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Abstract— The tremendous growth of the Internet coupled
with newly emerging applications has created a vital need
for multicast traffic support by backbone routers and ATM
switches. Considerable research work has been done on
Input Queued (IQ) switches to handle multicast traffic flows.
Unfortunately, all previously proposed solutions were of no
practical value because they either lack performance or
were simply too complex to implement. Internally Buffered
Crossbar (IBC) switches, where a limited small amount
of memory is added in each crosspoint of the crossbar
fabric, on the other hand, have been considered as a robust
alternative to buffer-less crossbar switches to improve the
switching performance. However, very little has been done
on multicasting in IBC switches. In this paper, we fill this
gap and study the multicasting problem in IBC switches.
In particular, we propose a novel IBC based multicast
architecture along with a simple scheduling scheme named
Multicast cross-point Round Robin (MXRR). Our scheme
was shown to handle multicast traffic more efficiently and
far better than all previous schemes for both the multicast
FIFO architecture as well as the multicastk FIFO queues
architecture. Yet, MXRR is both practical and achieves high
performance.

Index Terms— Switching, Scheduling, Mulitcast, Perfor-
mance, Hardware requirements

I. I NTRODUCTION

The explosive growth of the Internet in number of
users and service variety is parallel to the growth in
transmission links capacity due to the advances in fiber
optic bandwidth that has created huge supply of wide-
area network bandwidth. As a result, switches/routers
are becoming the bottleneck of the network. Tradition-
ally, network nodes (IP routers, ATM switches, Ether-
net switches) were designed for point-to-point commu-
nication (unicast). However, new applications such as
teleconferencing, distance learning, IPTV and more are
emerging. These new applications have lead to higher
demand for high-speed switches/routers capable of deal-
ing with point-to-multipoint communication (multicast).
Numerous proposals for identifying suitable architectures
for efficient multicast support have been investigated and
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implemented [1] [2] [3]. These architectures can be classi-
fied based on various attributes such as queuing schemes,
scheduling algorithms, and/or switch fabric topology.

The crossbar-based architecture [4] is widely consid-
ered the most suitable switching architecture due to its
low cost, scalability and more importantly itsintrinsic
multicast capabilities[3]. Alongside the switching fabric
architecture and the traffic supported, the queuing struc-
ture of a router is equally important. The Input Queued
(IQ) switching architecture is the mostly used because of
its low requirement in terms of internal speed up. When
first-in-first-out (FIFO) queueing discipline is used at the
input queues, the throughput of an IQ is limited to 58.6%
due to the Head-of-Line (HoL) blocking problem [5].
The HoL blocking can be completely eliminated by
adopting virtual output queuing (VOQ) at each input of
the switch [6] which scales the achievable throughput of
the switch to 100%. The VOQ structure requires, however,
a scheduling algorithm that manages the departure of cells
from the input ports. As a result, the switching perfor-
mance essentially depends on its scheduling algorithm.

Unlike unicast traffic, where a packet (cell) at an input
port is destined to only one output port, a multicast cell
queued at an input port can have 2 or more destination
output ports known as its fanout set. While different
architectures have been proposed for multicast traffic han-
dling [7] which are based on copy networks, in this paper
we consider the crossbar-based switching architecture due
to its architectural intrinsic multicast capabilities. There
has been a great deal of research work on multicast
scheduling in the literature. Most of them are based
on a multicast FIFO queue architecture [4]. However,
because of a similar HoL blocking problem as for the
unicast traffic, the performance is low. Avoiding the HoL
problem in this case would require a FIFO queue for
every fanout set per input. This implies maintaining up
to 2N − 1 separate FIFO queues per input, whereN
is the number of output ports of the switch [8]. This
is clearly impractical for even small sized switches. As
a compromise, researchers have proposed to use a small
number of queues,k (1 ≤ k ¿ 2N−1) per input [9] [10].

