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Abstract. Wireless sensor nodes span a wide range of applications. This
paper focuses on the biomedical area, more specifically on healthcare
monitoring applications. Power dissipation is the dominant design con-
straint in this domain. This paper shows the different steps to develop
a digital signal processing architecture for a single channel electrocar-
diogram application, which is used as an application example. We aim
for less than 100µW power consumption as that is the power energy
scavengers can deliver.
assuming the constraint on power dissipation equals 100µW.
We follow a bottleneck-driven approach, the following steps are applied:
first the algorithm is tuned to the target processor, then coarse grained
clock-gating is applied, next the static as well as the dynamic dissipa-
tion of the digital processor is reduced by tuning the core to the target
domain. The impact of each step is quantified. A solution of around
11µW is possible for both radio and DSP with the electrocardiogram
algorithm.

1 Introduction

A new generation of biomedical monitoring devices is emerging. The main chal-
lenge for this kind of devices is low power dissipation. In this context a power
budget of only 100µW is available for the whole system including radio, digital
processing and memories. This power is taken from extremely small batteries
or energy scavengers. To reduce the power dissipation of the radio data com-
pression or feature extraction is used to reduce the number of bits that must
be transmitted. Thus the bottleneck shifts towards the digital part which is the
focus of this paper.



The goal of our work is to create a low-power C-programmable DSP, opti-
mized for the application domain via hardware support for application specific
instructions. As starting point a reconfigurable processor from Philips’ technol-
ogy incubator Silicon Hive [4] is selected. This technology includes a retargetable
C compiler making code development and portability for these processors easy.
This programmability is important because of the wide range of applications
that can run on the nodes. Programmable nodes allow a lower non recurring
engineering cost for the software and the hardware.

We differentiate between static and dynamic power dissipation. The dynamic
power is the power consumed due to switching and the internal power, which
is the power used inside the cells due to short-circuits and all the power used
in the internal nets. It includes the functional units, memories, controller and
clock. Current CMOS technology trends indicate that leakage is becoming more
dominant with every new process generation. In our experiments leakage power
soon turns out to be an important factor, up to 100µWof leakage was measured.
Our focus has gone both into reducing static as in reducing dynamic power by
minimizing the time the processor is active. As a case study we examined an
ECG algorithm running on the proposed platform, what we learned from this
example led to more general system level conclusions.

2 System level architecture

A generic sensor node consists of several subsystems as depicted in Fig. 1. There
is a digital processing subsystem with level 1 local memory, a level 2 memory
subsystem, including RAM and non-volatile memories, an array of sensors and
possibly actuators, a radio system and a power subsystem including a source
and powermanager, which is responsible for waking up various parts of the node
when needed. This conceptual model holds independent of specific chip or die
boundaries and leaves open several packaging technologies. If level 2 memories
are kept off-die then multiple instances of the sensor node can be made without
having to create a new chip.

Fig. 1: Overview of the architecture of a wireless sensor node

In current systems the power is supplied by a small battery or from energy
scavengers. Battery powered nodes have the disadvantage of requiring mainte-
nance. Different forms of energy scavenging are possible but in this paper we



assume a power budget of around 100µW [5]. This number includes power con-
sumed by the radio and the sensors, it is the global power budget of the entire
sensor node.

The digital subsystem must be programmable in order to be able to run
different algorithms such as ECG or EEG analysis, or altogether new algorithms
from the biomedical domain. Furthermore real time constraints must be met
especially when actuators are involved.

From a power dissipation point of view the most important consumers are
the radio, the memory and the digital subsystem. Commercially available ra-
dios consume 150nJ/bit [7] and as a consequence the transmission of raw data
can be expensive. An algorithm to reduce the amount of data via compression
or feature extraction usually is a better compromise between computation and
communication. In addition to the radio most subsystems exploit duty cycling
and sleep modes to reduce the dissipation. Next the DSP must be tuned to the
application. Also the memory subsystem can dissipate a lot of power. What is
needed is a hierarchical memory subsystem optimized for power dissipation by
reducing the size of the lowest level memories. These design principles will now
be discussed in more detail and illustrated with an example, which is explained
first.

3 Application

The electrocardiogram is a well studied topic, several interesting algorithms ex-
ist. One of the simplistic functions such an algorithm can offer is the detection
for the ventricular contraction, when the heart pumps blood to the lungs and
the body. In an ECG we call this event the R peak, situated in the QRS complex
(Fig. 2). The algorithm we use as a testcase is based on the opensource ECG
detection program from EP Limited [3].

The algorithm uses the Pan-Tomkins [1] method for R peak detection. The
Pan-Tomkins method is a filtering based method to detect the frequency that is
unique to the steeper R peak.

