
A Two-phase Practical Parallel Algorithm for
Construction of Huffman Codes

S. Arash Ostadzadeh†, B. Maryam Elahi‡, Zeinab Zeinalpour Tabrizi*, M. Amir Moulavi*, Koen Bertels†

† Computer Engineering Laboratory, EEMCS, Delft University of Technology, Delft, The Netherlands

‡ Center for Parallel Computers, Royal Institute of Technology, Stockholm, Sweden
* Computer Engineering Department, Islamic Azad University of Mashhad, Mashhad, Iran

Abstract - The construction of optimal prefix codes plays
a significant and influential role in applications
concerning information processing and communication.
For decades, different algorithms were proposed treating
the issue of Huffman codes construction and various
optimizations were introduced. In this paper we propose a
detailed practical time-efficient parallel algorithm for
generating Huffman codes on CREW PRAM model
exploiting n processors, where n is equal to the number of
symbols in alphabet. We first compute the codewords
lengths for all symbols concurrently with an innovative
direct parallelization of the Huffman tree construction
algorithm, alleviating the complexity of dealing with the
original tree-like data structure. Then Huffman codes
corresponding to symbols are generated in parallel based
on a recursive formula introduced in [5]. The proposed
algorithm achieves an O(n) time in the worst case when
one-sided Huffman tree is formed, which is rarely
encountered in practice, and O(log((logn – 1)!)) time in
the best case when Huffman tree is nearly balanced.

Keywords: Data Structures, Parallel Algorithms, Optimal
Prefix Codes, Huffman Codes, PRAM.

1 Introduction
 The construction of optimal codes for a given
alphabet is a classical problem with significant and
influential applications in information processing and
communication. Let ∑= {S1, S2,…, Sn} be an alphabet. A
set of codes Č= {C1, C2,…, Cn} over ∑ is a finite set of
distinct sequences over ∑. Each sequence Ci is called
codeword. A code Č is called a prefix code if no codeword
in Č is a prefix of another one in the set. We define a
message M over Č to be a concatenation of codewords
from Č. If the frequency (or probability provided that real
value of the frequency can not be determined) of
appearance of Si in M is Pi∈R, then the Huffman coding
problem is to construct a prefix code Č= {C1, C2,…, Cn

∈∑*} such that ∑ =
n
i ii CP1 * is minimum among all the

possibilities of Č, where iC is the length of Ci. As an

obvious result, if we assume M is to be transmitted over a
communication channel which can transfer one symbol of
the alphabet ∑* per unit of time then the transmission time
would be the least possible. It is easy to discover a
desirable property in prefix codes that a message can be
decomposed in only one way.

In 1952, Huffman [8] proposed an elegant sequential
algorithm which generates optimal prefix codes in
O(nlogn) time. The algorithm actually needs only linear
time provided that the frequencies of appearances are
sorted in advance [17, 21]. Since then there have been
extensive researches on analysis, implementation issues
and improvements of the Huffman coding theory in a
variety of applications [2, 3, 4, 5, 6, 7, 9, 10, 13, 15, 17, 19,
21]. Researches to address the problem in parallel
environments also emerged [1, 11, 14, 16, 18, 20]. There
are already several attempts to construct the Huffman
codes in parallel. Teng [20] proposed the first NC
algorithm to generate Huffman codes using n6 processors
in O(logn) time which seems rather unpractical due to the
huge number of processors. Atallah et al. [1] showed how
to reduce the number of processors to n3 while maintaining
the same time complexity. They also presented an O(log2n)
time, n2/logn processors as well as an O(logn) time, n3/logn
processors CREW deterministic parallel algorithms for
construction of Huffman codes. Further they concluded
that the time can be reduced to O(logn(loglogn)2) on a
CRCW model using only n2/(loglogn)2 processors.