This article focuses on the multicast scheduling prob-
lem in crossbar-based IQ switches. In particular, we
propose a novel architecture to handle multicast traffic.
Our architecture is based on multicast FIFO queues at the
ingress ports with an internally buffered crossbar (IBC)
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Figure 1. Multicast Traffic Support in Core Routers

fabric. Throughout the rest of this article, we will refer to
this architecture asMulticast Internally Buffered Crossbar
(MIBC) switch. The existence of internal buffers avoids
the need for centralized scheduler and relies on simpler,
distributed schedulers over the input and output ports.
We propose a scheduling algorithm named theMulticast
cross-points Round Robin(MXRR) algorithm. We further
extend the MXRR algorithm and propose the MXRRk
scheduling algorithm that is suitable for the Multicastk
FIFO queues architecture. We show the superiority of the
MIBC architecture to its bufferless predecessor and its
high capability to support multicast traffic flows.

The remainder of this article is organized as follows:
Section II presents background knowledge and related
work and introduces the multicast problem. We present
different multicast switching architectures and survey the
existing scheduling algorithms. Section III introduces
the MIBC architecture along with our proposed MXRR
scheduling scheme. We also present the MXRRk al-
gorithm for the multicastk FIFO queue architecture.
Section IV presents a simulation study and compares
the MXRR algorithm to some state-of-the art schemes.
Finally, section V gives some concluding remarks.

II. T HE MULTICASTING PROBLEM

Multicast traffic handling, in its simplest form, is the
capability of a router to transfer a cell to multiple des-
tination output ports with the minimum cost in terms of
data processing and time. This is important because of
the growing proportion of multicast traffic on the Internet
(audio, video, IPTV, etc.). If we consider the example in
Figure 1, and assume that the three hosts connected to
router R2 are receiving the same media content from the
server. If the Server sends the same message to hosts, H1,
H2, and H3, it either sends the same message three times
(one per destination) or it can send the message only once
over routers R1 and R2. Once reaching R2, the message
gets split into three copies, one copy per destination host.
Obviously, the latter case is a better choice as it optimizes
the network resources and the time taken for the hosts to
receive the data. In order to achieve this, routers R1 and
R2 must be designed to support multicast traffic.
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Figure 2. a 2x4 Multicast Crossbar Switch

The number of destination output ports of a multicast
cell is known as its fanout set. If we consider an an
N × M router with multicast capabilities, a multicast
cell arriving at any of theN input ports can have
any set of destinations between 2 andM . In order to
avoid the HoL problem, the router must maintain up to
2M − 1 separate FIFO queues per input to cover all
possible fanout set configurations. This architecture is
known as the multicast VOQ (MC-VOQ) [8]. Because
of the huge number of queues maintained at each input
and the extensive amount of information exchange in
order to schedule the traffic, this architecture is considered
impractical. Instead, researchers have used just one FIFO
queue per input. This approach is very practical, however
it has poor performance due to the HoL problem. Another
solution is to maintain a small number,k, of queues per
input for multicast traffic. This was a good compromise
to achieve high performance while maintaining affordable
hardware requirements. Cells with different fanout sets
will have to be placed in the same input queue because
k is much smaller than2M − 1. This mapping is known
as the multicast cell placement policy.

A. The Multicast FIFO Architecture

If we consider that router R2 (in Figure 1) uses just one
FIFO queue per input for multicast traffic, its architecture
can be described as depicted in Figure 2. By considering
that the crossbar fabric operates at the same rate as the
external lines, at each time slot1 every input can send
at most one cell and every output can receive at most
one cell. Because of the intrinsic multicast capabilities
of the crossbar fabric, a cell ( multiple copies) can be
sent to all its destinations at the cost of one by simply
closing those crosspoints corresponding to its output ports
provided they are available.

Subject to output availability and the scheduling al-
gorithm used a cell may not reach all its destinations,
indicated by its fanout set, during one time slot. There
are two known service disciplines used to deal with such
situation [4]. The first is known asno fanout splitting

1A time slot is defined as the time between two cell consecutive
arrivals/departures to/from an input/output port of the router
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and the latter is known asfanout splitting. When no
fanout splitting discipline is used, a cell must traverse
the crossbar fabric only once. Meaning that a cell gets
switched to its output destination ports if and only if all
its destination outputs are available at the same time. If
one, or more, of the output destinations is/are busy, the
cell loses contention and all of its copies remain in the
input port. If we consider no fanout splitting discipline in
Figure 2, then either of the two HoL cells of queuesMQ1

andMQ2 will be switched out butnot both. The reason is
because both cells have output ports 1 and 2 in their fanout
sets and knowing that an output port can receive at most
one cell and the no fanout splitting discipline does not
allow partial cell switching resulting in only one cell of
the two being eligible for transfer. The no fanout splitting
discipline is easy to implement, however it results in low
throughput because it is not work conserving2. This can
be seen from the example above as either output 3 or
output 4 will receive a cell but not both depending on
which MQ has been selected.