This algorithm extracts the key features reducing the amount of transmitted
bits by 100x. The minimum frequency for ECG analysis is 200Hz, with a 16 bit
sample width. Indeed sending raw data requires 200 ∗ 16b = 400B/s. Assuming
150 nJ/ bit the dissipation is 480µW which is higher than the available budget.
The Pan-Tomkins method reduces this to 4B/s or 4.8 µW. The 4 bytes can hold
all the information that can be extracted by this algorithm: the time between R
peaks, the height of the R peak and the baseline drift.

4 Optimization DSP

After removing the radio bottleneck the problem shifts towards the DSP. There-
fore we have chosen an ASIP (Application Specific Instruction set processor
[12]) approach which allows to tune the core to the application domain. First we
describe the reference core followed by the power optimizations.



(a) (b)

Fig. 2: The QRS complex and the detection of beats

4.1 Reference core

Because of flexibility (easy to modify) a PearlRay processor from Silicon Hive [6]
was selected. The processor is reconfigurable, i.e. there exists a parameterizable
description of the architecture and a C-compiler that can generate code for any
possible architecture instance. The top level configuration file controls certain as-
pects of the processor: data widths, functional unit placement, custom functional
units, configurations of the issue slots. . .We generated a default configuration
with 32kB of data memory and 32kB of program memory. The processor is a
VLIW with three issue slots, 128 bit wide instructions and is synthesized for a
speed of 100MHz. This speed is the ‘sweet spot’ for this design. Synthesizing
the core for several clock frequencies shows that speeds above 100MHz make the
design grow exponentially in area and leakage as depicted in Fig. 3.

Fig. 3: Clock frequency vs. Area & Leakage



The algorithm was optimized by recoding the filters in such a way that their
behavior was largely unaffected, when several expensive divisions were replaced
by shifts. The PearlRay does not have a hardware divider and relies on a soft-
ware divider taking 25 cycles per division. After these optimizations the cost
of analyzing one sample of ECG data at a 200Hz sampling frequency was 250
cycles, however when a beat is detected this number is higher: 1200 cycles. A
detection of a beat occurs only once or twice every second so on average it takes
198 · 250 + 2 · 1200 = 51900 cycles per second. If the PearlRay is running at
100MHz the duty cycle is 51900/100 · 106 = 0.05%.

Power figures for the processors, as seen in Table 2, were obtained using
Synopsys PrimePower with layout extracted capacitances. As input a vector file
from a netlist simulation was used, which was generated using Cadence Ncsim.
Simulations were based on the processor netlist after layout on a 90nm CMOS
process.

The power dissipation of the PearlRay was analyzed first. Three modes are
identified: active, idle and sleep. In active mode the processor is running a pro-
gram and processing samples. In idle mode the clock is still running. In sleep
mode the only dissipation is due to leakage.

Graphically sketched this is visible in Fig. 4. In this diagram the x axis is
the time that elapses, while the y axis represents the power consumption at that
time. The area of the bars represents the energy consumed. The lightest bars
represent the active energy, which can vary dependent on the input sample. We
also observed this behavior in our ECG software. The middle bar is the idle
energy and the darkest block is the ever present leakage energy.

Fig. 4: Causes of power consumption over the time domain

PTot = PLeak + fsample

(
(PAct · tAct avg) + (PIdle · tIdle avg)

)

The ECG application is an example of an algorithm that does not require a
large portion of the processing power that a typical DSP offers. The developed
processor is optimized for algorithms with a low duty cycle. Table 1 shows the
power characteristics of the standard version of the PearlRay, which is used as a



reference. At first glance the active power is dominant, but since the processor is
only ‘active’ for a small fraction of the time, the actual energy usage attributed
to active mode constitutes only to 0.4% of the total energy consumption. The
power used in idle mode is the dominant factor here.

Table 1: Standard version of the PearlRay used as a reference. The last column shows
the energy for one input sample and one ECG computation

Source Power Duration Mean Power

Active 6.87mW 496µs 3.41µW
Idle 0.76mW 1s−496µs 758µW
Leak 100µW 1s 100µW

Total power 861.4µW

4.2 Reduce idle mode dissipation

To counter the effects of idle energy we use coarse grained clockgating. The
PearlRay reference core was already using fine grained low-level clock gates but
the top level clock gate was not implemented. The top level clock gate disconnects
the clock from the entire clocktree, meaning that when this gate is open no
switching will occur in the processor. As a consequence an external piece of
circuitry must revive the processor when this is required. Such a clock gate was
very important as shown by the results in Table 3. After this optimization the
dominant energy component is leakage (96%).

