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Abstract - The construction of optimal prefix codes plays 
a significant and influential role in applications 
concerning information processing and communication. 
For decades, different algorithms were proposed treating 
the issue of Huffman codes construction and various 
optimizations were introduced. In this paper we propose a 
detailed practical time-efficient parallel algorithm for 
generating Huffman codes on CREW PRAM model 
exploiting n processors, where n is equal to the number of 
symbols in alphabet. We first compute the codewords 
lengths for all symbols concurrently with an innovative 
direct parallelization of the Huffman tree construction 
algorithm, alleviating the complexity of dealing with the 
original tree-like data structure. Then Huffman codes 
corresponding to symbols are generated in parallel based 
on a recursive formula introduced in [5]. The proposed 
algorithm achieves an O(n) time in the worst case when 
one-sided Huffman tree is formed, which is rarely 
encountered in practice, and O(log((logn – 1)!)) time in 
the best case when Huffman tree is nearly balanced. 

Keywords: Data Structures, Parallel Algorithms, Optimal 
Prefix Codes, Huffman Codes, PRAM. 

 

1 Introduction 
  The construction of optimal codes for a given 
alphabet is a classical problem with significant and 
influential applications in information processing and 
communication. Let ∑= {S1, S2,…, Sn} be an alphabet. A 
set of codes Č= {C1, C2,…, Cn} over ∑ is a finite set of 
distinct sequences over ∑. Each sequence Ci is called 
codeword. A code Č is called a prefix code if no codeword 
in Č is a prefix of another one in the set. We define a 
message M over Č to be a concatenation of codewords 
from Č. If the frequency (or probability provided that real 
value of the frequency can not be determined) of 
appearance of Si in M is Pi∈R, then the Huffman coding 
problem is to construct a prefix code Č= {C1, C2,…, Cn 

∈∑*} such that ∑ =
n
i ii CP1 *  is minimum among all the 

possibilities of Č, where iC is the length of Ci. As an 

obvious result, if we assume M is to be transmitted over a 
communication channel which can transfer one symbol of 
the alphabet ∑* per unit of time then the transmission time 
would be the least possible. It is easy to discover a 
desirable property in prefix codes that a message can be 
decomposed in only one way. 

In 1952, Huffman [8] proposed an elegant sequential 
algorithm which generates optimal prefix codes in 
O(nlogn) time. The algorithm actually needs only linear 
time provided that the frequencies of appearances are 
sorted in advance [17, 21]. Since then there have been 
extensive researches on analysis, implementation issues 
and improvements of the Huffman coding theory in a 
variety of applications [2, 3, 4, 5, 6, 7, 9, 10, 13, 15, 17, 19, 
21]. Researches to address the problem in parallel 
environments also emerged [1, 11, 14, 16, 18, 20]. There 
are already several attempts to construct the Huffman 
codes in parallel. Teng [20] proposed the first NC 
algorithm to generate Huffman codes using n6 processors 
in O(logn) time which seems rather unpractical due to the 
huge number of processors. Atallah et al. [1] showed how 
to reduce the number of processors to n3 while maintaining 
the same time complexity. They also presented an O(log2n) 
time, n2/logn processors as well as an O(logn) time, n3/logn 
processors CREW deterministic parallel algorithms for 
construction of Huffman codes. Further they concluded 
that the time can be reduced to O(logn(loglogn)2) on a 
CRCW model using only n2/(loglogn)2 processors. 

Kirkpatrick and Przytycka [11] presented several 
approximated parallel algorithms for construction of 
Huffman codes. Later Larmore and Przytycka [16] 
proposed an O( n logn) time algorithm that uses O(n) 
processors. The original algorithm is developed as a 
solution for the concave least weight subsequence problem 
but is extended for the Huffman coding problem. Milidiú et 
al. [18] proposed a work efficient parallel algorithm on 
CREW to address the problem. Their algorithm runs in 
O(Hloglog(n/H)) time with n processors, where H is the 
length of the longest Huffman code. Since H is in the 
interval [ ⎡ ⎤ 1,log −nn ], the algorithms requires O(n) time in 
the worst case. It is known that the length of the Huffman 
code is bounded to 1log x −  where x=P1/(∑ =

n
i iP1 ) [2]. As a 



result the time complexity of the algorithm can be 
considered 1(log log log )O x n− . The major problem with 
Milidiú et al.’s algorithm and some other parallel Huffman 
construction solutions is that instead of actually generating 
the Huffman codes they rather construct the Huffman tree 
in parallel and it is not clear how the codes should be built 
from the Huffman tree concurrently if possible. 