Kirkpatrick and Przytycka [11] presented several
approximated parallel algorithms for construction of
Huffman codes. Later Larmore and Przytycka [16]
proposed an O(n logn) time algorithm that uses O(n)
processors. The original algorithm is developed as a
solution for the concave least weight subsequence problem
but is extended for the Huffman coding problem. Milidiú et
al. [18] proposed a work efficient parallel algorithm on
CREW to address the problem. Their algorithm runs in
O(Hloglog(n/H)) time with n processors, where H is the
length of the longest Huffman code. Since H is in the
interval [⎡ ⎤ 1,log −nn], the algorithms requires O(n) time in
the worst case. It is known that the length of the Huffman
code is bounded to 1log x − where x=P1/(∑ =

n
i iP1) [2]. As a

result the time complexity of the algorithm can be
considered 1(log log log)O x n− . The major problem with
Milidiú et al.’s algorithm and some other parallel Huffman
construction solutions is that instead of actually generating
the Huffman codes they rather construct the Huffman tree
in parallel and it is not clear how the codes should be built
from the Huffman tree concurrently if possible.

In this paper we particularly address this problem by
proposing a practical detailed CREW algorithm. In other
words the output of our algorithm is the Huffman codes not
the Huffman tree. The algorithm is based on a sophisticated
parallelization of the direct Huffman tree constructing
simulation with the elimination of the need to store nodes
in a tree-like data structure. We first compute the path
length for each symbol in the Huffman tree and then focus
on generating the Huffman codes in parallel by exploiting
Hashemian’s recursive formula based on single-side
growing Huffman tree [5]. Our Algorithm can be
implemented in O(n) time on the CREW PRAM model
incorporating n processors in the worst case and the best
case time is bounded to O(log((logn – 1)!)), where n equals
the number of symbols.

The rest of this paper is organized as follows. In Section 2,
we describe the fundamental structures used in our
pseudocode and the definitions. In section 3, we first give
an outline of our algorithm and then it is examined in
details. The performance analysis is discussed in section 4.
We conclude in section 5.

2 Data structures
 To generate the Huffman codes for a given set of
symbols, we need to know the position of each symbol in a
tree known as Huffman tree. The codeword for each
symbol could be obtained by traversing the tree from the
root to the leaf associated with that symbol; along the path
every left branch counts as a '0' and every right branch
counts as a '1'. Symbols can only be the leaves of the
Huffman tree; therefore the code generated from this tree is
a prefix code and hence, has a unique decomposition.

We assume that the input to the first phase of our algorithm
is a symbol table including an array of symbols S = {s1, s2,
…, sn} and an array of corresponding frequencies F = {f1,
f2, …, fn}. This symbol table is sorted based on frequencies
in non-decreasing order. Each symbol corresponds to a leaf
in the Huffman tree. We define a structure for these leaves,
including freq, a field for frequency value, and leader, a
pointer to the root of the subtree that this leaf belongs to.
lNodes, an array of the mentioned structure, shows the
leaders of the leaves that have already participated in the
construction of the tree levels, in which lNodesi
corresponds to si. We define a similar structure for internal
nodes. iNodes behaves as a queue of this data structure. As
new tree levels are generated, new internal nodes are added
to the queue. Array Temp is a data structure for temporary
storage of a merged list of internal nodes from iNodes and

leaf nodes from lNodes, which are the nodes participating
in the construction of each new tree level. These nodes are
then melded to form the internal nodes of the next higher
level. Each element of Temp contains three fields: freq,
isLeaf and index. The chosen leaf nodes, who participate in
construction of the current level, are copied to Copy, which
is an array with the same structure as Temp. The first phase
generates an array of codeword lengths CL = {cl1, cl2, …,
cln} in which cli is the codeword length for si, such that cli ≤
cli+1. The second phase of our algorithm takes the array of
codeword lengths CL as input and generates the final
codewords in CW = {cw1, cw2, …, cwn}, in which cwi is the
codeword for si.

3 Algorithm
 In this section, we first portray the outline of our
algorithm and then describe the details of implementation
issues concerning each phase.

3.1 Outline
 We propose a two-phase parallel algorithm for time-
efficient construction of Huffman codes on the CREW
PRAM model. Our algorithm requires n processors, which
is equal to the number of input symbols. The two phases of
the presented algorithm are: Codeword Length Generation
(CLGeneration) and Codeword Generation
(CWGeneration). The outline is depicted in Fig. 1.

