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Prof. dr. P.M. Sarro Technische Universiteit Delft, reservelid

ISBN: 978-90-812020-1-5

Keywords: Compiler backend, Compiler optimization, Reconfigurable
architecture

Cover: Reconfigurable Computing as a new chess game

Copyright c© 2007 E. Moscu Panainte
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without permission of the
author.
Printed in the Netherlands



In memoriam Prof. Stamatis Vassiliadis, Prof. Irina Athanasiu, Prof.
Ionel Grigoras, Prof. Matei Stan





The Molen Compiler for
Reconfigurable Architectures

Elena MOSCU PANAINTE

Abstract

I
n this dissertation, we present the Molen compiler frameworkthat targets
reconfigurable architectures under the Molen Programming Paradigm.
More specifically, we introduce a set of compiler optimizations that ad-

dress one of the main shortcomings of the reconfigurable architectures, namely
the reconfiguration overhead. The proposed optimizations are based on data
flow analyses at intraprocedural and interprocedural leveland take into ac-
count the competition for reconfigurable hardware resources and the spatio-
temporal mapping. The hardware configuration instructionsare scheduled in
advance of hardware execution instructions, in order to exploit the available
parallelism between the hardware configuration phase and the sequential ex-
ecution on the core processor. The intraprocedural optimization uses the min
s-t cut graph algorithm to reduce the number of executed hardware configura-
tions by identifying the redundant hardware configurations. We also introduce
two allocation algorithms for the reconfigurable hardware resources that aim to
minimize the total reconfigured area and to maximize the overall performance
gain. Based on profiling results and software/hardware estimations, the com-
piler optimizations and allocation algorithms generate optimized code for the
spatio-temporal constraints of the target reconfigurable architecture and input
application. Additionally, they guide the selection of hardware/software execu-
tion of the operations candidate for reconfigurable hardware execution. In or-
der to evaluate the Molen compiler, we first present an experiment with a mul-
timedia benchmark application compiled by the Molen compiler and executed
on the Molen polymorphic media processor with an overall speedup of 2.5
compared to the pure software execution. Subsequently, we estimate that the
intraprocedural compiler optimization contributes to up to 94 % performance
improvement compared to the pure software execution, whilethe intraproce-
dural compiler optimization and the allocation algorithmssignificantly reduce
the number of executed reconfigurations for the considered benchmarks. Fi-
nally, we determine that the important performance impact of our compiler
optimizations and allocation algorithms increases for thefuture faster FPGAs.
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Chapter 1

Introduction

Reconfigurable Computing is a computing paradigm based on reconfigurable
devices, which are hardware platforms whose functionalityand interconnec-
tions can be metamorphosed under software control. As a general approach,
the computing machines under this paradigm include a General Purpose Pro-
cessor (GPP) - which provides good performance for a large range of applica-
tions - extended with reconfigurable devices - usually a Field-Programmable
Gate Array (FPGA) which achieves high performance for application-specific
computations. Such hybrid system - denoted as Field-programmable Custom
Computing Machine (FCCM) - combines the advantages of the two compo-
nents: the flexibility of the GPP and performance of the FPGA and provides
additional advantages. The hardware flexibility of the reconfigurable devices
allow rapid modifications of existing platforms for the continuously changing
standards and functional requirements; thus, the time-to-market delay and the
prototyping costs are significantly decreased. Due to thesefeatures, Reconfig-
urable Computing is considered a viable solution for the increasing complexity
of the current applications and hard requirements imposed for the computation
machines.

Although a large number of approaches for Reconfigurable Computing have
been proposed in the last decade, the success of this computing paradigm is
conditioned and currently limited by the design tools that should transparently
exploit the underling reconfigurable machine from the high-level programming
application. More specifically, the current state-of-art tools assume the devel-
opers have deep understanding of both hardware and softwaredesigns and it is
their responsibility to fully exploit the benefits of this approach.

In this thesis, we focus on the Molen Compiler backend which addresses a key
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2 CHAPTER 1. INTRODUCTION

component of the design tools that should be adapted for the target FCCM. The
presented compiler aims not only to generate code for the target machine, but
mainly to apply advanced optimizations that transparentlytake into account
the specific features of the target FCCM.

In this chapter, we present the general problem overview andclearly define the
dissertation scope in Section 1.1. Next, we focus on the major open questions
that should be answered in the rest of the thesis and define theused termi-
nology. In Section 1.3, we present the organization of this thesis and a brief
overview for each chapter.