In this paper we particularly address this problem by 
proposing a practical detailed CREW algorithm. In other 
words the output of our algorithm is the Huffman codes not 
the Huffman tree. The algorithm is based on a sophisticated 
parallelization of the direct Huffman tree constructing 
simulation with the elimination of the need to store nodes 
in a tree-like data structure. We first compute the path 
length for each symbol in the Huffman tree and then focus 
on generating the Huffman codes in parallel by exploiting 
Hashemian’s recursive formula based on single-side 
growing Huffman tree [5]. Our Algorithm can be 
implemented in O(n) time on the CREW PRAM model 
incorporating n processors in the worst case and the best 
case time is bounded to O(log((logn – 1)!)), where n equals 
the number of symbols. 

The rest of this paper is organized as follows. In Section 2, 
we describe the fundamental structures used in our 
pseudocode and the definitions. In section 3, we first give 
an outline of our algorithm and then it is examined in 
details. The performance analysis is discussed in section 4. 
We conclude in section 5. 

2 Data structures 
 To generate the Huffman codes for a given set of 
symbols, we need to know the position of each symbol in a 
tree known as Huffman tree. The codeword for each 
symbol could be obtained by traversing the tree from the 
root to the leaf associated with that symbol; along the path 
every left branch counts as a '0' and every right branch 
counts as a '1'. Symbols can only be the leaves of the 
Huffman tree; therefore the code generated from this tree is 
a prefix code and hence, has a unique decomposition. 

We assume that the input to the first phase of our algorithm 
is a symbol table including an array of symbols S = {s1, s2, 
…, sn} and an array of corresponding frequencies F = {f1, 
f2, …, fn}. This symbol table is sorted based on frequencies 
in non-decreasing order. Each symbol corresponds to a leaf 
in the Huffman tree. We define a structure for these leaves, 
including freq, a field for frequency value, and leader, a 
pointer to the root of the subtree that this leaf belongs to. 
lNodes, an array of the mentioned structure, shows the 
leaders of the leaves that have already participated in the 
construction of the tree levels, in which lNodesi 
corresponds to si. We define a similar structure for internal 
nodes. iNodes behaves as a queue of this data structure. As 
new tree levels are generated, new internal nodes are added 
to the queue. Array Temp is a data structure for temporary 
storage of a merged list of internal nodes from iNodes and 

leaf nodes from lNodes, which are the nodes participating 
in the construction of each new tree level. These nodes are 
then melded to form the internal nodes of the next higher 
level. Each element of Temp contains three fields: freq, 
isLeaf and index. The chosen leaf nodes, who participate in 
construction of the current level, are copied to Copy, which 
is an array with the same structure as Temp. The first phase 
generates an array of codeword lengths CL = {cl1, cl2, …, 
cln} in which cli is the codeword length for si, such that cli ≤ 
cli+1. The second phase of our algorithm takes the array of 
codeword lengths CL as input and generates the final 
codewords in CW = {cw1, cw2, …, cwn}, in which cwi is the 
codeword for si. 

3 Algorithm 
 In this section, we first portray the outline of our 
algorithm and then describe the details of implementation 
issues concerning each phase. 

3.1 Outline 
 We propose a two-phase parallel algorithm for time-
efficient construction of Huffman codes on the CREW 
PRAM model. Our algorithm requires n processors, which 
is equal to the number of input symbols. The two phases of 
the presented algorithm are: Codeword Length Generation 
(CLGeneration) and Codeword Generation 
(CWGeneration). The outline is depicted in Fig. 1. 