In the first phase, CLGeneration algorithm computes the
codeword length for each symbol si which is equal to the
path length of si in the Huffman tree. This is done without
maintaining a tree structure in practice and by generating
the tree levels, one at a time, in a bottom-up fashion. With
generation of each new level in the tree, the codeword
lengths of all symbols whose leaders have participated in
the construction of the new level are incremented. We
define a symbol’s leader as the root of the subtree that the
symbol belongs to. At each level, the two nodes with
smallest frequencies are found among the internal nodes
constructed in the previous iteration and leaf nodes who
have not participated in the construction of the tree yet.
These two are combined to form a new internal node. The
combined value indicates the minimum frequency of the
next higher level, which plays a crucial role in selecting
leaf nodes for participation in the current level. At this
point, all the internal nodes that belong to the previous
level and leaf nodes who have not participated yet and have
a frequency smaller than or equal to the minimum
frequency, are selected, merged and melded pair-wise to
form new internal nodes. The new internal nodes are the
new leaders in their subtrees; hence leaf nodes need to
check whether or not their leaders have changed. In case of
a change, they update their leaders and increment their
codeword lengths. This process is repeated until only one
internal node remains, which is the root of the tree. At the
end of the first phase, CL has the codeword lengths for all

Fig. 1. Algorithm Outline

symbols in non-increasing order.

Codeword generation is performed in a top-down fashion;
therefore we need to reverse CL in the initialization stage
of the second phase. The final Huffman code for each
symbol is generated from the codeword length with the
help of a parallel version of the recursive formula
introduced in [5]. In proposition 2, we show that the
codewords for symbols with the same codeword lengths
can be constructed in parallel. For each group of symbols
with the same codeword lengths, which are symbols
residing in the same level of the tree, the codeword of the
first symbol is computed and then the rest of the group
generate their codewords in parallel. This process is
repeated for each level of the tree until CW has the final
codewords for all symbols.

Proposition 1. Let the trees T1,T2,…,Tk with the
corresponding frequencies fr1,fr2,…,frk such that

kifrfr ii <<≤ + 0,1 be present in a forest at stage s of the
Huffman Tree construction algorithm. For all trees T3,…,Tm
such that mifrfrfri ≤≤+≤ 3,21 , the trees T2j+1 and T2j+2,

⎣ ⎦2/)2(1 −≤≤ mj can be melded in parallel.

Proof. Since T1 and T2 hold the minimum frequencies
among all the trees, the combination of T1 and T2 is
accomplished by the definition of Huffman tree
construction algorithm.

If we assume that the combinations of T3 and T4, T5 and T6
and so on, are not performed then two alternative
assumptions should be investigated. First, suppose two
trees Ts and Ts+1 (two adjacent trees according to their
frequencies) residing in the current forest, are not
combined in subsequent stages of the Huffman tree
construction algorithm, instead Ts is combined
with 2, ≥± εεsT . This assumption is rejected due to the
definition of the Huffman tree construction algorithm,
indicating two trees with minimum frequencies are selected
at each stage, and there exists at least one tree with the

frequency lower than ε+sT which can be selected for the
combination. Similarly, the combination of Ts and ε−sT can
not be true, because frs-1 ≤ frs and if a combination should
be performed Ts would not be a valid candidate.

Second, we can make an assumption that the combination
of Ts, 3≤ s ≤m is carried out with another tree Tp whose
creation is conditioned on passing the current stage of the
algorithm, i.e. the tree is not created yet and it doesn’t exist
in the forest. This assumption is also rejected because frp ≥
fr1+fr2, which means the to-be-created trees in subsequent
stages have a lower bound of (fr1+fr2) for their frequencies.
However, if there exists candidate trees in the forest
presently, their frequencies are limited to (fr1+fr2) at most
which can be considered for the combination process in the
current stage and there is no need to wait for the next stage
to come.

Since none of the alternative assumptions are true, the
proof is complete by contradiction. ■

Proposition 2. Codeword generation can be performed in
parallel for those symbols with the same codeword length.

