in the bioinfor-
matics domain to future architectures containing hundreds
of cores. While previous works report that ClustalW-PW
has no scalability issues (for tens of cores), we show that
when using hundreds of processors (in a CMP), performance
can be saturated.

On the other hand, there have also been efforts on optimiz-
ing sequence alignment kernels at a finer grain on software



Table 1: Performance comparison of various SW and
HW implementations of Smith-Waterman.

Reference Performance Speedup

Cell BE [19] 0.4GCUPS 1×
Cell BE [18] 2GCUPS 5×
GPU [23, 22] 5GCUPS 2.5×
FPGA [12] 14GCUPS 35×
CGRA [23] 76.8GCUPS 192×
FPGA [7] 688GCUPS 1720×

and hardware. In [19], the SIMD capabilities of the Cell
BE are exploited, achieving 0.4GCUPS per SPE. GCUPS
(Giga (109) Cell Updates Per Second) is a common metric
used for Smith-Waterman implementations that allows us to
compare with other reported results. An optimized version
that avoids misaligned memory accesses is presented in [18,
17], achieving 2GCUPS. GPU implementations [23, 22] have
reported 5GCUPS and FPGA designs [12] 14GCUPS. Liu
et.al. presented in [23] a careful comparison of his coarse-
grain reconfigurable architecture (CGRA) performance (76.8
GCUPS) with the mentioned GPU and FPGA results. Lastly,
an even higher performance (688GCUPS) has been recently
reported by a commercial FPGA-based product [7], likely
using more hardware resources though. In this paper we
study a multicore architecture where each core has the per-
formance of either a general-purpose processor [19, 18, 17]
or an application-specific accelerator [23, 22, 12, 7]. Table 1
shows the difference in throughput of various implementa-
tions of the kernel targeted in this paper.
Results reported in most of the previous work focus on

describing application mapping decisions onto commercial
hardware and present speedups compared to the competitor
(e.g. GPU vs. Cell BE). However, all lack in-depth analyses
of hardware resource utilization that are needed in order to
find the real bottlenecks. We instead, aim at not only effi-
ciently mapping ClustalW to a scaled multicore but also at
finding the true bottlenecks that would limit performance
scalability. This analysis and the related findings form the
main contribution of this paper. We envision this knowl-
edge as very useful for designers of future multicore systems
targeting applications from the bioinformatics domain.
The SARC architecture used in our study is presented

in [25], where results are reported for the comparison of
one pair of very long sequences, using FASTA-SSEARCH34
[24, 2]. We complement those experiments by looking at
a different problem: the multiple sequence alignment with
ClustalW [29]. Our results show that although ClustalW-
PW also tolerates high memory latencies (similar to the ob-
servations in [25]), the bandwidth requirements are quite
different. Moreover, we study a manycore based on ASIC
accelerators while previous work [25] used ASIPs instead.

3. APPLICATION’S DESCRIPTION
ClustalW [29] is a widely used software (above 30,000 ci-

tations) to perform MSA, developed by the European Bioin-
formatics Institute. Its source code is freely available and
various web servers exist [1, 4] where users can submit their
alignment jobs. ClustalW takes as input a file containing
a set of DNA or protein sequences that are expected to

have similarities. The program output (the MSA) contains
the same set of sequences but with inserted gaps that place
similar regions from different sequences, one on top of each
other. In order to compute an MSA, ClustalW uses a heuris-
tic known as progressive alignment. As mentioned before,
ClustalW implements this heuristic in three steps: PW, GT
and PA. PW is responsible for computing similarity scores
for all sequence pairs and GT uses these scores to cluster se-
quences in a tree structure (a phylogenetic tree is produced).
PA computes the final alignment by walking the tree, adding
(aligning) one sequence (or profile) to the MSA at a time.
In PW, a similarity score is computed for all sequence pairs.
This score is computed by aligning the two sequences (with-
out actually recovering the alignment but just the score),
based on the Smith-Waterman [28] algorithm. In [16], the
computational complexity of the different ClustalW phases
is computed. In Table 2, profiling results of the original
(sequential) ClustalW code are compared with its theoret-
ical complexity, where N is the number of sequences and
L is the average sequence length. We see that even for a
large1 N , PW takes most of the time in a uni-processor ex-
ecution. For an input of N sequences, PW must compute
N(N − 1)/2 alignments, called tasks here. On the other
hand, GT only grows significantly for the case of many short
input sequences. For most of the cases, including the test
inputs used in our experiments, GT time is negligible.