In the first phase, CLGeneration algorithm computes the 
codeword length for each symbol si which is equal to the 
path length of si in the Huffman tree. This is done without 
maintaining a tree structure in practice and by generating 
the tree levels, one at a time, in a bottom-up fashion. With 
generation of each new level in the tree, the codeword 
lengths of all symbols whose leaders have participated in 
the construction of the new level are incremented. We 
define a symbol’s leader as the root of the subtree that the 
symbol belongs to. At each level, the two nodes with 
smallest frequencies are found among the internal nodes 
constructed in the previous iteration and leaf nodes who 
have not participated in the construction of the tree yet. 
These two are combined to form a new internal node. The 
combined value indicates the minimum frequency of the 
next higher level, which plays a crucial role in selecting 
leaf nodes for participation in the current level. At this 
point, all the internal nodes that belong to the previous 
level and leaf nodes who have not participated yet and have 
a frequency smaller than or equal to the minimum 
frequency, are selected, merged and melded pair-wise to 
form new internal nodes. The new internal nodes are the 
new leaders in their subtrees; hence leaf nodes need to 
check whether or not their leaders have changed. In case of 
a change, they update their leaders and increment their 
codeword lengths. This process is repeated until only one 
internal node remains, which is the root of the tree. At the 
end of the first phase, CL has the codeword lengths for all



 
Fig. 1. Algorithm Outline 

symbols in non-increasing order. 

Codeword generation is performed in a top-down fashion; 
therefore we need to reverse CL in the initialization stage 
of the second phase. The final Huffman code for each 
symbol is generated from the codeword length with the 
help of a parallel version of the recursive formula 
introduced in [5]. In proposition 2, we show that the 
codewords for symbols with the same codeword lengths 
can be constructed in parallel. For each group of symbols 
with the same codeword lengths, which are symbols 
residing in the same level of the tree, the codeword of the 
first symbol is computed and then the rest of the group 
generate their codewords in parallel. This process is 
repeated for each level of the tree until CW has the final 
codewords for all symbols. 

Proposition 1. Let the trees T1,T2,…,Tk with the 
corresponding frequencies fr1,fr2,…,frk such that 

kifrfr ii <<≤ + 0,1  be present in a forest at stage s of the 
Huffman Tree construction algorithm. For all trees T3,…,Tm 
such that mifrfrfri ≤≤+≤ 3,21 , the trees T2j+1 and T2j+2, 

⎣ ⎦2/)2(1 −≤≤ mj   can be melded in parallel. 

Proof. Since T1 and T2 hold the minimum frequencies 
among all the trees, the combination of T1 and T2 is 
accomplished by the definition of Huffman tree 
construction algorithm. 

If we assume that the combinations of T3 and T4, T5 and T6 
and so on, are not performed then two alternative 
assumptions should be investigated. First, suppose two 
trees Ts and Ts+1 (two adjacent trees according to their 
frequencies) residing in the current forest, are not 
combined in subsequent stages of the Huffman tree 
construction algorithm, instead Ts is combined 
with 2, ≥± εεsT . This assumption is rejected due to the 
definition of the Huffman tree construction algorithm, 
indicating two trees with minimum frequencies are selected 
at each stage, and there exists at least one tree with the 

frequency lower than ε+sT  which can be selected for the 
combination. Similarly, the combination of Ts and ε−sT  can 
not be true, because frs-1 ≤ frs and if a combination should 
be performed Ts would not be a valid candidate. 

Second, we can make an assumption that the combination 
of Ts, 3≤ s ≤m is carried out with another tree Tp whose 
creation is conditioned on passing the current stage of the 
algorithm, i.e. the tree is not created yet and it doesn’t exist 
in the forest. This assumption is also rejected because frp ≥ 
fr1+fr2, which means the to-be-created trees in subsequent 
stages have a lower bound of (fr1+fr2) for their frequencies. 
However, if there exists candidate trees in the forest 
presently, their frequencies are limited to (fr1+fr2) at most 
which can be considered for the combination process in the 
current stage and there is no need to wait for the next stage 
to come. 

Since none of the alternative assumptions are true, the 
proof is complete by contradiction. ■ 

Proposition 2. Codeword generation can be performed in 
parallel for those symbols with the same codeword length. 

Proof. The proof is trivial. In the recursive codeword 
generation formula proposed by Hashemian [5], the value 
of the codeword for symbol s is dependant on the 
codeword value of its precedent symbol, however for all 
those symbols with the same codeword length, the value of 
CLi+1 - CLi equals zero, as a result the formula is revised to 
Ci+1=Ci+1 which means that if we have the codeword value 
of the first symbol in the sequence of equal-codeword-
length symbols, for all the subsequent symbols following 
the first one, the codeword value of a symbol in the 
sequence is one greater than the previous one. Provided 
that we have k processors, each responsible for a symbol in 
the sequence, knowing the codeword value of the first 
symbol, the codeword generation for these k symbols can 
be performed in parallel. Each processor only needs to 
know the distance of its symbol from the first one in the 



sequence and add this value to the first symbol’s 
codeword. Hence, we have the proposition. ■ 

3.2 Description 
 The following two subsections discuss each phase of 
the algorithm in details and they are accompanied by an 
example for clarification. 