Proof. The proof is trivial. In the recursive codeword
generation formula proposed by Hashemian [5], the value
of the codeword for symbol s is dependant on the
codeword value of its precedent symbol, however for all
those symbols with the same codeword length, the value of
CLi+1 - CLi equals zero, as a result the formula is revised to
Ci+1=Ci+1 which means that if we have the codeword value
of the first symbol in the sequence of equal-codeword-
length symbols, for all the subsequent symbols following
the first one, the codeword value of a symbol in the
sequence is one greater than the previous one. Provided
that we have k processors, each responsible for a symbol in
the sequence, knowing the codeword value of the first
symbol, the codeword generation for these k symbols can
be performed in parallel. Each processor only needs to
know the distance of its symbol from the first one in the

sequence and add this value to the first symbol’s
codeword. Hence, we have the proposition. ■

3.2 Description
 The following two subsections discuss each phase of
the algorithm in details and they are accompanied by an
example for clarification.

3.2.1 CLGeneration

 For the CLGeneration phase, first we need to
initialize the basic structures as depicted in Fig. 2.

The following arrays are initialized in parallel. lNodes is an
array corresponding to S containing a frequency field
which is initialized with the frequency of its symbol and its
leader is set to -1. CL, the array that shows the codeword
length for each symbol, is initialized with 0. Next,
processor P1 sets the following variables. lNodesCur points
to the last leaf node that has participated in the construction
of a level so far and it is initialized with 0. iNodesFront
and iNodesRear are the front and rear indicators for
iNodes, which behaves as a queue and shows the newly
generated internal nodes who have not participated in the
construction of a level. They are initializes with zero,
indicating that the iNodes queue is empty.

Fig. 2. Initialization

After initialization, the following operations are performed
iteratively until all leaves are processed and no internal
node is left in the iNodes queue, except the root. The sum
of two minimal frequency values, MinFreq, determines the
frequency value of the next internal node. This internal
node could be constructed from the combination of two
new leaves, an internal node and a new leaf or two internal
nodes. In case of ties, leaves are preferred to participate in
the construction of the new internal node. Here, array mid
and SelectMinimums function are used to make the code
concise and simplify the process. The new internal node is
added to the iNodes queue as illustrated in Fig. 3. The
leaders of the two internal nodes or leaves who have been
combined are set to the index of the new generated internal
node in the iNodes queue.

The select module takes lNodes and MinFreq as input
parameters returning Copy and CurLeavesNum as output
parameters. It copies those leaves whose indexes are more
than lNodesCur and their freq is less than or equal to
MinFreq, to the Copy array. Copy array has three fields:
freq, isLeaf and index. freq is the value of the selected leaf

frequency; isLeaf in this step has the value of true for all
elements because they are all leaves and index is the index
of the selected leaves in lNodes. CurLeavesNum is the
number of selected leaves that have been copied to the
Copy array. Fig. 4 illustrates the Select module.

Fig. 3. New iNode

The module that is illustrated in Fig. 5 is used for
determining the participating elements in the construction
of the current level. The values of CurLeavesNum,
MergeFront, and MergeRear indicate which nodes in the
Copy and iNodes arrays are merged. If the total number of
unprocessed iNodes elements and CurLeavesNum is odd,
the module excludes an internal node or leaf node that has
the maximum frequency; in case of ties, it is preferred to
keep leaf nodes. In case the iNodes queue is empty, the
CurLeavesNum is decremented, thus the length of Temp
array becomes even. MergeFront and MergeRear denote
the beginning and the end of the segment in iNodes that
participates in the Merge function.

Fig. 4. Select Module

The Merge function performs the task of combining two
sorted lists in O(loglogn) on CREW PRAM model [12].
The function accepts Copy, CurLeavesNum, mergFront
and mergRear as input parameters and Temp and
TempLength as output. The main task of this function is to
build the Temp array which is the combination of Copy

 Forall processors Pi (lNodesCur < i ≤ n)
 if (lNodes[i].freq ≤ MinFreq)
 Copy[i – lNodesCur].freq ← lNodes[i].freq
 Copy[i – lNodesCur].index ← i
 Copy[i – lNodesCur].isLeaf ← true
 if (i = n || lNodes[i+1].freq > MinFreq)
 CurLeavesNum ← i – lNodesCur