3.1 ClustalW-PW Parallelization
Tasks in PW are independent of each other which enables

the parallel use of, in principle, as many processors as the
available number of tasks. We have parallelized ClustalW-
PW following a master-worker scheme widely accepted. One
master processor is in charge of submitting tasks to a queue
by taking pairs of sequences as they come from the database.
Each job queue entry contains an ID and a memory pointer
to the task parameters: the pointers to the input sequences,
their lengths and the gap penalties. Worker processors poll
the queue until they obtain a job and then proceed to fetch
the input data from main memory (using DMA). Once data
is loaded in the Scratchpad Memory (SPM), a worker core
performs the computations and writes back results to main
memory on completion (see Section 4.2 for details on the
architecture). Most of the communication traffic in the sys-
tem will be due to workers fetching input data. During the
write-back of results, only a score needs to be transferred,
which is negligible compared to the input sequences. The
master must wait for the completion of all the scheduled
jobs before the next phase in ClustalW (GT) can start.

Table 2 shows the profiling results for various input data
sets and the corresponding theoretical speedup limit for the
parallelization of PW, as obtained from applying Amdahl’s
law [10]. Although PA can be parallelized to some extent
as well [13, 23], its tasks have dependencies that limit the
achievable degree of parallelization. Hence, the total appli-
cation’s speedup will be largely determined by the charac-
teristics of the input dataset.

4. EXPERIMENTAL METHODOLOGY
For our analysis we have used the TaskSim simulator

1Although databases contain millions of sequences, current
MSA programs are not reliable for aligning more than a few
thousands.



Table 2: Characterization of various ClustalW input sets.
Profiling N(L)*

P13569 P10091 NM 000249 BioPerf-A BioPerf-B BioPerf-C

O(Time) 500(940) 318(1,035) 500(355) 318(355) 83(1,641) 50(52) 66(1,083) 318(1,045)

PW O(N2L2) 98.5% 97.7% 98.5% 97.9% 90.5% 82% 61% 82%

GT O(N4) Negl. Negl. Negl. Negl. Negl. Negl. Negl. Negl.

PA O(N3 + NL2) 1.5% 2.3% 1.5% 2.1% 9.5% 18% 39% 18%

Score 8,809,293 16,144,863 9,785,331 12,803,740 9,778,088 120,625 1,298,083 -4,528,287

Norm. Std. Dev. 0.44 0.41 0.04 0.05 0.49 0.15 0.71 0.75

Max. Speedup 66.67× 43.48× 66.67× 47.62× 10.53× 5.56× 2.56× 5.56×
* N is the number of sequences in a set and L is the average length.

[25, 26] that models a parametrizable multicore architec-
ture as sketched in Figure 3 (see Section 4.2). The sim-
ulator uses a hybrid trace-driven high-level/cycle-accurate
technique, that is, some components are simulated very ac-
curately while others are abstracted out, depending on the
aspects one wants to analyze. The simulator input are trace
files that describe the application functioning by providing
three types of information: data transfers, computational
bursts and synchronization signals. To obtain these traces
we have manually instrumented a ClustalW (v.1.83) port to
the Cell BE [21]. Thereafter the instrumented code was run
on an IBM QS21 Blade, running at 3.2GHz with 4GB of
RAM. The code has been compiled with GCC4.1.1 and -O3
flag. Only the master and one worker processor (that is, a
PPE and a single SPE in Cell BE) were used to generate
the trace. This in order to create a single pool of tasks that
can be dynamically scheduled to any of the simulated worker
processors.
Since the processor’s load and store operations are served

by the SPM (without polluting any caches), the execution
time of processing a given task (excluding synchronizations
or DMA waits) is independent of the activity in the rest of
the system. Therefore, the simulator does not “waste” time
on accurately simulating the details of the internal execu-
tion of a core. On the other hand, TaskSim does simulate
in great detail (cycle-accurate) the data transfers (that is,
buses contention, caches and memory) and the synchroniza-
tion signals exchanged among processors.
To ensure our experimental simulations’ accuracy, we ran