3.2.1 CLGeneration 

 For the CLGeneration phase, first we need to 
initialize the basic structures as depicted in Fig. 2. 

The following arrays are initialized in parallel. lNodes is an 
array corresponding to S containing a frequency field 
which is initialized with the frequency of its symbol and its 
leader is set to -1. CL, the array that shows the codeword 
length for each symbol, is initialized with 0. Next, 
processor P1 sets the following variables. lNodesCur points 
to the last leaf node that has participated in the construction 
of a level so far and it is initialized with 0. iNodesFront 
and iNodesRear are the front and rear indicators for 
iNodes, which behaves as a queue and shows the newly 
generated internal nodes who have not participated in the 
construction of a level. They are initializes with zero, 
indicating that the iNodes queue is empty. 

 
Fig. 2. Initialization 

After initialization, the following operations are performed 
iteratively until all leaves are processed and no internal 
node is left in the iNodes queue, except the root. The sum 
of two minimal frequency values, MinFreq, determines the 
frequency value of the next internal node. This internal 
node could be constructed from the combination of two 
new leaves, an internal node and a new leaf or two internal 
nodes. In case of ties, leaves are preferred to participate in 
the construction of the new internal node. Here, array mid 
and SelectMinimums function are used to make the code 
concise and simplify the process. The new internal node is 
added to the iNodes queue as illustrated in Fig. 3. The 
leaders of the two internal nodes or leaves who have been 
combined are set to the index of the new generated internal 
node in the iNodes queue. 

The select module takes lNodes and MinFreq as input 
parameters returning Copy and CurLeavesNum as output 
parameters. It copies those leaves whose indexes are more 
than lNodesCur and their freq is less than or equal to 
MinFreq, to the Copy array. Copy array has three fields: 
freq, isLeaf and index. freq is the value of the selected leaf 

frequency; isLeaf in this step has the value of true for all 
elements because they are all leaves and index is the index 
of the selected leaves in lNodes. CurLeavesNum is the 
number of selected leaves that have been copied to the 
Copy array. Fig. 4 illustrates the Select module. 

 
Fig. 3. New iNode 

The module that is illustrated in Fig. 5 is used for 
determining the participating elements in the construction 
of the current level. The values of CurLeavesNum, 
MergeFront, and MergeRear indicate which nodes in the 
Copy and iNodes arrays are merged. If the total number of 
unprocessed iNodes elements and CurLeavesNum is odd, 
the module excludes an internal node or leaf node that has 
the maximum frequency; in case of ties, it is preferred to 
keep leaf nodes. In case the iNodes queue is empty, the 
CurLeavesNum is decremented, thus the length of Temp 
array becomes even. MergeFront and MergeRear denote 
the beginning and the end of the segment in iNodes that 
participates in the Merge function. 

 
Fig. 4. Select Module 

The Merge function performs the task of combining two 
sorted lists in O(loglogn) on CREW PRAM model [12]. 
The function accepts Copy, CurLeavesNum, mergFront 
and mergRear as input parameters and Temp and 
TempLength as output. The main task of this function is to 
build the Temp array which is the combination of Copy 

    Forall processors Pi (lNodesCur < i ≤ n) 
 if (lNodes[i].freq ≤ MinFreq) 
  Copy[i – lNodesCur].freq ← lNodes[i].freq 
  Copy[i – lNodesCur].index ← i 
  Copy[i – lNodesCur].isLeaf ← true 
  if (i = n || lNodes[i+1].freq > MinFreq) 
   CurLeavesNum ← i – lNodesCur 