P1 sets
mid ← {∞, ∞, ∞, ∞}
if (lNodesCur ≤ n – 1)
 mid [1] ← lNodes[lNodesCur+1].Freq
if (lNodesCur ≤ n – 2)
 mid [2] ← lNodes[lNodesCur+2].Freq
if (iNodesRear > iNodesFront)
 mid [3] ← iNodes[iNodesFront+1].Freq
if (iNodesRear > iNodesFront + 1)
 mid [4] ← iNodes[iNodesFront+2].Freq
SelectMinimums (mid)
MinFreq ← mid[1] + mid[2]
iNodes [iNodesRear + 1].freq ← MinFreq
iNodes [iNodesRear + 1].leader ← -1
if (isLeaf (mid[1]))
 lNodes[lNodesCur+1].leader ← iNodesRear + 1
 CL[lNodesCur+1]++, lNodesCur++
else
 iNodes[iNodesFront + 1].leader ← iNodesRear + 1
 iNodesFront++
if (isLeaf(mid[2]))
 lNodes[lNodesCur+1].leader ← iNodesRear + 1
 CL[lNodesCur+1]++, lNodesCur++
else
 iNodes[iNodesFront + 1].leader ← iNodesRear + 1

Forall processors Pi (1 ≤ i ≤ n) do in parallel
 lNodes[i].freq ← F[i]
 lNodes[i].leader ← -1
 CL[i] ← 0
P1 sets
 iNodesFront ← 0
 iNodesRear ← 0
 lNodesCur ← 0

array and the segment in iNodes that is indicated by
MergeFront and MergeRear. Temp is sorted based on the
freq field in non-decreasing order.

Fig. 5. Updating Iterators

In the next step, the Meld module generates the new
internal nodes of the next level. Each processor is assigned
to two consecutive elements of Temp according to its
index. These pairs of elements are melded to form new
internal nodes whose freq is the sum of the combined pairs’
frequencies. Then the corresponding processor updates the
leader fields of the two participating nodes. The location of
each node is determined by the isLeaf field indicating that
the element resides in lNodes or iNodes array.

Fig. 6. Meld Module

In the end, P1 increments the iNodeRear based on the
number of the newly added internal nodes which is equal
to half of TempLength. lNodesCur is incremented by the
value of CurLeavesNum which is equal to the number of
leaves who participated at this level.

If the leader of an internal node is changed, all its children
need to update their leader and set it to the index of the
new internal node. The codeword lengths corresponding to
these leaf nodes are also incremented. This is done in
parallel. In this step all leaves check their leaders in

parallel and they figure out whether or not their leaders
have changed. If their leaders are assigned to new leaders,
they update their leaders by getting the value of their
leader's leader. This is depicted in Fig. 7.

Fig. 7. Update Leaders

The mentioned process repeats until only one internal node
remains, which is the root. At this point, CL has the
codeword lengths for all symbols.

The example in Fig. 8 depicts the progress in the first pass
of CLGeneration for a given input. The process is repeated
for every level in the tree and in the end, CL has the
codeword lengths for all symbols in S.

3.2.2 CWGeneration

 In the CWGeneration phase, we generate the final
codewords by introducing a parallel version of the
algorithm proposed by Hashemian [5]. CL is the input
array for this phase with the length of n and CW is the
output array with the same number of elements. We
generate the final codewords in a top-down fashion, so we
need to reverse CL. Reversing is a simple process that is
accomplished in parallel. In the pseudocode depicted in
Fig. 10, the variables CCL and CDPI are used to show the
current codeword length and current done-processor index
respectively. In each iteration, CCL (Current Codeword
Length) has the length of the codewords of the current
level and CDPI (Current Done-Processor Index) indicates
the index of the last processor who has finished generating
its codeword. Generation of codewords for each level is
accomplished in two steps, codeword of the first symbol in
the level is computed and then all other symbols with the
same codeword lengths construct their codewords. While
we have the codeword lengths of all symbols, we can
compute the codewords by employing the following
recursive formula [5]:

 ii clcl
ii CC −

+
++= 12*)1(1 (1)

Initialization is done by the first processor. The value of
CCL is set to the value of the first element of CL. A string
of zeros with length of CCL is put in the first cell of the
array CW. For the processors whose corresponding
symbol's codeword length is equal to CCL, the construction
of the codewords can be accomplished in parallel because
they only have to add a number to the codeword of the first
symbol in the series. P1 generates the first codeword of the
next group to provide processors assigned to the next level
with the base value upon which they construct their
codewords in parallel.