1.1 Problem Overview and Dissertation Scope

In the last decade, the research in reconfigurable computingleverages the
development of new reconfigurable devices, architectures,CAD tools, and
methodologies as well as compilation software, hardware-software partition-
ing and programming paradigms, in an effort to support the ever-increasing
demands of a wide range of target applications. These main research topics
are covered by two projects which are related to this thesis,namely MOLEN
(for the first category related to hardware organization) and Delft WorkBench
(for the second category related to the software support).

In this thesis, we address the compilation software area, which aims to gener-
ate high-quality binary code for the target reconfigurable architecture. More
specifically, the requirements and initial constraints of the proposed research
can be summarized as follows:

• Develop compiler extensions in the context of the Molen Programming
Paradigm (explained in the next section) for reconfigurablearchitectures
in general, and for the MOLEN Polymorphic processor in particular.

• Investigate which are the main advantages and drawbacks of the tar-
get reconfigurable architecture that can be exposed to and positively ex-
ploited by the compilation framework.

• Propose compiler optimizations and scheduling algorithmsthat address
the previously mentioned specific features of the target reconfigurable
architectures

• Quantify the impact of the proposed algorithms on the overall perfor-
mance for applications in multimedia domain.
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In addition to the initial requirements, we restrict the scope of this dissertation
as follows:

• We are concerned with software compilers, which generate assem-
bly/binary code for the target reconfigurable architectures; we do not
address hardware compilers which generate the synthesisable code that
should be performed on the reconfigurable device.

• The target applications for the compilation software are limited to the
multimedia benchmarks, as it is proven (see next section) that the target
reconfigurable architecture is appropriate for this application domain.

• The target FCCM is the MOLEN Polymorphic processor (see nextsec-
tion)

• The compiler should follow the Molen Programming Paradigm which is
intended (currently) for single program execution. In consequence, we
do not address problems specifically for Real-Time Operating systems
(RTOS) such as multi-threading, multi process management.Addition-
ally, the parallel execution of tasks on the FPGA representsa separate
research direction in Delft WorkBench project and is not thefocus of
this thesis.

• We do not compare the RC paradigm to other approaches for multime-
dia applications boosting performance (such as MMX, 3DNow!, SSE)
which use dedicated non FPGA related hardware. The focus of this the-
sis is the compiler support for the Molen Molen Polymorphic processor
under the Molen Programming Paradigm.

1.2 Motivation, Open Questions and Terminology

As previously explained, the main idea of the reconfigurablecomputing
paradigm is the use of dynamically configured hardware for implementing new
functionalities on a per-application basis. At the Instruction Set Architecture
level, the common approach for supporting new functionalities is to add a new
instruction for each new functionality executed on the reconfigurable hard-
ware. However, taking into account the common limitation inthe number of
the unused opcodes and in the instruction encoding, this approach imposes se-
vere restrictions on the type and number of newly added functionalities, while
it also requires in-depth hardware modifications of the coreprocessors (GPPs),
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at least in the decoding stage - a detailed discussion is included in the next
chapter.

A general approach which eliminates the above mentioned shortcomings is of-
fered by the Molen Programming Paradigm and Molenρµ-coded processor
which require only a small number (see next chapter) of new instructions for a
virtual infinite number of new functionalities. In the Molenmachine organiza-
tion, the functionalities are emulated on the reconfigurable hardware using an
extended microcode - referred to as reconfigurable microcode. Thus, a generic
instruction can cover a large number of functionalities, aslong as it addresses
their associated reconfigurable microcode.

In order to use the promising features of the RC paradigm fromthe application
level - which, due to the increasing complexity, are developed using usually
high-level programming languages (such as C, C++), advanced software tools
are required for guiding/supporting the design process, including hardware-
software partitioning, compilation and resource management. Among the re-
quired software tools, the compiler is a key element, as it can provide informa-
tion and transformations which are useful for all involved tools. Using modern
compiler techniques, the compiler can extract detailed andspecific informa-
tion about the static/dynamic behavior of the target application. Additionally,
the compiler is the critical component where the hardware features of the tar-
get architecture should be reflected in the generated code. Thus, the compiler
addresses both software and hardware features of the targetapplication and
architecture and it can/should have a major influence in the whole design pro-
cess. This observation is particularly suitable for the RC paradigm, where
the hardware features of the reconfigurable devices differ significantly from
those of GPP and offer interesting, new opportunities for the application and
improvement of standard compiler transformations.