When, however, fanout splitting discipline is used, a
cell can bepartially sent to its destination output ports
over many time slots. Copies of the cell that are not
switched, due to output contention, during one time slot
continue competing for transfer during the following time
slot(s). The flexibility of allowing partial cell transfer
comes at a little increase in implementation complex-
ity, however it provides higher throughput because it is
work conserving [11]. In this paper, we consider fanout
splitting. Consider the example of Figure 2 again and
assuming a fanout splitting discipline is used, then both
the HoL cells ofMQ1 and MQ2 can send copies to a
subset of their output ports. Output 3 and 4 are receiving
one cell each and therefore both copies destined to them,
in the input queues, are transferred with no contention.
Additionally, both HoL cells ofMQ1 and MQ2 have
cells destined to outputs 1 and 2. However, we know
that each output can receive at most one cell at a time.
Therefore, at the end of the time slot, we will have
remaining cells for output ports 1 and 2. These remaining
cells are referred to as theresidue.

Depending on the policy used, the residue can either
beconcentratedon the input ports or it can bedistributed
over the input ports. As defined in [4], the residue is the
number of cells left at the HoL of the input queues after
losing contention for the output ports at the end of each
time slot. In the example of Figure 2, the residue is{1, 2}.
A concentrating policy is one that leaves the residue on
the minimum number of input ports. If we consider a
concentrating policy in Figure 2, the residue with be left
(concentrated) on eitherMQ1 or on MQ2 but not on
both. On the other hand, a distributing policy is one that
leaves the residue on the maximum number of input ports.
Using a distributing policy in Figure 2 would result in the
residue being distributed overMQ1 andMQ2 but not on
one queue only.

2A work conserving policy ensures that an output port is never idle
so long as there are cells destined to it in the input ports

B. Algorithms For The Multicast FIFO Architecture

Several algorithms have been proposed for this archi-
tecture, mostly designed for the bufferless crossbar fabric
switches.

• The Concentrate Algorithm:As the name indicates,
the concentrate algorithm [4] always concentrates
the residue onto as few inputs as possible. The
purpose of this algorithm is to provide a basis for
evaluating the performances of other algorithms,
since it achieves high throughput for the FIFO queue
structure. However, this algorithm doesn’t meet the
fairness requirement due to the starvation problem it
creates. The Concentrate algorithm is not considered
a practical algorithm. It requires up toM iterations
per cell time to complete, which makes it difficult to
implement at high speed.

• The mRRM Algorithm:The Multicast Round-Robin
Matching (mRRM) was proposed by [12]. A single
round-robin pointer is collectively maintained by all
of the outputs. Each output selects the next input
that requests it at, or after, the pointer. At the end of
the packet time, the pointer is moved to one position
beyond the first input that is served. Designed to
be simple to implement in hardware, mRRM tends
to concentrate the selection onto a small number of
inputs, yet maintains fairness.

• The TATRA Algorithm: The general multicast
scheduling problem can be mapped onto a variation
of the popular block-packing game Tetris. TATRA is
based on the Tetris model and was first introduced
in [12]. TATRA has the properties of guaranteeing at
least one input packet is discharged each packet time,
and also residue concentration. Designed to approxi-
mate the concentrate algorithm with less complexity,
unfortunately TATRA is a complex algorithm since
it cannot be parallelized. Moreover, TATRA treats
all inputs uniformly which is of no value when
the inputs are non-uniformly loaded or when some
inputs request a higher priority.