ClustalW-PW on the Cell BE Blade using 8 SPEs and com-
pared the execution time with that obtained from simulating
a system with equal configuration. This allowed accuracy
verification when simulating multiple cores from a trace gen-
erated using only one. Results showed that the simulation
error is under 2%, considered adequate for the purpose of
our study.
The simulation output also contains traces (like the ones

graphically shown in Section 5.2) that we analyze using the
performance visualization tool Paraver [6].

4.1 Input Data Sets
Various inputs with different characteristics are used in

our simulations (see Table 2). First, we take the three in-
put data sets (A, B and C) provided in BioPerf [11] that
have been used in some of the related work [27, 30, 19, 20].
Although not clearly stated by the BioPerf authors, the se-
quences seem to be randomly selected from the databases.
As a result, sequences are highly dissimilar as confirmed in
the low alignment scores obtained with ClustalW. Table 2
also shows the sequence length standard deviation (normal-
ized with the average length) as a measure of how different
sequence lengths are within each input set.

Figure 2: Sequence length histogram for different
input test sets.

A different methodology is followed to generate additional
(more realistic) test sets, as reported in previous work [13].
In our study we use protein P10091 CYSA MARPO (365
amino acids) as query to perform a BLAST search against
the SwissProt database. Since ClustalW is commonly used
to align sequences that are expected to have some similarity
or evolutionary relationship, we take the first 500 protein
hits returned by the search to use as input for the MSA. We
apply the same methodology to protein P13569 (1480 amino
acids) and to DNA sequence NM 000249 (2662 nucleotides)
with the GenBank database.

Figure 2 shows a sequence length histogram of input data
sets analyzed. The taller the peaks in a given set, the more
homogeneous the sequences’ lengths are. Data from BioPerf
is clearly the most heterogeneous in sequences’ length and,
as confirmed by the alignment scores from Table 2, also dis-
similar in the biological sense. By looking at Table 2 and
Figure 2, a correlation can be observed between alignment
scores, length standard deviation and profiling results. Test
sets with a low score and high length variation spend less
time on the most parallel part of the program, i.e. PW. The
reason for this phenomena has to do with the calculation of
boundaries in the recursive structure of the PA alignment al-
gorithm, which is out of the scope of this paper. Although in
a uniprocessor scenario this does not matter, in a multicore
it has great performance implications as the parallelizable
portion is smaller. The last row in Table 2 shows the maxi-
mum application speedup achievable if PW times is reduced
to zero.

In our attempt to simulate a realistic scenario, we use
500 sequences corresponding to protein P10091 with lengths
most similar to the average sequence length of the SwissProt
database (355 amino acids). In PW, a set of 500 sequences



produces 124,750 coarse grain tasks that can be run in paral-
lel, which is enough to stress a system with up to 1024 cores
as it is the case for our study. Only for the experiments in
Section 5.2 we use sequences from BioPerf in order to show
an issue that arises in such execution scenario.

4.2 Multicore Architecture
The architecture considered, Figure 3, is a clustered (or

tiled) multicore interconnected with a system of hierarchical
buses. Clusters of 8 (P)rocessors (similar to a single Cell BE
[21]) are grouped together through a local data bus (LDB)
and all clusters are connected by the global data bus (GDB).
The memory interface controllers (MIC) to access off-chip
DRAM memory and the L2 cache banks are also connected
to the GDB and shared by all processors.
It is a heterogeneous architecture given that different pro-

cessor types coexist. The (M)aster processor is a powerful
out-of-order superscalar processor that can efficiently run
the operating system and the applications control sections.
It accesses memory through a private L1 instruction/data
cache and is connected to the rest of the system through the
GDB. (W)orker processors perform data processing, that is,
the bulk work of the targeted applications. Each worker
can access three different memory types: its own SPM, the
global shared memory and the other worker’s SPM. For the
last two cases, the memory controller (MC) DMA engine is
used for the data transfers, decoupling them from the worker
processor execution.
Each LDB is a bus with a ring topology, able to transmit