Forall processors Pi (1 ≤ i ≤ n) do in parallel
 if (lNodes[i].leader != -1)
 if (iNodes[lNodes[i].leader].leader != -1)
 lNodes[i].leader ← iNodes[lNodes[i].leader].leader
 CL[i] ++

Forall processors Pi (1 ≤ i ≤ TempLength) do in parallel
 ind ← iNodesRear + i
 iNodes [ind].freq ← temp [2*i-1].freq + temp [2*i].freq
 iNodes[ind].leader ← -1

 if (temp [2*i-1].isleaf)
 lNodes [temp [2*i – 1].index].leader ← ind
 CL[temp [2*i – 1].index]++
 else
 iNodes [temp [2*i – 1].index].leader ← ind
 if (temp [2*i].isleaf)
 lNodes [temp [2*i].index].leader ← ind

 CL[temp [2*i].index]++
 else
 iNodes [temp [2*i].index].leader ← ind
P1 sets
 iNodesRear ← iNodesRear + (TempLength/2)

P1 Sets
mergeRear ← iNodesRear
mergeFront ← iNodesFront

if((CurLeavesNum+ iNodesRear - iNodesFront)%2=0)
 iNodesFront ← iNodesRear

else if ((iNodesRear - iNodesFront != 0) &&
(F[lNodesCur+CurLeavesNum]≤iNodes[iNodesRear].freq))
 mergeRear--
 iNodesFront ← iNodesRear - 1
else
 iNodesFront ← iNodesRear
 CurLeavesNum --

lNodesCur ← lNodesCur + CurLeavesNum iNodesRear++

Fig. 8. a) Input to the first phase b) lNodes and CL initialized before the first cycle c) First internal node is generated d)

Select chooses the participating leaf nodes e) Iterators updated to determine the participating lNodes and iNodes f) Temp is
filled with a merged list of participating lNodes and iNodes g) Nodes in Temp melded to form new iNodes. The leaders are

updated and CL elements corresponding to participating leaf nodes are incremented h) Final result in CL for given input

Fig. 9. a) Initialization b) Generation of the first value in the series for the next level c) The output of this phase

(codewords)

Fig. 10. Codeword Generation

These iterations continue until the codewords for all
symbols are constructed. In the end, CW is reversed to
make codewords correspond to the right symbols.

The example in Fig. 9 depicts the progress in the
CWGeneration phase for a given input. The process is
repeated for every level in the tree and in the end, CW has
the codewords for all the symbols in S.

4 Performance analysis
 First, we analyze each phase of the algorithm
separately and then we discuss the performance of the
algorithm as a whole.

Lemma 1. CLGeneration performs L cycles.

Proof. It can be proved by induction that if lN is the first
chosen leaf node at the first iteration, that is the leftmost
leaf at the bottommost level of the Huffman tree , a new
ancestor for lN is generated in each cycle [18]. lN has (L-
1) ancestors, hence the number of cycles is equal to L.■

Theorem 1. The CLGeneration runs in O(Lloglog(n/L))
time.

Proof. CLGeneration is comprised of a set of operations
which are performed within a number of cycles, one cycle
per each level of the tree. Lemma 1 states that the number
of these cycles is L, the height of the Huffman tree.

Before the main loop, Initialization is performed which has
a parallel section and a sequential section, both of O(1)
time. Next, at every cycle, a number of operations are
performed. New iNodes module operates a few sequential

comparisons on four nodes in O(1). Update Iterators is
also of constant order. Update Leaders and Select and
Meld, which all execute in parallel, are of O(1) parallel
time. This is because a constant number of operations are
performed on i variables by i processors in parallel; such
that 1 ≤ i ≤ n. The only part that is not of constant order is
the Merge operation that can be performed in
O(loglogM(i)) parallel time [12], in which M(i) is the
number of internal nodes generated at cycle i. So, the time
required by CLGeneration is as follows.