C. The Multicastk FIFO Queues Architecture

Due to the impracticality of the MC-VOQ switching
architecture [8] and to the low performance of the multi-
cast FIFO architecture, a good compromise is to use the
multicast k FIFO queues architecture. It is a queueing
architecture with a small number of input multicast FIFO
queues per input (1 ≤ k ¿ 2M − 1). This queueing
architecture has been studied in the context of bufferless
crossbar switches [13] [14]. Figure 3 depicts the multicast
k FIFO architecture for anN × M buffered crossbar
switch, a crossbar switch where small buffers are added
inside the fabric chip [15]. Because the number of multi-
cast queues maintained at each input is much smaller than
the cardinality of the fanout set, a cell placement strategy
is required in order to enqueue each incoming cell into its
corresponding multicast queue (MQ) by following certain
criteria.
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Figure 3. AnN × M Multicast k FIFO Queues Buffered Crossbar
Switch

The cell placement has a significant impact on the
switch performance. Previous work [9] has defined the
criteria for designing a good cell placement policy:i)
HoL cells should contain diverse fanout sets that can span
a large part of the set of all outputs for which the input
holds packets. This ensures more scheduling opportunities
and work conservation.ii) Cells with the same or similar
fanout sets should be placed in the same multicast queue.
This would reduce the HoL problem and avoid the out of
sequence delivery problem. There have been many cell
placement schemes, such as majority [9] and minimum
distance queue (MDQ) [13]. While these schemes have
met most or all of the above mentioned criteria, their
major disadvantage lies in their hardware implementation.
A more recent and practical scheme, named theModulo,
has been proposed by [16]. Unless otherwise stated, in
the remainder of this article, we use themoduloscheme.

D. Algorithms For The Multicastk FIFO Queues Archi-
tecture

The low performance and high complexity of the multi-
cast FIFO architecture have stressed the need for the mul-
ticast k FIFO queues architecture and many scheduling
algorithms have been proposed. These algorithms have
been designed for the bufferless as well as for the buffered
crossbar switching architectures.

• Bufferless Crossbar Based Algorithms: Algorithms
for this architecture include the random scheduler
(RS), the Greedy Scheduler (GS) and the Greedy
Min-Split Scheduler (GMSS) [13]. The first algo-
rithm either makes decisions randomly among the
input and and output ports. In addition to its costly
hardware cost, this scheme has poor performance as
it leaves idle outputs due to the contention effect. The
second algorithm tries to overcome this and assigns
weights to the queues such as queue length and
then makes its selection based on weight ordering.
The third algorithm is also weighted algorithm and
tries to combine the advantages of the previous. As
it requires sorting, however, its implementation can
prove difficult and prevent it from running at high
rates.

• Buffered Crossbar Based Algorithms:A group of
scheduling algorithms have recently been proposed
for the multicastk FIFO queues architecture de-
signed for the IBC switching architecture [17]. These
algorithms were proposed along with a class of cell
placement schemes. The input arbitration was based
on some policies such as giving preference to HoL
cells that would result in the minimum reside left.
Another input scheduling was based on selecting
the cell with the maximum number of reachable
destinations first. A third policy is to give preference
to cells with the maximum service ratio, defined
as the the number of reachable destination outputs
divided by the fanout number of a cell. The output
arbitration was based on round robin and Longest
Queue First (LQF).

As a summary, we argue that each of the above
presented schemes tries to address some issues but fails
to meet other vital requirements. So far, none of these
algorithms proved simultaneously efficient in terms of
high throughput, practical in terms of implementation
complexity or fair with respect to the input FIFO queues.
In the following section, we propose a new architecture
along with a scheduling scheme that overcomes the lim-
itations of previous proposals.

III. T HE MULTICAST INTERNALLY BUFFERED

CROSSBARSWITCH ARCHITECTURE (MIBC)

Our choice of the multicast internally buffered crossbar
switch architecture is motivated by the fact this architec-
ture has key advantages that can serve to ensure that the
scheduling algorithm can be simple and efficient at the
same time. The presence of internal buffers drastically
improves the overall performance of the switch due to the
advantages it offers. First, the adoption of internal buffers
makes the scheduling totally distributed, hence reducing
dramatically the arbitration complexity and making it lin-
ear. Second, and most importantly, these internal buffers
reduce (or avoid) the output contention. Meaning, they
allow the inputs to send cells to an output irrespective
of simultaneous cells transfer to the same output. If an
output is not ready to receive a cell from an input, the
input still can send it to the internal buffer provided that
this internal buffer has enough room for that cell.