8 bytes per cycle at 3.2GHz (that is, 25.6 GB/s). Since the
GDB is expected to handle more traffic, its bandwidth is
increased by adding more rings. Every ring provides an in-
dependent communication channel between any pair of com-
ponents in the system. Main memory is composed of several
off-chip DRAMs, controlled by one or more MICs each pro-
viding up to 25.6GB/s. The DRAMs are DDR3-1600 with
a peak bandwidth of 12.8GB/s, two of them are connected
to every MIC. Fine-grain interleaving at the MIC level and
then of DRAM channels is used, that is, consecutive memory
lines change MICs and DRAMs so that large DMA requests
of consecutive memory ranges can be processed in parallel
accessing several DRAMs in parallel.
The L2 cache is organized in banks, each able to provide

25.6GB/s. As in the MICs case, fine-grain interleaving in
accessing L2 banks provides high bandwidth for accesses to
consecutive addresses. Since data transfers in this architec-
ture mostly rely on DMAs, fine-grain interleaving enables
the cache banks to serve multiple parts of a single DMA re-
quest in parallel. As a consequence, the effective bandwidth
observed by the request can be higher than that of a sin-
gle bank. The L2 is meant to take advantage of data reuse
among different workers. However, since the data set of one
task easily fits on the worker’s SPM, there is no need to
have per worker L1 caches. Having them would imply a lot
of extra area, complexity to support coherency and power.
The synchronization queue (SQ) has two hardware FIFOs

implemented in an independent memory module connected
to the GDB. One queue is for the master to submit tasks
and the other for the workers to report task completion.
The intention of the experiments presented here is to eval-

uate the sensitivity of the application’s performance to var-
ious critical architectural parameters and to determine the
minimum configuration that achieves the maximum speedup.

Figure 3: Simulated multicore architecture.

Table 3: List of parameter names and value ranges.

Parameter name Range of values

Number of workers 1,2,4... 1024

Workers’ throughput 1×,100×
DRAM latency (cycles) 1,64,128,256,512,1024,2048,4096

Number of MICs 1,2,4,8,16,32

L2 cache size 0KB,64KB,128KB,512KB,1MB

L2 cache banks 1,2,4,8

GDB rings 1,2,4,8,16,INF

SQ latency (cycles) 1,32,128,256,512

Table 3 lists the parameters along with the value ranges used
in the simulations. For every figure shown in Section 5, only
one parameter is varied. All other parameters are set to
appropriate values so as to emphasize the effect of the one
being analyzed.

4.3 Workers
One special parameter that needs discussion is the work-

ers’ throughput. One of the key aspects that determines sys-
tem performance is obviously the data processing power of
an individual worker. However, increasing workers’ through-
put does not always result in an equal increase in appli-
cation’s performance. Shared hardware resources like the
buses or the memory may become the bottleneck.

As explained before, the hot-spot in ClustalW-PW uses
the Smith-Waterman algorithm. Because that kernel has
been the focus of many research papers and even commer-
cial products in recent years, it is possible for us to com-
pile an overview of the wide range of achievable single-core
performances. These are described in Section 2 and Table
1. We compare simulation results of a multicore based on
general-purpose processors (1× throughput) with one us-
ing accelerators (100× throughput). These accelerators are
dedicated hardware structures that implement a systolic ar-
ray architecture to exploit the parallelism available in the
Smith-Waterman processing [23]. Based on Table 1 we use
100× as a conservative value. We run experiments with
different architectural parameters in order to find out the



Figure 4: Sensitivity to memory latency. Other pa-
rameters are: 32 MICs, No cache, INF Rings.

minimal configuration that achieves maximum performance
using 100× accelerators.