P1 sets 
mid ← {∞, ∞, ∞, ∞} 
if (lNodesCur ≤ n – 1) 
 mid [1] ← lNodes[lNodesCur+1].Freq 
if (lNodesCur ≤ n – 2) 
 mid [2] ← lNodes[lNodesCur+2].Freq 
if (iNodesRear > iNodesFront) 
 mid [3] ← iNodes[iNodesFront+1].Freq 
if (iNodesRear > iNodesFront + 1) 
 mid [4] ← iNodes[iNodesFront+2].Freq 
SelectMinimums (mid) 
MinFreq ← mid[1] + mid[2] 
iNodes [iNodesRear + 1].freq ← MinFreq 
iNodes [iNodesRear + 1].leader ← -1 
if (isLeaf (mid[1])) 
 lNodes[lNodesCur+1].leader ← iNodesRear + 1 
 CL[lNodesCur+1]++, lNodesCur++ 
else 
 iNodes[iNodesFront + 1].leader ← iNodesRear + 1 
 iNodesFront++ 
if (isLeaf(mid[2])) 
 lNodes[lNodesCur+1].leader ← iNodesRear + 1 
 CL[lNodesCur+1]++,  lNodesCur++ 
else 
 iNodes[iNodesFront + 1].leader ← iNodesRear + 1 

Forall processors Pi (1 ≤ i ≤ n) do in parallel 
 lNodes[i].freq ← F[i] 
 lNodes[i].leader ← -1 
 CL[i] ← 0 
P1 sets 
 iNodesFront ← 0 
 iNodesRear ← 0 
 lNodesCur ← 0 



array and the segment in iNodes that is indicated by 
MergeFront and MergeRear. Temp is sorted based on the 
freq field in non-decreasing order. 

 
Fig. 5. Updating Iterators 

In the next step, the Meld module generates the new 
internal nodes of the next level. Each processor is assigned 
to two consecutive elements of Temp according to its 
index. These pairs of elements are melded to form new 
internal nodes whose freq is the sum of the combined pairs’ 
frequencies. Then the corresponding processor updates the 
leader fields of the two participating nodes. The location of 
each node is determined by the isLeaf field indicating that 
the element resides in lNodes or iNodes array. 

 
Fig. 6. Meld Module 

In the end, P1 increments the iNodeRear based on the 
number of the newly added internal nodes which is equal 
to half of TempLength. lNodesCur is incremented by the 
value of CurLeavesNum which is equal to the number of 
leaves who participated at this level. 

If the leader of an internal node is changed, all its children 
need to update their leader and set it to the index of the 
new internal node. The codeword lengths corresponding to 
these leaf nodes are also incremented. This is done in 
parallel. In this step all leaves check their leaders in 

parallel and they figure out whether or not their leaders 
have changed. If their leaders are assigned to new leaders, 
they update their leaders by getting the value of their 
leader's leader. This is depicted in Fig. 7. 

 
Fig. 7. Update Leaders 

The mentioned process repeats until only one internal node 
remains, which is the root. At this point, CL has the 
codeword lengths for all symbols. 

The example in Fig. 8 depicts the progress in the first pass 
of CLGeneration for a given input. The process is repeated 
for every level in the tree and in the end, CL has the 
codeword lengths for all symbols in S. 

3.2.2 CWGeneration 

 In the CWGeneration phase, we generate the final 
codewords by introducing a parallel version of the 
algorithm proposed by Hashemian [5]. CL is the input 
array for this phase with the length of n and CW is the 
output array with the same number of elements. We 
generate the final codewords in a top-down fashion, so we 
need to reverse CL. Reversing is a simple process that is 
accomplished in parallel. In the pseudocode depicted in 
Fig. 10, the variables CCL and CDPI are used to show the 
current codeword length and current done-processor index 
respectively. In each iteration, CCL (Current Codeword 
Length) has the length of the codewords of the current 
level and CDPI (Current Done-Processor Index) indicates 
the index of the last processor who has finished generating 
its codeword. Generation of codewords for each level is 
accomplished in two steps, codeword of the first symbol in 
the level is computed and then all other symbols with the 
same codeword lengths construct their codewords.   While 
we have the codeword lengths of all symbols, we can 
compute the codewords by employing the following 
recursive formula [5]: 

      ii clcl
ii CC −

+
++= 12*)1(1          (1) 

Initialization is done by the first processor. The value of 
CCL is set to the value of the first element of CL. A string 
of zeros with length of CCL is put in the first cell of the 
array CW. For the processors whose corresponding 
symbol's codeword length is equal to CCL, the construction 
of the codewords can be accomplished in parallel because 
they only have to add a number to the codeword of the first 
symbol in the series. P1 generates the first codeword of the 
next group to provide processors assigned to the next level 
with the base value upon which they construct their 
codewords in parallel. 