4.3 Reducing leakage

Now we are faced with dominant leakage power so we analyze in which part of
the processor the leakage occurs. Our total leakage is 100µW, of which 50µW is
caused by the data memory, 40µW by the program memory and 10µW by the
processor itself. The large majority of the leakage is in the memories. We tried
four things to improve this leakage.

– Reduce the size of that data memory to 2kB. Since the ECG program only
requires 1.2kB and 120 bytes of stack this was possible. This reduced the
leakage to 65.6 µW, a 34.5% improvement.

– By removing one of the three issue slots in the PearlRay processor and re-
ducing the size of the immediates, the width of the program memory could
be reduced from 128b to 64b. Due to the decrease of parallelism the instruc-
tion count was increased with 27%, but the instruction width was reduced
by 50%, allowing us to reduce the program memory from 32kB to 16kB. This
resulted in a reduction of leakage power to 82µW, a 18% improvement.



Table 2: PrimePower output results for reference PearlRay while active. The coreio

contains the data memory.

P Switch P Int P Leak P Total %

imec ref 1.46e-3 5.41e-3 1.00e-4 6.97e-3 100%

core 9.11e-4 7.78e-4 9.53e-6 1.70e-3 24.4%

dec 3.86e-5 1.75e-4 2.34e-7 2.13e-4 3.1%

is I0 1.00e-4 4.21e-5 9.67e-7 1.44e-4 2.1%

is I1 2.71e-4 1.56e-4 2.80e-6 4.30e-4 6.2%

is I2 8.96e-5 5.64e-5 9.61e-7 1.47e-4 2.1%

rf I0 4.69e-5 9.61e-5 1.35e-6 1.44e-4 2.1%

rf I1 1.03e-4 8.30e-5 2.07e-6 1.88e-4 2.7%

rf I2 3.24e-5 5.32e-5 8.07e-7 8.65e-5 1.2%

coreio 2.21e-4 1.11e-3 5.01e-5 1.38e-3 19.8%

genI1 2.69e-6 3.45e-5 7.15e-7 3.79e-5 0.5%

genI2 3.54e-5 5.92e-5 2.69e-7 9.49e-5 1.4%

genI3 1.47e-6 6.69e-5 1.38e-6 6.98e-5 1.0%

pmem 4.14e-5 3.37e-3 3.90e-5 3.45e-3 49%

Table 3: Power results with a top level clockgate installed

Source Power Duration Mean Power

Active 6.87mW 496µs 3.41µW
Idle 0W 1s−496µs 0W
Leak 100µW 1s 100µW

Total power 103.41µW

– The use of memory modules designed in a technology with a high threshold
option (HighVt). This drastically reduces the leakage of the memories. They
will become slower but speed was not really a constraint and the memories
still operated on 100MHz. Using these memories leakage was reduced to
16.2µW, a 84% improvement.

– Reduce the datapath from 32 bit to 16 bit. As the samples are only 16 bit
wide and all operations occur on them, it is optimal to scale the core to this
width. This gave a moderate improvement in leakage to 94.7µW, or 5.3%.

When combining these techniques together with floorplan optimizations, the
results shown in Table 4 were obtained, which reduced the leakage of the original
PearlRay processor to 5.45µW, a 94.5% improvement. Furthermore scaling down
the datapath to 16 bit also contributed to reduce the dissipation of the active
mode.



Table 4: Power result with anti-leakage techniques combined

Source Power Duration Mean Power

Active 4.7mW 628µs 2.95µW
Idle 0W 1s−628µs 0 W
Leak 5.45µW 1s 5.45µW

Total power 8.4µW

5 System level optimization

In this section we describe system level optimizations that are a work in progress.
We are currently experimenting with power gating and level 2 memories that
can be used to save the state and shutdown the core.

5.1 Power down the core

From Table 4 we conclude that the leakage is still dominant. Therefore an inter-
esting option is to power down the core and to save the state to level 2 memory
and restore it when the next batch of samples have to be processed. There are
positive and negative contributions to the power dissipation. In those circum-
stances where the final net result is positive this is an interesting option. It means
a hierarchical memory subsystem: small level 1 memories with a high number
of accesses and larger level 2 memories with a very limited number of accesses.
This is similar to a memory hierarchy in computer architectures but optimized
for power dissipation instead of performance. Level 2 memory (or part of it) is
also used for other purposes, e.g. to collect the samples that arrive while the core
is down or to store multiple applications, which are not active simultaneously.

Let’s apply this to the ECG example. The state includes not only data
(1.2kB) but also the program (16kB). This data is used to retain the state
of the filters and for several other variables such as the baseline drift. An im-
portant decision is the granularity of switching between modes. If we do this at
a sample basis this can become quite expensive. Assuming a low power (level 2)
SRAM memory in a 90 nm process and a size of 32kB the cost of an access is
0.875 pJ/B and the leakage equals 2.5µW. If the processor is powered down after
every sample the cost is 28.8µW, the calculation is detailed in Table 5. This can
be improved by grouping the samples in groups of 50, then the cost of saving
and restoring is also reduced by a factor 50 which translates into an acceptable
level of 3.0µW. This can even be further improved to 0.5 by using a non-volatile
memory (flash).