5. SIMULATION RESULTS
In this section we discuss our simulation results. First,

we study the sensitivity of various architectural parameters
for the accelerator-based multicore. Then, we look at the
load balancing problem of a general-purpose-based many-
core that arises when the input set is relatively small. Fi-
nally, we run a set of simulations where we compare the
performance achieved by the accelerators with that of the
general-purpose cores.

5.1 Accelerator-based Multicore
Tasks in ClustalW-PW are very coarse and have a high

computation-to-communication ratio, that is, a large amount
of processing is done on a relatively small data set. Despite
of this, the use of accelerators manages to lower this ratio
and the shared resources (e.g. memory, buses, SQ) require-
ments increase. In this section we analyze the impact of the
architectural parameters from Table 3, using up to 1024 ac-
celerators (100×). In Figures 4 - 9, the baseline is a single
accelerator core.
Figure 4 shows the impact of varying the latency to ac-

cess main memory. This simulation has an artificial setup
in which we replace the shared cache and the DDR memory
system with an ideal conflict-free memory having a config-
urable latency between 1 cycle and 4096 cycles. For ref-
erence purposes, notice that the average DDR3 latency is
between 150 and 250 cycles. On top of the raw memory
latency, the time to traverse the buses has to be taken into
account as well. Results show that the application tolerates
well even large latencies. Only by increasing latency beyond
2048 cycles, performance degradation is observed. This re-
sult is expected given that data transfers are mostly done
in large chunks (close to 1KB) to fetch the sequences to the
accelerators’ SPMs.
Figure 5 shows the sensitivity to memory bandwidth. We

vary the number of MICs between 1 and 16. Every MIC pro-
vides 25.8GB/s with two DRAM channels of 12.8GB/s each.
We disable the cache and set the GDB rings to infinite in
order to isolate the effect of the off-chip memory bandwidth
accesses. Results show that for 1024 accelerators, 8 dual-
channel MICs (204.8GB/s) are needed to sustain the traffic

Figure 5: Sensitivity to memory bandwidth. Other
parameters are: No cache, INF Rings.

Figure 6: Sensitivity to cache size. Other param-
eters are: 4 cache banks, 1 MIC, 1 DRAM, INF
Rings.

and achieve nearly the maximum performance. For 512 and
256 cores, 4 MICs (102.4GB/s) and 2 MICs (51.2GB/s) are
enough though. Below 128 cores, bandwidth is not an issue
as the application is still compute bound. With 1024 accel-
erators, going from 1 to 4 MICs increases the speedup from
259× to 623×.

In Figure 6 we investigated different L2 cache sizes and
compare against having no cache. For accessing off-chip
memory, only a single-channel MIC (12.8GB/s) is configured
so that the benefit of the cache size can be better appreci-
ated. The GDB is set to infinite rings for the same reason.
We can see that a small cache of only 32KB is enough to
achieve close to the maximum speedup. This is because in
aligning all-to-all sequences, workers reuse a lot of the al-
ready small dataset. When increasing the cache size from
32KB to 1MB, the hit rate improves from 91% to 99%. How-
ever, 32KB are enough to achieve 98.8% of the 1MB cache
performance (for 1024 cores).

However, having no caches dramatically degrades perfor-
mance. Notice that the no-cache curve in Figure 6 has lower
performance than the one MIC curve in Figure 5. This is
because in Figure 5, MICs are always set to have two DRAM
channels, as opposed to the single channel in Figure 6. The
performance gain of using caches comes mostly from the



Figure 7: Sensitivity to cache banks. Other param-
eters are: 1MB cache, 1 MIC, 1 DRAM, INF Rings.