A. Switch Model

We consider the switch model defined in Figure 4.
Fixed size packets, or cells, are considered. Upon their ar-
rival to the switch, variable length packets are segmented
into cells for internal processing and re-assembled before
they leave the switch. A processing cycle has a fixed
length, called a cell or time slot. There areN input cards,
each one contains a FIFO multicast queue. The internal
fabric consists ofNM buffered crosspoints (XP ). When
an arriving cell, to an input porti, ∀ 1 ≤ i ≤ N , has its
fanout vector containing the outputj, ∀ 1 ≤ j ≤ M , it
must go through the crosspointXPi,j , before continuing
its journey to the output buffer.
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As with unicast scheduling, a multicast scheduling cy-
cle consists of the following three steps: input scheduling,
output scheduling and delivery notifying. During the input
scheduling phase, each input,i, selects, in an independent
and parallel way, the HoL cell of its multicast FIFO
queue and send it to the internal buffer corresponding
to its fanout set. Likewise, each output,j, selects, inde-
pendently and in parallel, a non empty crosspoint buffer,
XPi,j , and send its cell to the output queue. Then, the
delivery notifying is performed to carry the flow control
between the internal buffers and the input queues. For
each delivered cell, the flow control mechanism “informs”
the corresponding input of the internal buffer status.

B. The Multicast Cross-point Round Robin Algorithm:
MXRR

This section introduces the Multicast cross-point Round
Robin algorithm, MXRR. The description of each
scheduling phase of the MXRR is as follows:

Input Scheduling:
. For each input,i, do

. Send the FIFO HoL multicast cell to the set
of internal buffers corresponding to its fanout
vector.

. If one or more internal buffers are not free, the
cell stays at the HoL of that input and waits
for the next input scheduling phase to send to
its remaining internal buffers.

Output Scheduling:
. All the output pointers are, artificially, set to the same

initial position and incremented, each time slot, by
onemod (N).

. For each output,j, do

. Starting from its pointer’s index, select the first
non empty cross point and send its queued cell
to the output buffer.
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Figure 5. A2× 4 MIBC Switch

The MXRR algorithm exhibits good properties such as
low cell latency, fairness and non starvation, simplicity in
design and high throughput. To better see these properties,
and without loss of generality, consider the following
example of a2 × 4 MIBC switch in Figure 5. Let us
assume that the output pointers are all pointing to input
1 and all the internal buffers are empty. During the input
scheduling phase, both HoL cells of Q1 and Q2 will be
completely transferred to the internal buffers. During the
output scheduling phase, since the output pointers have
index 1 each, therefore every output j, will select the
internal bufferXP1,j , ∀ 1 ≤ j ≤ 4. This means that,
during this time slot, the HoL cell ofQ1 is completely
served. At the beginning of the second time slot,XP2,2,
XP2,3 , and XP2,4 are occupied, therefore the second
cell of Q2 (which becomes the HoL cell) cannot send its
cell to all the outputs1, 3, 4. It only can send toXP2,1

which leaves a residue of3, 4. Q1, however, can send
its HoL cell completely to the internal buffers. During
the output scheduling phase, since the output pointer’s
indexes are incremented to 2, therefore each outputj,
will select the internal bufferXP2,j , ∀ 1 ≤ j ≤ 4. This
means that, during this time slot, the HoL cell ofQ2 is
completely served and part of the second cell as well.
From this example, we draw the following properties and
advantages of the MXRR scheduling scheme:

• Low cell latency: The MXRR scheme guarantees the
total service of at least one packet each time due
to the output pointers setting (which point to the
same internal buffer and advance synchronously).
Moreover, the time a packet waits at the HoL is
bound by number of input ports,N . The time a
packet waits at internal buffer,XP , is also bound by
the number of inputs,N . So the delay experienced
by every HoL packet inside the switch is no more
than2N time slots.