The swapping between level 2 and level 1 memories can be done for complete
applications but also for parts of an application. The Pan-Tomkins algorithm for
ECG is a good example. As mentioned above it consists of 2 parts: the filtering
and the feature extraction. Both parts have similar code size. The filtering is
executed for every sample but the feature extraction is executed with a low
probability (0.5%), i.e. only when a beat is detected, which is about once per



second. Therefore it is possible to reduce the level 1 code memory by a factor of
2, which reduces the access energy. The consequence is that the programmer or
the compiler must be aware of this, e.g. to insert statements for code swapping.

Table 5: Level 1 to level 2 state save calculation

Cause Calculation Result

Granularity: 1 sample

Leak 2.5µW
Rpm

a 16kB · 8192 · 0.875pJ · 200/s 22.94µW

Wst
b 1200B · 8 · 0.875pJ · 200/s 1.68µW

Rst
c 1200B · 8 · 0.875pJ · 200/s 1.68µW

Total: 28.8µW

Granularity: 50 samples

Leak 2.5µW
Rpm 16kB · 8192 · 0.875pJ · 4/s 0.46µW
Wst 1200B · 8 · 0.875pJ · 4/s 0.03µW
Rst 1200B · 8 · 0.875pJ · 4/s 0.03µW

Total: 3.02µW

a Read program memory
b Write state
c Read state

5.2 Results

Table 6 shows a system level overview of the different components of the power
consumption in µW. Furthermore the application scope is widened. The first
four rows show an ECG application with different assumptions. The first row
shows the simple baseline ECG case with 1 channel as discussed above. The
second row assumes 3 channels. The next one is again 1 channel but now a
more complex algorithm for a more extensive analysis including extra parameters
(such as Q&S peaks and average beat rate). The fourth one is the same as the
previous one but now for 3 channels. The last two rows show FFT analysis on
1 and 10 channel(s) respectively. The different columns represent the different
contributions to the power dissipation in µW. A 90 nm process is assumed.
The second column represents the radio power assuming 150 nJ/bit. Columns 3
and 4 are related to the processor and show the dissipation when active and the
leakage. The next column shows the dissipation due to state-saving and restoring
in a 32 KB level 2 SRAM memory. The last 2 columns show the total dissipation
for 2 different scenarios. The last column assumes level 2 memory is used and the
processor put in power down mode. The previous column assumes the opposite.

We conclude for various use scenarios different components can have the
largest contribution in power consumption. Therefore it is not easy to predict



and a careful analysis is needed for each situation. The data in Section 4 shows
that the average power consumption constraint of 100µW is feasible.

Table 6: Power consumption with different assumptions, all numbers represent micro
watts.
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1ch+ 9.6 4.6 5.5 3.3 19.6 17.5
3ch+ 9.6 13.7 5.5 3.6 28.7 26.8
eeg1 2.16 2.1 5.5 3.0 9.8 7.3
eeg10 21.6 21.3 5.5 3.0 48.4 45.9

6 Conclusion

Power dissipation is the most important constraint for wireless sensor nodes for
healthcare applications. This paper describes the different steps in the develop-
ment of an architecture using a single channel ECG application as an example.
It shows that a 100µW solution is feasible.

For minimum power dissipation there is an optimum balance between com-
putation and communication. Transmitting raw data is usually not optimal. A
significant reduction in the amount of transmitted bits is obtained via compres-
sion or feature extraction. As a consequence the bottleneck shifts towards the
DSP. Static as well as dynamic dissipation must be tackled. Both components
are reduced by tuning the core to the target domain (application specific in-
structions, proper memory sizes, etc.) In an optimized architecture the level 1
memories have a limited size due to the high number of accesses in active mode.
When the processor is inactive it can be powered down while the state is saved
in level 2 memory. This requires that the granularity is carefully chosen. Analyz-
ing different ECG applications it is shown that optimizing the digital processing
technology is important.

Therefore this is chosen as the focus of this paper. Using ECG as a driver and
adopting a bottleneck-driven step-by-step approach a factor of 100 reduction of
power dissipation of the DSP core was measured via simulations. This is a result
of the following actions that span the different design levels.

– Algorithm level: optimization and simplification of the code.
– Architecture level: e.g. level 1 memory size reduction by a factor of 2 for

instructions and a factor of 16 for data
– Gate level: e.g. clock gating.
– Technology with HighVt.
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