Figure 8: Sensitivity to GDB bandwidth. Other
parameters are: No cache, 32 MICs.

bandwidth provided by the 4 cache banks, for a total cache
bandwidth of 102.4 GB/s. This is confirmed in Figure 7
where we can see that the sensitivity is higher with respect
to the number of banks, rather than the cache size. No-
tice that results from Figure 6 have important implications.
They tell us that a tiny 32KB cache can capture most of
the memory traffic that otherwise would have to go off-chip.
From Figure 5 we can see that around 8 dual-channel MICs
are needed to achieve similar speedups. Therefore, a small
cache can save a lot of hardware complexity and more im-
portant, a lot of energy.
Next we simulate several GDB ring numbers in order to

see the bandwidth sensitivity from the bus perspective. Fig-
ure 8 shows that the configuration with one ring (25.6GB/s)
can only serve 256 accelerators at most. We can also see that
all the traffic can be captured with an interconnect able to
provide 102.4GB/s (4 rings) of aggregate bandwidth. Figure
8 shows that the maximum speedup can improve from 336×
with one ring to 713× with 4 rings.
Afterwards, Figure 9 shows the tolerance to synchroniza-

tion latency. Because it is a centralized and shared resource,
it is a potential bottleneck when using many accelerators.
Results show that up to 128 cycles are tolerated by the ap-
plication. If we consider an SQ that can hold all the total
tasks in our setup, a latency below 128 cycles is quite possi-

Figure 9: Sensitivity to SQ latency. Other parame-
ters are: No cache, 32 MICs, INF rings.

ble. There are 124,750 tasks with each entry taking 8 Bytes
(an ID and a pointer). This multiplied by the two queues
needed makes a total size of 1MB, small enough to have a
latency smaller than 128 cycles (the Cell BE LS has 256KB
with 6 Cycles latency). When having smaller tasks, the
SQ bottleneck can be reduced by adding queues per clus-
ter or per core. This result shows that using main memory
to synchronize (increasing latency) could significantly affect
performance.

Finally, due to low pressure imposed on shared hardware
resources by the general-purpose cores, the minimal system
bandwidth configuration (1 MIC, 1 ring, 1 cache bank) was
able to sustain the maximum performance.

5.2 Load Balancing with GP Workers
In ClustalW-PW, tasks’ duration directly depends (qua-

dratically) on the length of the two processed sequences.
When the input set is heterogeneous in sequence length, as
it is the case with the BioPerf sets (see Table 2 and Figure
2), the variation in tasks’ duration will be very high, up to
two orders of magnitude. On the other hand, if many pro-
cessors are involved and the input set is not large enough,
each processor will end up with only a few tasks. With the
default task scheduling policy, this leads to a few processors
finishing much later than others because they had to process
much larger tasks.

To look into this issue, we took 200 sequences from input C
in BioPerf (due to their heterogeneity) and run simulations
with up to 1024 cores. This results in 19,900 tasks, every
core getting roughly 19 tasks to process on average. The
lower part of Figure 10 shows how the default distribution
of tasks behaves. It is a screenshot obtained with Paraver
that allows us to see the behavior of all processors in time.
Every horizontal line represents one core’s state. The load
unbalancing is appreciated in the right part of the plot.

In order to improve the load balancing we applied a sim-
ple task sorting strategy. We noticed that we can roughly
estimate all tasks durations in advance just by looking at the
sequence lengths. Using that information, we sort the tasks
so that longer ones are scheduled first, distributed among
different workers. The upper part of Figure 10 shows a sig-
nificant improvement in the load balancing and consequently
in performance. However, some time should be spent in the



Figure 10: Load balancing with 200 sequences as
input, with 1024 general-purpose workers. The ver-
tical axis represents the cores and the horizontal axis
represents time. Dark (blue) segments are computa-
tions and light ones (gray and green) show idleness.

Figure 11: Performance scalability with and with-
out task sorting using general-purpose cores. 200
sequences from BioPerf are used as input set.

sorting computation, creating an overhead 2 (see gray seg-
ment in left part of upper Figure 10). Figure 11 shows the
scalability improvement of task sorting for this type of input
set. These results correspond to general-purpose cores. For
accelerators, because the sorting is not parallel nor acceler-
ated, the sorting overhead becomes comparable with tasks
computation and hence it is not worth. In the end, task sort-
ing can accelerate processing time by 28%. The maximum
speedup of 1× workers (Figure 11) increases from 674× to
758×.

5.3 Accelerators vs. General-purpose
Figure 12 shows the performance scalability of ClustalW-

PW with respect to the number of cores used and compares
the case of using accelerators with that of general-purpose

2The overhead time was measured on an Intel Core 2 Duo
running the qsort function from the Standard C Library.
Using a parallel sorting algorithm can reduce this overhead.