Based on these considerations, we formulate four major openquestions which
are addressed in this thesis, as follows:

1. What are the minimal compiler modifications to transparently generate
code for RC under the Molen Programming Paradigm ?

We investigate the minimal compiler extensions and their practical in-
tegration in an existing compiler infrastructure to accommodate to the
minimal requirements of the Molen Programming Paradigm forRC. Ad-
ditionally, we implement a compiler backend specially adjusted for the
Molen Polymorphic processor. Once the basic compiler support is pro-
vided, specific transformations and optimizations for RC are required,
as posed by the following questions.
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2. What are the main advantages and drawbacks of RC that are important
for the compiler?

To answer to this question, we analyze the dynamic behavior of a set of
multimedia benchmarks in the context of RC and study the advantages
and disadvantages offered by the usage of the reconfigurablehardware.
As shown later on, we also estimate the impact of the identified features
over the overall performance and determine the domains for the target
reconfigurable architecture to outperform the GPP alone.

3. What compiler optimizations and instruction schedulingalgorithms are
appropriate for RC?

Based on the features identified in the answer of the previousquestion,
we research for a set of advanced compiler optimizations that capitalize
the advantages and eliminate/reduce the disadvantages of the target re-
configurable architecture. We also estimate the impact of the proposed
transformation on the overall performance of the Molen Polymorphic
processor.

4. Can the compiler efficiently guide/manage the allocationof the FPGA
resources?

The resource management in general and of FPGA resources in particu-
lar can be handled by both compilers and RTOS. We investigatethe com-
piler’s opportunities for guiding the FPGA resource allocation, based on
the characteristics of the target applications. Our approach addresses the
development of efficient allocation algorithms and the study of their im-
pact on the overall performance. As stated before, we do not address
operating systems in this respect.

Terminology: In computer engineering discipline, the term ofcomputer ar-
chitecture(or simply architecture) refers to the conceptual design and funda-
mental operational structure of a computer system. Basically, it consists of
the machine attributes - such as instruction set, operand width and register file
- that are exposed to the machine-language programmer of thespecific com-
puter.

Reconfigurable hardwareis a hardware device that can be modified after fab-
rication time through user-defined programming both at functional level and at
the interconnection level. Accordingly, a reconfigurable architecture is a com-
puter architecture that incorporates reconfigurable hardware. For this thesis,
we examine reconfigurable architectures that allow both partial and dynamic
reconfigurations.
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By partial reconfiguration, we refer to the the ability to reconfigure only the
part of the device that implements a specific functionality,while leaving un-
changed the rest of the device.Dynamic/run-time reconfigurationaddresses
the capability to reconfigure at execution time a part of the reconfigurable de-
vice, while the rest of the device is fully operational. Thus, in this thesis, we
address reconfigurable architectures that are not used onlyfor fast prototyping,
although currently this is one of their main usage.

The complex operations extracted from one application thatare implemented
and executed on the reconfigurable hardware are addressed inthe rest of the
thesis as reconfigurable/hardware operations/kernels.

1.3 Thesis Framework

This section presents the organization of the remainder of this dissertation
which consists of the following chapters:

• In Chapter 2, we discuss the common approaches for reconfigurable
architectures together with the compilation flows and programming
paradigms. We proceed by indicating a number of shortcomingof the
existing approaches regarding the permitted ISA extensions for the new
functionalities performed on the reconfigurable hardware.Next, we
present in details the target Molen machine organization and its im-
plementation on the Virtex II FPGA platform denoted as the Molen
Polymorphic processor. For programming such hybrid architecture,
we present the Molen Programming Paradigm that, although itis par-
ticularly suitable for the Molen machine organization, it is a general
programming paradigm that can be used for a large range of recon-
figurable architectures. Finally, we emphasize the differences that al-
low for the Molen machine organization and programming paradigm
to eliminate/reduce the above mentioned shortcomings of other existing
approaches.

• In Chapter 3, the Molen compiler backend we have implementedfor the
Molen Polymorphic processor is discussed in details. Additionally, a
complete experiment of a real multimedia application compiled for and
executed on the Molen Polymorphic processor is presented asa proof
of concept and we will show that the expected performance improve-
ments can be achieved but also that additional compiler optimizations
are required to fully exploit the target reconfigurable architecture.
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• In Chapter 4, we introduce a compiler optimization that is based on the
anticipation of the hardware configuration instructions atthe intrapro-
cedural level. The optimization uses data-flow analyses to determine
the anticipation space for each hardware configuration instructions and
a min s-t cut algorithm is applied in order to compute the optimal place-
ment of the hardware configuration instructions. The impacton perfor-
mance of this optimization is estimated for real multimediaapplications
and current FPGAs.