Forall processors Pi (1 ≤ i ≤ n) do in parallel 
 if (lNodes[i].leader != -1) 
     if (iNodes[lNodes[i].leader].leader != -1) 
 lNodes[i].leader ← iNodes[lNodes[i].leader].leader 
 CL[i] ++ 

Forall processors Pi (1 ≤ i ≤ TempLength) do in parallel 
       ind ← iNodesRear + i 
       iNodes [ind].freq ← temp [2*i-1].freq + temp [2*i].freq 
       iNodes[ind].leader ← -1 
    
       if (temp [2*i-1].isleaf)  
 lNodes [temp [2*i – 1].index].leader ← ind 
 CL[temp [2*i – 1].index]++ 
       else 
 iNodes [temp [2*i – 1].index].leader ← ind 
       if (temp [2*i].isleaf) 
 lNodes [temp [2*i].index].leader ← ind 

 CL[temp [2*i ].index]++ 
       else 
 iNodes [temp [2*i].index].leader ← ind 
P1 sets 
 iNodesRear ←  iNodesRear + (TempLength/2) 

P1 Sets 
mergeRear ← iNodesRear 
mergeFront ← iNodesFront 
 
if((CurLeavesNum+ iNodesRear - iNodesFront)%2=0) 
 iNodesFront ← iNodesRear 
 
else if ((iNodesRear - iNodesFront != 0) && 
(F[lNodesCur+CurLeavesNum]≤iNodes[iNodesRear].freq)) 
 mergeRear-- 
    iNodesFront ← iNodesRear - 1 
else 
 iNodesFront ← iNodesRear 
    CurLeavesNum -- 
 
lNodesCur ← lNodesCur + CurLeavesNum iNodesRear++ 

 



 
Fig. 8. a) Input to the first phase b) lNodes and CL initialized before the first cycle c) First internal node is generated d) 

Select chooses the participating leaf nodes e) Iterators updated to determine the participating lNodes and iNodes f) Temp is 
filled with a merged list of participating lNodes and iNodes g) Nodes in Temp melded to form new iNodes. The leaders are 

updated and CL elements corresponding to participating leaf nodes are incremented h) Final result in CL for given input 

 
Fig. 9. a) Initialization b) Generation of the first value in the series for the next level c) The output of this phase 

(codewords) 



 
Fig. 10. Codeword Generation 

These iterations continue until the codewords for all 
symbols are constructed. In the end, CW is reversed to 
make codewords correspond to the right symbols. 

The example in Fig. 9 depicts the progress in the 
CWGeneration phase for a given input. The process is 
repeated for every level in the tree and in the end, CW has 
the codewords for all the symbols in S. 

4 Performance analysis 
 First, we analyze each phase of the algorithm 
separately and then we discuss the performance of the 
algorithm as a whole. 

Lemma 1. CLGeneration performs L cycles. 
 
Proof. It can be proved by induction that if lN is the first 
chosen leaf node at the first iteration, that is the leftmost 
leaf at the bottommost level of the Huffman tree , a new 
ancestor for lN is generated in each cycle [18]. lN has  (L-
1) ancestors, hence the number of cycles is equal to L.■ 

Theorem 1. The CLGeneration runs in O(Lloglog(n/L)) 
time. 
 
Proof. CLGeneration is comprised of a set of operations 
which are performed within a number of cycles, one cycle 
per each level of the tree. Lemma 1 states that the number 
of these cycles is L, the height of the Huffman tree. 

Before the main loop, Initialization is performed which has 
a parallel section and a sequential section, both of O(1) 
time. Next, at every cycle, a number of operations are 
performed. New iNodes module operates a few sequential 

comparisons on four nodes in O(1). Update Iterators is 
also of constant order. Update Leaders and Select and 
Meld, which all execute in parallel, are of O(1) parallel 
time. This is because a constant number of operations are 
performed on i variables by i processors in parallel; such 
that 1 ≤ i ≤ n. The only part that is not of constant order is 
the Merge operation that can be performed in 
O(loglogM(i)) parallel time [12], in which M(i) is the 
number of internal nodes generated at cycle i. So, the time 
required by CLGeneration is as follows. 