Figure 12: Performance comparison for up to 1024
workers of two types: general-purpose cores (1×)
and application-specific accelerators (100×). The
vertical axis is in Log scale and the baseline is a
single general-purpose core.

cores. For both simulation sets we put the configuration
that achieved the maximum performance, as discussed in
Section 5.1. Speedup curves use one master and a single
general-purpose worker as baseline. The vertical axis uses
logarithmic scale in order to fit both performance results in
a single plot while still appreciating their performance gap.
Notice that due to the logarithmic scale, the flattening of
the curves does not mean saturation. Dashed lines show the
linear ideal scaling as a reference. Results show that even
when using accelerators, we can scale performance signifi-
cantly and efficiently use the 1024 cores.

Table 2 shows that for the input set used in the simu-
lations, the theoretical maximum speedup of ClustalW is
66.67× when only PW is parallelized. Since the maximum
speedup achieved for PW was 720×, this translates into
61.1× total application speedup. However, PA parallelism
has been reported [13, 23] to achieve around 4× speedup
on average. This would increase the speedup impact of our
accelerator approach from 61.1× to 195×.

Although power analysis is out of the scope of this paper,
it is important to notice that the performance gap that ap-
pears in Figure 12 is likely to be higher when considering
a real chip. The simultaneous functioning of hundreds of
general-purpose cores running at the typical frequencies of
about 3GHz will not fit within the power budget of current
CMOS technologies. Such cores will have to be run at lower
frequencies, with a direct impact on performance. On the
other hand, application-specific accelerators are designed to
run at lower frequencies wile still providing high computa-
tional performance. In fact, their advantage comes from the
fact the circuits are designed to efficiently match a partic-
ular application or application domain, not from running
complex hardware structures at very high frequencies.

6. CONCLUSION
This paper presented a study of a manycore architecture

targeting the multiple sequence alignment problem. A hy-
brid high-level/cycle-accurate simulator has been used to
model a system with up to 1024 cores. We started by char-
acterizing various input datasets and found out that they



have a significant influence in the effectiveness of paralleliz-
ing ClustalW.
We have simulated a multicore architecture composed of

one master processor and 1024 application-specific accelera-
tors for ClustalW-PW. Results show that while high laten-
cies are tolerated by the application, the system bandwidth
determines the performance. This is mostly due to the use
of DMAs to fetch chunks of data from main memory to the
accelerator’ SPMs. Simulations demonstrated that a small
shared cache, as long as it is partitioned in (four) banks,
is able to capture most of the memory traffic and provides
the necessary bandwidth. Instead of using main memory to
synchronize, we also showed that a realistic latency for the
SQ is able to handle all the accelerators and all the available
tasks in our already large input set.
On the other hand, the general-purpose cores have much

lower throughput than the accelerators and therefore, they
do not put pressure on the rest of the system. A minimal-
istic configuration was able to provide the maximum per-
formance. However, we showed that when using heteroge-
neous inputs of small to medium size, the distribution of
the load gets unbalanced. Estimating the duration of tasks
in advance, allowed us to sort them and schedule long ones
first. This simple strategy improved performance by 28% for
general-purpose cores. However, because the task sorting is
performed on a single processor, its overhead may become
too big and hence not worth when using accelerators.
Simulations showed the “minimum” performance gap be-

tween general-purpose and accelerator cores for our case
study. We make the observation that if implemented in real
chips, the power wall will have the effect of further increasing
the performance gap. This due to the fact that accelerators
run at much lower frequencies, while general-purpose cores
will be forced to apply frequency scaling, directly affect-
ing performance. Lastly, we estimated that with PA paral-
lelization, the total application speedup would increase from
61.1× to 195× using accelerators.
In the future work we will apply the same methodology

to other bioinformatics applications. In particular we will
study the available parallelism in ClustalW-PA and the one
in HMMER [3]. We will also investigate in a more quantita-
tive fashion, the impact of frequency scaling in performance
scalability.
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