
A Survey of Autonomic Computing Systems
Mohammad Reza Nami, Koen Bertels

Computer Engineering Laboratory, Delft University of Technology

Abstract— The evolution of networks and Internet has intro-
duced highly scalable and available services making operational
environments more complex. The increasing complexity, cost and
heterogeneity of distributed computing systems have motivated
researchers to investigate new ideas to cope with the management
of this complexity. One such idea isautonomic computing. This
paper provides a thorough survey of autonomic computing sys-
tems, presenting their characteristics, effects on quality factors,
their building block architecture and challenges.

I. I NTRODUCTION

Data and programs in centralized applications are kept at
one site and this is conceived as a bottleneck in performance
and availability of remote information in desktop computers.
Distributed systems were emerged to remove this flaw. Dur-
ing 1990s, distributed databases and client-server packages
were used for information exchange between remote desktop
computers. In these years, Distributed Computing Systems
(DCSs) consisted of different computers connected to each
other and located at geographically remote sites. This was the
starting point for emerging concepts such as Peer, Peer-to-
Peer (P2P) Computing [9], Agents [15], and Grid Computing
[11]. The evolution of networks and Internet presented highly
scalable and available services which has made environments
more complex. This complexity has increased the cost and
errors of managing IT infrastructures. The skilled persons
who manage these systems are expensive and cannot manage
them in configuration, healing, optimization, protection and
maintenance. Moreover, IT managers look for ways to improve
the Return On Investment (ROI) by reducing the Total Cost of
Ownership (TCO), improving Quality of Services (QoSs) and
reducing the cost for managing of IT complexity. A study
shows that 25 to 50 percent of IT resources are spent on
problem determination and almost half of the total budget is
spent to prevent and recover systems from crashes [12].

All these issues have motivated researchers to investigate
a new idea to cope with the management of complexity in
IT industry and self-management systems have been intro-
duced. On March 8, 2001, Paul Horn presented importance of
these systems by introducing Autonomic Computing Systems
(ACSs) to the National Academy of Engineering at Harvard
University. Some benefits of autonomic computing include
reduction of costs and errors, improvement of services and
reduction of complexity. We are going to survey these issued
in more depth in this paper.

The rest of paper is organized as follows. Related works are
surveyed in section 2. In section 3, we present an overview of
ACSs including definitions, benefits, and their characteristics.
Section 4 describes Autonomic Elements (AEs) architecture

as the building blocks in ACSs. In section 5, some challenges
such as robustness, learning, and relationships among AEs
are discussed. Finally, we present conclusions and further
researches.

II. RELATED WORK

On March 8, 2001, Paul Horn presented a link between
pervasiveness and self-regulation in body ’s autonomic nervous
system and introduced ACSs to the National Academy of
Engineering at Harvard University. With choosing the term
autonomic, researchers attempted to make autonomic capa-
bilities in computer systems with the aim of decreasing the
cost of developing and managing them. Many researchers
have studied this subject since 2001. Their studies have been
categorized as follows:

• Architecture and environment for ACSs: S. White in
[17], and R. Sterritt and D. Bustard in [13] have described
some general architectures for ACSs and their necessary
elements called autonomic elements.

• Studying criteria for evaluating ACSs: J. A. McCann
and M. C. Huebscher in [8] have proposed some metrics
to evaluate ACSs like cost and adaptability. Some perfor-
mance factors such as security and availability have been
discussed by others [1].

• ACS properties: These are self-optimization [12], self-
configuration [15], self-healing [4], and self-protection
[13]. Of course, the IBM Group in [3] has stated a general
schema for ACSs and their characteristics.

• Evaluation ACS from software engineering vision:P.
Leaney, A. MacArthur, and J. Leaney [7] have established
the role of autonomic computing in developing software
projects.

• Challenges in ACSs:Many researches [5] have been
done in this context.

• AC Products: Different projects and products have been
developed in both by the industry and the academic. M.
Salehie and L. Tahvildari have outlined some of these
products in [12].

From another view, researches carried out in this field can be
categorized in two groups as the follows:

• Group 1: Researches which describe technologies related
to autonomic computing.

• Group 2: Researches which attempt to develop
autonomic computing as an unified project.

However, the lake of appropriate tools for managing the
complexities in large scale distributed systems has encouraged
researchers to designing and implementing ACSs features.



III. OVERVIEW

In this section, initial concepts about definitions and char-
acteristics are discussed.