• Fair and starvation free: Since the output pointers
move artificially and in a synchronous fashion irre-
spective of the chosen packet, the starvation problem
will never occur. The chance of service for any two
cells from two different input ports is exactly the
same due to the round robin pointer movement.

• Simple in hardware implementation: Each input does
FIFO arbitration. The outputs, on the other hand,
work in a totally distributed and parallel manner. No
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computation and comparison of weights is needed to
make an arbitration decision. Each output arbiter just
performs simple round-robin arbitration.

• Enhanced performance: Achieves high throughput
and has lower packet latency than all previously
proposed buffer less algorithms. We will examine
this property in Section IV, which contains the
simulation results.

C. The Multicastk FIFOs Algorithm: MXRRk

While employing the Multicast FIFO architecture is
simple and practical, it suffers poor performance due to
the HoL problem. In order to completely eliminate the
HoL blocking problem, multicast cells having the same
fanout sets must be placed in the sameseparatemulticast
queue (MQ), which requires as manyMQs as the
multicast VOQ (MC-VOQ) architecture would and this
is clearly infeasible for even a small switching system.
A good alternative is to use a small number,k, of MQs
per input to accommodate the incoming multicast cells.
This is a good compromise to achieve good performance
while maintaining affordable hardware requirements. In
our model (see Figure 3), each input maintains a small
number,k, of multicast FIFO queues per input, where
{k | 1 ≤ k ¿ 2M − 1}. At each input, multicast queues
are denoted byMQi,j where{(i, j) | 1 ≤ i ≤ N ; 1 ≤
j ≤ k}. An input multicast queue,MQ, is considered
eligible (denotedEMQ) if it is not empty and at least
one of its destination output ports corresponds to a free
XP . Becausek is much smaller than2M − 1, cells with
different fanout sets will have to be queued in the same
input queue. This mapping is known as the multicast cell
placement policy. In our architecture, we use themodulo
cell assignment policy [16]. If a cell with fanout number
Φ arrives at inputi, themoduloscheme assigns the cell to
the multicast queue:MQi,j where{j | j = f mod(k)}.

Based on the Mulitcastk FIFO queues architecture, the
specification of theMXRR k is as follows:

Input Scheduling:
. For each input,i, do

. Starting from the pointer’s location, select the
first eligible queueEMQi,j and send its HoL
cell copies3 to the free internal buffers (XPi,j).

. Move the pointer to the location(j+1) (mod k).
Output Scheduling:

. All the output pointers are, artificially, set to the same
initial position and incremented, each time slot, by
onemod (N).

. For each output,j, do

. Starting from its pointer’s index, select the first
non empty cross point buffer and sends its
queued cell to the output buffer.

3Only copies destined toc outputs are sent, where{c | c ∈
{1, ..., M} and XPi,c is not full}. Other copies will have to compete
in later time slots.

TheMXRR k output scheduling remains the same as
that of MXRR because every cell is treated the same
independently of whether it is coming from an input
FIFO or an input multicast queue,MQ. Additionally,
maintaining the same output scheduling keeps the same
property of ensuring thecompleteservice of at least one
cell per time slot.MXRR k differs from MXRR in
its input scheduling. First, it uses a round robin priority
pointer in servicing the input multicast queues,MQ.
Second the delay a cell waits in the HoL underMXRR k
is bound bysup(k, N) time slots, whereN is the number
of input ports of the switch. The queuing delay inside the
crossbar fabric is the same as that of MXRR (N time
slots). So the delay experienced by a HoL cell inside
the switch under theMXRR k algorithm is bound by
sup(k, N) + N time slots. The round robin mechanism
of MXRR k allows it be fair and starvation free while
kept simple in hardware.