• In Chapter 5, we investigate the impact of the reconfiguration overhead
on the overall performance and propose an interprocedural compiler op-
timization to reduce its negative influence. To this purpose, the instruc-
tions for hardware reconfiguration are anticipated as soon as possible
before the associated hardware execution instructions andredundant re-
configurations are eliminated. The optimization also takesinto account
the limited reconfigurable hardware resources.

• In Chapter 6, we propose two efficient FPGA area allocation algorithms
which are based on profiling information regarding the reconfiguration
frequency. The allocation problems are translated in ILP problems with
two different objective functions: minimal reconfiguration overhead and
maximal performance improvement, in the context of hw/sw partitioning
problem.

• In Chapter 7, we present the main conclusions of this thesis emphasizing
on the main contributions of the presented research. Finally, we propose
future work directions for the compiler research as well as for the Delft-
WorkBench project.





Chapter 2

Reconfigurable Architectures

Due to the increased demand of computation power and flexibility, Reconfig-
urable Computing has been a major research domain in the lastdecade. How-
ever, existing approaches have several important shortcomings and there is a
lack of dedicated tools to assist the design process in all its stages. The Molen
machine organization and Programming Paradigm address andsolve the con-
sidered problems while the tools involved in DelftWorkbench project support
the designer targeting reconfigurable architectures underthe Molen Program-
ing paradigm.

In this chapter, we briefly present the background information and related work
regarding reconfigurable architectures. After a short discusson of the physical
implementation of the reconfigurable hardware, we propose aset of classifi-
cation criteria for reconfigurable architectures. In the following section, we
present a set of relevant reconfigurable architectures and adiscussion on their
main problems. In Section 2.4, we describe the Molen machineorganization
and Programming paradigm and emphasize the architectural features that ad-
dress the previous problems. In the next section, we introduce the DelftWork-
Bench project that aims to provide a semi-automatic tool platform for hw/sw
co-design and partitioning of applications executed on reconfigurable archi-
tectures under the Molen Programming Paradigm. Finally, the chapter is con-
cluded with Section 2.6.

9
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CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

CLB CLB CLB CLB CLB

Logic Block

Interconnection

I/O Cell

Figure 2.1: Internal structure of an FPGA

2.1 FPGA Overview

The concept of reconfigurable hardware was proposed for several decades, but
only the recent advances in technology made it a successfullalternative to
dedicated hardware. As reflected by the name, its main strenght resides in the
promising combination of the flexibility provided the reconfigurative feature of
the hardware and the performance of hardware execution. Several approaches
exists for such devices, varying from the first small PLDs (Programmable
Logic Devices) usefull to implement small boolean logic equations to the most
recent FPGAs needed for register-heavy and pipelined applications. In the rest
of this thesis, when reconfigurable hardware is addressed, we consider that
FPGA devices are referred to.

An FPGA consists of an array of uncommitted processing elements which
can be interconnected in a general way and this interconnection is user-
programmable. The typical structure of an FPGA is depicted in Figure 2.1.
The main components are the two-dimensional array of logic blocks, the inter-
connections and the I/O cells.

The logic blocks within an FPGA can be as small and simple as the macrocells
in a PLD (a so-called fine-grained architecture) or larger and more complex
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(coarse-grained). In most FPGAs, these programmable logiccomponents also
include memory elements, which can vary from simple flip-flops to more com-
plete blocks of memories. A typical FPGA logic block consists of a 4-input
lookup table (LUT), and a flip-flop.

The interconnection resources contain the segments of wireof different lengths
together with the programmable switches that serve to connect the logic blocks
to the wires, or the wires themselves. A logic circuit is implemented in the
FPGA by decomposing it in individual logic blocks and then connecting the
logic blocks via the switches as required in the initial design.

2.2 Classification of Reconfigurable Architectures

In many projects, FPGAs are used just for rapid prototyping.This is not the
focus of our research as real multimedia applications cannot fit entirely on
current FPGAs and a set of operations (e.g. I/O operations) are not proper for
FPGA execution. Instead, we address the combination of an FPGA and a GPP.
The main issue is to accelerate the computation intensive tasks using the FPGA
while preserving the I/O operations and control dominated tasks on the GPP.