 1
1

(log log ())
L

i
T O M i

=
= ∑ (2)

Since the number of internal nodes in a Huffman tree with
n leaf nodes is equal to (n - 1), M(i) is constrained to
∑ = −=L

i niM1)1()(. It can be seen that the upper bound is
directly dependent on L, the height of the tree that is in the
interval ⎡ ⎤[]1,log −nn . If L equals n-1, which means we have
a one sided tree, M(i) is of O(1), hence the algorithm runs
in O(n). If the tree is balanced, we have:

∑ =
L
i iM1)(loglog 1)(log32 2loglog...2loglog2loglog2loglog −++++= n (3)

 ∑ =
L
i iM1)(loglog))1log(log...3log2log0(−++++= n (4)

 ∑ =
L
i iM1)(loglog))1(log*...*3*2*1log(−= n (5)

 ∑ =
L
i iM1)(loglog)!1log(log −= n (6)

Thus the time complexity for the best case where the tree is
balanced is O (log(logn-1)!).

In general, we can find an upper bound, by maximizing T1.
Through Jenson’s inequality we know:

)()(
n
xf

n
xf ii ∑∑ ≤ (7)

Hence, O(Lloglog(n/L)) is an upper bound for T1. ■

Theorem 2. The CWGeneration runs in O(L) time.

Proof. CWGeneration has an initialization preprocessing
for inverting CL and setting the variables, and a post
processing phase for inverting CW which are both of
constant order. The inversion process is performed in
parallel in O(1).

The main operations of CWGeneration are performed
within a loop that cycles until the codewords for all
symbols are generated. The operations within the loop
consist of a sequential section performing a constant
number of assignments and a parallel section performing a
few comparisons and assignments, hence both are of O(1).
At i-th cycle, the codewords for all symbols with the
codeword lengths equal to CCLi are constructed, thus there
is one cycle per each level of the tree in which symbols
have the same codeword lengths. Therefore CWGeneration
runs in O(L). Since L is in the interval ⎡ ⎤[]1,log −nn , the best
case is O(logn) and the worst case is O(n). ■

Forall processors Pi (1 ≤ i ≤ n/2)
 LocalVariable ← CL [i]
 CL [n – i + 1] ← LocalVariable

P1 sets
 CCL ← CL [1]
 CW [1] ← bit string of CCL zeros
 CDPI ← 1

While (CDPI < n)
 Forall processors Pi (1 ≤ i ≤ n) do in parallel
 if (i > CDPI && CL[i] = CCL)
 CW[i] ← CW [CDPI] + (i - CDPI)
 if (i < n && CL[i + 1] != CCL)
 CDPI ← i
 else be idle

 P1 sets
 CLDiff ← CL [CDPI + 1] – CL [CDPI]
 CW [CDPI + 1] ← (CW [CDPI] + 1) * 2^ (CLDiff)
 CCL ← CL [CDPI+1]
 CDPI ← CDPI + 1

Forall processors Pi (1 ≤ i ≤ n/2)
 LocalVariable ← CW[i]
 CW [n – i + 1] ← LocalVariable

Having the time complexity for each of the two phases, it is
seen that our algorithm for parallel construction of
Huffman codes runs in O(Lloglog(n/L) + L), which is
directly dependant to L, the height of the tree. Since L is in
the interval ⎡ ⎤[]1,log −nn the algorithm runs in O(n) time in
the worst case and runs in O(log(logn-1)!) in the best case.

5 Conclusions
 The significance of Huffman coding is due to its
widespread utilization in information processing and
particularly in image and data compression techniques.
Our major contributions in this paper are the followings.
First, we have presented a new time-efficient practical
parallel algorithm for construction of Huffman codes
without generating a tree in practice. As the output of the
proposed algorithm we have the optimal codewords for all
given symbols. The presented algorithm is structured in
two separated phases on CREW PRAM model.

Second, the worst case time complexity of the algorithm is
O(n) incorporating n processors which rarely occurs in
practice. n is equal to the number of symbols in a given
alphabet. Our new parallel optimal prefix codes
construction algorithm achieves an upper bound of
O(log(logn-1)!) in the best case which is the same as the
best known algorithm addressing this problem, thus time is
not sacrificed.