IV. PERFORMANCESTUDY

This section studies and analyzes the performance of
different queueing and switching architectures. In par-
ticular this study is aimed at comparing the bufferless
crossbar switching architecture to the MIBC switching
architecture. The performance results presented in this
section are done for two different switch sizes (8× 8 and
16 × 16 respectively). We carried out the performance
under two input traffic patterns: Bernoulli uniform and
Bursty uniform. We compared the TATRA algorithm and
Multicast ISLIP [6] bufferless crossbar switch with the
MXRR algorithm for the buffered crossbar architecture.
The choice of TATRA was because of its high per-
formance. This study is targeting the multicast FIFO
queueing architecture. We also compared the performance
of the multicast ISLIP algorithm with that of MXRR for
the multicastk FIFO queues architecture. The choice of
the multicast ISLIP is because it is considered as practical.

Figure 6 depicts the average delay performance of the
TATRA and multicast ISLIP for the an8 × 8 bufferless
crossbar switch compared to the MXRR algorithm run-
ning an 8 × 8 buffered crossbar switch. As the figure
shows, MXRR has better delay performance than the
other two. This result holds for uniform Bernoulli arrival
(left graph on Figure 6) as well as for bursty uniform
arrivals with a burst length of 16 cells (right graph on
Figure 6).

In order to better analyze the behavior of each algo-
rithm, we tested the algorithms under the same settings
as above but with a larger sized switch. This is important
because, as the switch sizes increases, the fanout sets of
the cells increases making it harder for the algorithm to
schedule the traffic due to increased contention. For this
end, Figure 7 depicts the average cell delay of each of
the three algorithms for a16 × 16 switch. Again, the
MXRR algorithm keeps the shortest cell delay amongst
the three algorithms both under Bernoulli uniform and
bursty uniform arrivals. MXRR is expected to have a
shorter cell delay as the internal buffer size increases. This
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Figure 6. Average Cell Delay of8× 8 Multicast FIFO Crossbar Switch

0.75 0.8 0.85 0.9 0.95
10

0

10
1

10
2

10
3

10
4

A
v

e
ra

g
e

 C
e

ll 
D

e
la

y

Normalized Output Load

16x16 Switch under Bernoulli Uniform Traffic

MXRR

TATRA

Mcast_SLIP

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

10
2

10
3

10
4

A
v
e
ra

g
e
 C

e
ll 

D
e
la

y

Normalized Output Load

16x16 Switch under Bursty Uniform Traffic

MXRR

TATRA

Mcast_SLIP

Figure 7. Average Cell Delay of16× 16 Multicast FIFO Crossbar Switch
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Figure 8. Average Cell Delay Of MXRR With Different Internal Buffer
Sizes

is because the scheduler is exposed to more scheduling
opportunities and less HoL blockings. Figure 8 illustrates
this behavior, where the internal buffer size is set to 2,
4 and 8 cells per crosspoint respectively. Please note that
offered load, in Figure 8, refers to input load.

In the previous experiments, we tested the three algo-
rithms for the multicast FIFO queueing architecture. In the
following simulation, we compared the delay performance
of the mcastSLIP bufferless algorithm with the MXRR
algorithm because of their similarities, as non weighted al-

gorithms. Figure 9 depicts the average delay performance
for each of mcastSLIP and MXRRk for the multicast
k FIFO queues architecture. We used 2 and 4MQs
per input for a16 × 16 switch under Bernoulli unform
traffic. We can see from Figure 9 that MXRR outperforms
the bufferless mcastSLIP algorithm irrespective of the
number MQs used per input. MXRRk still achieves
higher performance while using half the number ofMQs
that mcastSLIP does. The MXRR algorithm, not only
outperforms mcastSLIP in terms of cell cell delay, but
most importantly in its simpler hardware requirements,
allowing it to run at very high rates.

V. CONCLUSIONS

Building high speed switches and Internet routers
with multicast support is becoming important due to the
growing proportion of multicast traffic on the Internet.
This paper studies the multicast traffic problem and sur-
veys existing multicast switching architectures as well as
their scheduling algorithms. In addition, we propose a
new switching architecture, named MIBC, along with its
appropriate scheduling algorithms to efficiently support
multicast traffic flows. The MXXR algorithm, as well
as its MXRRk variation, was shown to outperform all
state-of-the-art algorithms both in cell delay and through-
put. Our proposed algorithm requires simple hardware
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implementation and is able to run at very high rates.
We expect that, with more carefully designed scheduling
schemes for the MIBC switching architecture, even higher
performance can be achieved.
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