     1
1

( log log ( ) )
L

i
T O M i

=
= ∑        (2) 

Since the number of internal nodes in a Huffman tree with 
n leaf nodes is equal to (n - 1), M(i) is constrained to 
∑ = −=L

i niM1 )1()( . It can be seen that the upper bound is 
directly dependent on L, the height of the tree that is in the 
interval ⎡ ⎤[ ]1,log −nn . If L equals n-1, which means we have 
a one sided tree, M(i) is of O(1), hence the algorithm runs 
in O(n). If the tree is balanced, we have: 

∑ =
L
i iM1 )(loglog 1)(log32 2loglog...2loglog2loglog2loglog −++++= n     (3) 

 ∑ =
L
i iM1 )(loglog ))1log(log...3log2log0( −++++= n    (4) 

  ∑ =
L
i iM1 )(loglog ))1(log*...*3*2*1log( −= n     (5) 

     ∑ =
L
i iM1 )(loglog )!1log(log −= n         (6) 

 
Thus the time complexity for the best case where the tree is 
balanced is O (log(logn-1)!). 

In general, we can find an upper bound, by maximizing T1. 
Through Jenson’s inequality we know: 

       )()(
n
xf

n
xf ii ∑∑ ≤               (7) 

Hence, O(Lloglog(n/L)) is an upper bound for T1. ■ 

Theorem 2. The CWGeneration runs in O(L) time. 
 
Proof. CWGeneration has an initialization preprocessing 
for inverting CL and setting the variables, and a post 
processing phase for inverting CW which are both of 
constant order. The inversion process is performed in 
parallel in O(1). 

The main operations of CWGeneration are performed 
within a loop that cycles until the codewords for all 
symbols are generated. The operations within the loop 
consist of a sequential section performing a constant 
number of assignments and a parallel section performing a 
few comparisons and assignments, hence both are of O(1). 
At i-th cycle, the codewords for all symbols with the 
codeword lengths equal to CCLi are constructed, thus there 
is one cycle per each level of the tree in which symbols 
have the same codeword lengths. Therefore CWGeneration 
runs in O(L). Since L is in the interval ⎡ ⎤[ ]1,log −nn , the best 
case is O(logn) and the worst case is O(n). ■ 

Forall processors Pi (1 ≤ i ≤ n/2) 
     LocalVariable ← CL [i] 
     CL [n – i + 1] ← LocalVariable 
 
P1 sets 
    CCL ← CL [1] 
    CW [1] ← bit string of CCL zeros 
    CDPI ← 1 
 
While (CDPI < n) 
     Forall processors Pi (1 ≤ i ≤ n) do in parallel 
           if (i > CDPI  && CL[i] = CCL) 
 CW[i] ← CW [CDPI] + (i - CDPI) 
            if (i < n  && CL[i + 1] != CCL) 
  CDPI ← i 
          else be idle 
 
     P1 sets 
          CLDiff ← CL [CDPI + 1] – CL [CDPI]  
          CW [CDPI + 1] ← (CW [CDPI] + 1) * 2^ (CLDiff) 
          CCL ← CL [CDPI+1] 
          CDPI ← CDPI + 1 
 
Forall processors Pi (1 ≤ i ≤ n/2) 
     LocalVariable ← CW[i] 
     CW [n – i + 1] ← LocalVariable 



Having the time complexity for each of the two phases, it is 
seen that our algorithm for parallel construction of 
Huffman codes runs in O(Lloglog(n/L) + L), which is 
directly dependant to L, the height of the tree. Since L is in 
the interval ⎡ ⎤[ ]1,log −nn  the algorithm runs in O(n) time in 
the worst case and runs in O(log(logn-1)!) in the best case. 

5 Conclusions 
 The significance of Huffman coding is due to its 
widespread utilization in information processing and 
particularly in image and data compression techniques.  
Our major contributions in this paper are the followings. 
First, we have presented a new time-efficient practical 
parallel algorithm for construction of Huffman codes 
without generating a tree in practice. As the output of the 
proposed algorithm we have the optimal codewords for all 
given symbols. The presented algorithm is structured in 
two separated phases on CREW PRAM model. 

Second, the worst case time complexity of the algorithm is 
O(n) incorporating n processors which rarely occurs in 
practice. n is equal to the number of symbols in a given 
alphabet. Our new parallel optimal prefix codes 
construction algorithm achieves an upper bound of 
O(log(logn-1)!) in the best case which is the same as the 
best known algorithm addressing this problem, thus time is 
not sacrificed. 
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