6 References

[1] M. J. Atallah, S. R. Kosaraju, L. L. Larmore, G. L.
Miller and S-H. Teng. "Constructing trees in parallel",
ACM SIGACT, Proc. 1st Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 421-431, June
1989.

[2] M. Buro, "On the maximum length of Huffman
codes", Information Processing Letters, Vol. 45, No.5, pp.
219-223, April 1993.

[3] H. C. Chen, Y. L. Wang and Y. F. Lan, "A memory
efficient and fast Huffman decoding algorithm",
Information Processing Letters, Vol. 69, No. 3, pp. 119-
122, February 1999.

[4] T. J. Fexguson and J. H. Rabinowitz, "Self-
synchronizing Huffman codes", IEEE Trans. Inform.
Theory, Vol. 30, No. 4, pp. 687-693, July 1984.

[5] R. Hashemian, "Memory efficient and high-speed
search Huffman coding", IEEE Trans. on Comm., Vol. 43,
No. 10, pp. 2576-2581, October 1995.

[6] R. Hashemian, "Direct Huffman coding and decoding
using the table of code-lengths", Proc. International Conf.
on Inform. Technology: Computers and Communications
(ITCC '03), pp. 237-241, April 2003.

[7] S. Ho and P. Law, "Efficient hardware decoding
method for modified Huffman code", Electronics Letters,
Vol. 27, No. 10, pp. 855-856, May 1991.

[8] D. A. Huffman, "A method for the construction of
minimum redundancy codes", Proc. IRE, Vol. 40, No. 9,
pp. 1098-1101, September 1952.

[9] S. T. Klein, "Skeleton trees for the efficient decoding
of Huffman encoded texts", Kluwer Journal of Inform.
Retrieval, Vol. 3, No. 1, pp. 7-23, July 2000.

[10] D. E. Knuth, "Dynamic Huffman coding", Journal of
Algorithms, Vol. 6, No. 2, pp. 163-180, June 1985.

[11] D. G. Kirkpatrick and T. M. Przytycka, "Parallel
construction of near optimal binary search trees", ACM
SIGACT, Proc. 2nd Annual ACM Symp. on Parallel
Algorithms and Architectures, pp. 234-243, July 1990.

[12] C. Kruskal, "Searching, merging and sorting in
parallel computation", IEEE Trans. Computer, Vol. C-32,
No. 10, pp. 942-946, October 1983.

[13] L. L. Larmore, "Height restricted optimal binary
trees", SIAM Journal on Computing, Vol. 16, No. 6, pp.
1115-1123, December 1987.

[14] Y. Lin and K. Chung, "A space-efficient Huffman
decoding algorithm and its parallelism", Journal of
Theoretical Computer Science, Vol. 246, No. 1-2, pp. 227-
238, September 2000.

[15] L. L. Larmore and D. S. Hirschberg, "A fast
algorithm for optimal length-limited Huffman codes",
Journal of ACM, Vol. 37, No. 3, pp. 464-473, July 1999.

[16] L. L. Larmore and T. M. Przytycka, "Constructing
Huffman trees in parallel", SIAM Journal on Computing,
Vol. 24, No.6, pp. 1163-1169, December 1995.

[17] A. Moffat and J. Katajainen, "In-place calculation of
minimum-redundancy codes", 4th Intl. Workshop on
Algorithms and Data Structures, Vol. 955, pp. 393-402,
August 1995.

[18] R. L. Milidiú, E. S. Laber and A. A. Pessoa, "A work
efficient parallel algorithm for constructing Huffman
codes", Proc. Data Compression Conference (DCC '99),
pp. 277-286, March 1999.

[19] A. Moffat and A. Turpin, "On the implementation of
minimum-redundancy prefix codes", IEEE Trans.
Commun., Vol. 45, No. 10, pp. 1200-1207, October 1997.

[20] S-H. Teng, "The construction of Huffman-equivalent
prefix code in NC", ACM SIGACT News, Vol. 18, No.4,
pp. 54-61, 1987.

[21] J. Van Leeuwen, "On the construction of Huffman
trees", 3rd International Colloquium on Automata,
Languages and Programming, pp. 382-410, July 1976.