A. Definition and characteristics

The autonomic concept is inspired by the human body ’s
autonomic nervous system. The human body has good mech-
anisms for repairing physical damages. It is able to effectively
monitor, control, and regulate the human body without external
intervention. An autonomic system provides these facilities
for a large-scale complex heterogeneous system. An ACS
is a system that manages itself. According to Paul Horn ’s
definition, an ACS is a self-management system with eight
elements. Self-configuration means that An ACS must dy-
namically configure and reconfigure itself under changing the
conditions. Self-healing means that An ACS must detect failed
components, eliminate it, or replace it with another component
without disrupting the system. On the other hand, it must
predict problems and prevent failures. Self-optimization is the
capability of maximizing resource allocation and utilization
for satisfying user requests. Resource utilization and work load
management are two significant issues in self-optimization. An
ACS must identify and detect attacks and cover all aspects
of system security at different levels such as the platform,
operating system, applications, etc. It must also predict prob-
lems based on sensor reports and attempt to avoid them. It
is called as Self-protection. An ACS needs to know itself. It
must be aware of its components, current status, and available
resources. It must also know which resources can be borrowed
or lended by it and which resources can be shared. It is Self-
awareness or Self-knowledge property. An ACS must be also
aware of the execution environment to react to environmental
changes such as new policies. It is called as context-awareness
or environment-awareness. Openness means that An ACS must
operate in a heterogeneous environment and must be portable
across multiple platforms. Finally, An ACS can anticipate
its optimal required resources while hiding its complexity
from the end user view and attempts to satisfy user requests.
Self-configuration, self-healing, self-optimization, and self-
protection are considered as major characteristics and the rest
as minor characteristics. As mentioned above, the aim of AC is
to improve the system abilities. Therefore, AC characteristics
affect various measurements of quality such as usability,
functionality, reliability, maintainability, and portability.

B. A survey of different definitions

The aim of this survey is to identify all the possible
definitions about ACSs. The common professional researchers
in this field have considered for this survey. They are first
author in their publications. The following definitions for
autonomic computing are presented:

• Kephart [5]: Major characteristics and self-managing.
• Chess [1]: Major characteristics.
• Tivoli IBM [3]: Major and minor characteristics.

• Sterritt [14]: Major characteristics, self-governing, self-
adapting, self-managing, self-recovery, and self-diagnosis
of faults.

• Tianfield [16]: Self-mechanism including major char-
acteristics, self-planning, self-learning, self-scheduling,
self-evolution, and etc.

• Parashar [11]: Major characteristics, self-adapting.
• Murch [10]: Major and minor characteristics.
• Tesauro [15]: Goal-driven self-assembly, self-healing, and

real-time self-optimizing.
• De Wolf [18]: Major characteristics.
• White [17]: Major characteristics and self-managing.
• Ganek [2]: Major and minor characteristics.

with closer examination of the papers, it is found that these
definitions are derived from the eight elements proposed by
Horn in 2001. For example, D. M. Chess et al have used
the term ’self-configuration’ similar to Horn ’s definition
and have presented ’self-assembly’ property in Unity as an
autonomic computing product. Some terms such as self-tuning
[16] and self-adapting [11] are conceptually similar to existing
characteristics. ’Self-managing’ in Kephart [6], White et al
[17], and Sterritt [14] has been used as a popular property
and major characteristics have been its subset. A trend which
emerges from the analysis of the definitions is that some
researchers have defined the same concept with different terms.
For example, Tesauro et al [15] have defined self-assembly
as a concept similar to self-configuration for an autonomic
computing product. ’Environment-awareness’ is used by Ster-
ritt [13] to describe the sixth element of Horn ’s definition, but
more researchers have used the term ’context-awareness’ to
describe the same concept. As described above, all autonomic
computing characteristics have been mentioned in almost half
of the papers surveyed. While major characteristics have
been used to describe an autonomic computing system in
every paper, anticipatory has been represented in few papers
surveyed.

IV. TOWARD AUTONOMIC ELEMENT ARCHITECTURE

The goal of an autonomic computing architecture is to
reduce intervention and carry out administrative functions
according to predefined policies. Moving from manual to
autonomic systems is introduced in a step-by-step manner
by Tivoli group in IBM. ACSs also can make decisions
and manage themselves in three scopes: resource element
scope, group of resource elements scope, and business scope.
In resource element scope, individual components such as
servers and databases manage themselves. In group of resource
elements scope, pools of grouped resources that work together
perform self-management. For example, a pool of servers
can adjust work load to achieve high performance. Finally,
overall business context can be self-managing. It is clear that
increasing the maturity levels of AC will affect on level of
making decision. The path to AC consists of five levels:
basic, managed, predictive, adaptive, and autonomic. They are
explained in the following [[10]]:



Fig. 1. Autonomic Element architecture

• Basic Level: At this level, each system element is
managed by IT professionals. Configuring, optimizing,
healing, and protecting IT components are performed
manually.

• Managed Level:At this level, system management tech-
nologies can be used to collect information from different
systems. It helps administrators to collect and analyze
information. Most analysis is done by IT professionals.
This is the starting point of automation of IT tasks.

• Predictive Level: At this level, individual components
monitor themselves, analyze changes, and offer advices.
Therefore, dependency on persons is reduced and deci-
sion making is improved.

• Adaptive Level: At this level, IT components can indi-
vidually or group wise monitor, analyze operations, and
offer advices with minimal human intervention.

• Autonomic Level: At this level, system operations are
managed by business policies established by the admin-
istrator. In fact, business policy drives overall IT man-
agement, while at adaptive level; there is an interaction
between human and system.

Autonomic Elements (AEs) are the basic building blocks
of autonomic systems and their interactions produce self-
managing behavior. We can consider AEs as software agents
and ACSs as multi-agent systems. Each AE has two parts:
Managed Element (ME) and Autonomic Manager (AM). In
fact, ACSs are established from Managed Elements (MEs)
whose behaviors are controlled by Autonomic Managers
(AMs). AMs execute according to the administrator policies
and implement self-management. An ME is a component
from system. It can be hardware, application software, or an
entire system. Sensors retrieve information about the current
state of the ME and then compare it with expectations that
are held in knowledge base by the AE. The required action
is executed by effectors. Therefore, sensors and effectors
are linked together and create a control loop. Autonomic
Managers (AMs) are the second part of an AE. An AM uses a

Fig. 2. Estimate of people trends toward autonomic products

manageability interface to monitor and control the ME. It has
four parts: monitor, analyze, plan, and execute. The monitor
part provides mechanisms to collect information from a ME,
monitor it, and manage it. Monitored data is analyzed. It helps
the AM to predict future states. Plan uses policy information
and what is analyzed to achieve goals. Policies can be a set
of administrator ideas and are stored as knowledge to guide
AM. Plan assigns tasks and resources based on the policies,
adds, modifies, and deletes the policies [17]. AMs can change
resource allocation to optimize performance according to the
policies. Finally, the execute part controls the execution of
a plan and dispatches recommended actions into ME. These
four parts provide control loop functionality. Communications
between AMs provide self-managing and context-awareness.
External behavior of AEs is related to relationships among
them. Figure 1 shows detailed architecture of AEs in an AC
environment. AMs can be linked together via an autonomic
signal channel. The Tivoli group has also presented an
estimation of people tending towards the adoption of
autonomic operations from 2002 to 2006. Figure 2 shows
results of this estimate.

V. AUTONOMIC COMPUTING CHALLENGES

Since autonomic computing is a new concept in large-
scale heterogeneous systems, there are different challenges and
issues. Some of them have been explained in the following:

A. Issues in Relationships among AEs

Relationships among AEs have a key role in implementing
self-management. These relationships have a life cycle consist-
ing of specification, location, negotiation, provision, operation,
and termination stages. Each stage has its own challenges [6].
Expressing the set of output services that an AE can perform
and the set of input services that it requires in a standard form,
as well as establishing the syntax and semantics of standard
services for AEs, can be a challenge in specification. As an AE
must dynamically locate input services that it needs and other
elements that need its output services must dynamically locate
this element with looking it up, AE reliability can be a research
area in location stage. AEs also need protocols and strategies



to establish rules of negotiation and to manage the flow of
messages among the negotiators. One of challenges is for the
designer to develop and analyze negotiation algorithms and
protocols, then determine which negotiation algorithm can be
effective. Autonomated provision can also be a research area
for next stage. After agreement, the AMs of both AEs control
the operation. If the agreement is violated, different solutions
can be introduced. This can be a research area. Finally, after
both AEs agree to terminate the negotiated agreement, the
procedure should be clarified.

B. Learning and Optimization Theory

How can we transfer the management system knowledge
from human experts to ACSs? The master idea is that by
observing that how several human experts solve a problem
on different systems and by using traces of their activities,
a robust learning procedure can be created. This procedure
can automatically perform the same task on a new system. Of
course, facilitating the knowledge acquisition from the human
experts and producing systems that include this knowledge can
be a challenge. One of the reasons for the success of ACSs
is their ability to manage themselves and react to changes. In
short, in sophisticated autonomic systems, individual compo-
nents that interact with each other, must adapt in a dynamic
environment and learn to solve problems based on their past
experiences. Optimization can be a challenge too, because in
such systems, adaptation changes behavior of agents to reach
optimization. The optimization is examined at AE level.

C. Robustness

There are many meanings for robustness. Robustness has
been served in various sciences and systems such as ecology,
engineering, and social systems. We can interpret it as stability,
reliability, survivability, and fault-tolerance, although it does
not mean all of these. Robustness is the ability of a system
to maintain its functions in an active state, and persist when
changes occur in internal structure of the system or external
environment. Some often mistake it with stability. Although
both stability and robustness focus on persistence, robustness
is broader than stability. It is possible that components of a
system are not themselves robust, but interconnections among
them make robustness at the system level. A robust system can
perform multiple functionalities for resistance, without change
in the structure. With the design of instructions that permit
systems to preserve their identity even when they are disrupted,
the robustness in systems can be increased. Robustness is one
of grand scientific challenges which can be also examined in
programming.

VI. CONCLUSIONS ANDFUTURE WORKS

In a distributed computing system, users and multiple
computers are interconnected in an open, transparent, and
geographical large-scale system. Therefore, development and
management of these systems are master problems for IT
professionals. IBM proposed Autonomic Computing Systems

(ACSs) as a solution. ACSs manage themselves. Four ma-
jor characteristics of such systems include self-configuration,
self-optimization, self-protection, and self-healing. To achieve
them, ACSs have four minor characteristics as self-awareness,
context-awareness, openness, and anticipatory. Autonomic El-
ements (AEs) provide self-managing behavior in ACSs. They
are the building blocks of ACSs and their interactions produce
self-managing behavior. The various parts of AEs have been
automated with evolution of AC levels. The engineering and
scientific challenges raised in this field include robustness,
learning, and relationships among AEs.

In this paper, a survey of autonomic computing systems
and their importance was presented. As future researches, the
following topics can be proposed in autonomic distributed
computing domain:

1) Performance evaluation of applying the autonomic be-
havior in a distributed computing system model.

2) Designing an autonomic manager in multi-layer P2P
form, so that autonomic behavior and management in-
formation as a knowledge base are stored in separated
layers.

3) Studying languages which develop autonomic manage-
ment behavior in a distributed computing environment.

4) Implementing a self-healing system in a virtual organi-
zation wherein some partners may fail.

REFERENCES

[1] D. M. Chess, C. Palmer, and S. R. White. Security in an autonomic
computing environment. InIBM System Journal, volume 42, pages 107–
118, January 2003.

[2] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing
era. In IBM System Journal, volume 42, pages 5–18, January 2003.

[3] IBM Corporation Software Group. The Tivoli software implementa-
tion of autonomic computing guidelines. InAvailable at http://www-
03.ibm.com/autonomic/pdfs/br-autonomic-guide.pdf, 2002.

[4] S. Hariri and M. Parashar. Autonomic Computing: An overview. In
Springer-Verlag Berlin Heidelberg, pages 247–259, July 2005.

[5] J. O. Kephart. Research challenges of autonomic computing. InPro-
ceedings of the 27th International Conference on Software Engineering,
pages 15–22, May 2005.

[6] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
In IEEE Computer, volume 36, pages 41–50, January 2003.

[7] P. Leaney, A. MacArthur, and J. Leaney. Defining Autonomic
computing: A software engineering perspective. InAustralian Software
Engineering Conference (ASWEC’05), 2005.

[8] J. A. McCann and M. C. Huebscher. Evaluation issues in autonomic
computing. InProceedings of Grid and Cooperative Computing work-
shop(GCC), volume 15, pages 597–608, October 2004.

[9] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu. Peer-to-Peer Computing. In
Proceedings of the Second International Conference on Peer-to-Peer
Computing, pages 1–51, July 2002.

[10] R. Murch. Autonomic Computing. InPrentice-Hall, pages 0–20:25–40,
October 2004.

[11] M. Parashar, Z. Li, H. Liu, V. Matossian, and C. Schmidt. Enabling
Autonomic Grid Applications: Requirements, Models and Infrastruc-
tures. InSelf-Star Properties in Complex Information Systems, Lecture
Notes in Computer Science, Springer Verlag, volume 3460, 2005.

[12] M. Salehie and L. Tahvildari. Autonomic Computing: emerging trends
and open problems. InACM SIGSOFT Software Engineering Notes,
volume 30, pages 1–7, July 2005.

[13] R. Sterritt and D. Bustard. Towards an autonomic computing environ-
ment. In14th International Workshop on Database and Expert Systems
Applications (DEXA ’03), pages 694–698, September 2003.



[14] R. Sterritt, M. Parashar, H. Tianfield, and R. Unland. A concise intro-
duction to autonomic computing. InAdvanced Engineering Informatics,
volume 19, pages 181–187, January 2005.

[15] G. Tesauro and et al. A Multi-agent systems approach to autonomic
computing. InIBM Press, pages 464–471, March 2004.

[16] H. Tianfield. Multi-agent autonomic architecture and its application in
e-medicine. InIEEE/WIC International Conference on Intelligent Agent
Technology (IAT 2003), pages 601–604, October 2003.

[17] S. White and et al. An architectural approach to autonomic computing.
In Proceedings International Conference on Autonomic Computing
(ICAC’04), NewYork, USA, pages 2–9, May 2004.

[18] T. De Wolf and T. Holvoet. Evaluation and comparison of decentralised
autonomic computing systems. InDepartment of Computer Science,
K.U.Leuven, Report CW 437, Leuven, Belgium, March 2006.