A large number of approaches have been also proposed for suchhybrid recon-
figurable architectures (see [1] for a complete classification). We can classify
them through the following criteria:

• Configuration granularity:The granularity of the reconfigurable hard-
ware is defined as the size of the smallest functional unit (CLB) that is
addressed by the mapping tools.

– Fine-grainedarchitectures work at the bit manipulation level. Such
architectures offer the maximum level of flexibility at the cost of
increased area, power and delay requirements due to greaterquan-
tity of routing per computation. For such architectures, the recon-
figuration overhead has a major influence on performance.

– Coarse-grained architectures[2] [3] [4] [5] perform reconfigura-
tion at processing element level and they are suitable for standard
data path applications.

• Host coupling: Another important architectural issue is the type of con-
nection between the GPP and FPGAs [6] [7] [8] [9]. One approach is to
tightly integrate the FPGA as a functional unit of the GPP. In this case,
the operations executed on the reconfigurable hardware havea limited
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number of input/output operands and they resemble simple GPP instruc-
tions. The other approach is tolooselyconnect the FPGA as a coproces-
sor of the GPP. For such architectures, complex computations can be
performed on the FPGA which usually is allowed to access the main
memory. More performance improvements are expected for this second
category, but the reconfiguration overhead must be taken into account.

• Explicit reconfiguration: As previously mentioned, the reconfigura-
tion overhead is an important issue for the reconfigurable architectures,
where even for modern FPGAs, a complete configuration takes several
milliseconds. In order the reduce the reconfiguration latency, several
architectures (see [10] [11] [12] [9] [13] [14]) provide a special instruc-
tions for hardware configuration (SET instruction). However, some ar-
chitectures (see [15] [16] [7] [17] [18]) do not provide suchan instruc-
tions, either because the reconfiguration overhead is negligible or this
issue is not taken into account.

2.3 Examples of Reconfigurable Architectures

In the following, we shortly present a set of representativerelated reconfig-
urable architectures emphasizing on the criteria we presented in the previous
sections. First, the target architecture is described, followed by the program-
ming model and toolchain, and finally we focus on the compilerrelated issues
regarding code generation and special optimizations for the reconfiguration
overhead.

Napa[19][20]
Sarnoff Corporation

One of the early compilers for configurable hardware is Napa C. The target
architecture NAPA1000 combines an embedded 32-bit RISC processor with a
configurable logic with a 64 x 96 Adaptive Logic array, which is partially and
dynamically reconfigurable. Additionally, there are two 32bits x 2K on-chip
memory bank and eight 8 bits x 256 scratchpad memories.

For programming such hybrid architecture, the programmer is provided with a
set of pragma directives where he/she can specify the location (external mem-
ory, local memory or scratchpad) and the size of a variable, as well as the
execution engine of a subroutine or statement (RISC processor or configurable
logic). Additional pragmas for concurrency and I/O operations are not yet im-
plemented in the NAPA compiler. It is suggested that the hardware/software
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partitioning could be made by an automatic system; however,the programmer
has to deeply understand the target architecture and applications in order to
perform an efficient mapping.

The NAPA C compiler is based on the SUIF compiler infrastructure. After
the identification of the segments of code selected for execution on the config-
urable logic, the remaining code is unparsed to C and processed by the RISC
processor’s compiler. Thus, the quality of the code can be seriously decreased,
while the opportunity for applying specific optimizations for the configurable
logic is mainly lost. Regarding the configuration latency, it is not clear from
the available documentation whether there is a special instruction for such pur-
pose. Instead, most of the compiler optimizations address the synthesis of
hardware pipelines from pipelineable loops.

Garp[21][22]
University of California, Berkeley

The Garp architecture integrates a single-issue MIPS processor with a recon-
figurable array connected as a coprocessor. The reconfigurable hardware has
access to the same memories and caches as the MIPS processor.It is men-
tioned that the GARP chip does not exist as real silicon; circuit simulations are
used to estimate the clock speed, power consumption and silicon area.

One main advantage of the GARP compiler is the fact that it does not require
the programmer to insert any hints or directives in the source code (standard
ANSI C). The compiler automatically identifies the kernels that should be ac-
celerated using profiling and execution time estimates. Onemain constraint
for the considered applications is the size of the reconfigurable array.

The GARP compiler is also based on the SUIF compiler infrastructure. Similar
to the NAPA approach, the code for the core processor is also unparsed back
to C, with the previously mentioned drawbacks. One important advantage of
the GARP compiler is that it can extract whole loops to be executed on the
reconfigurable hardware. However, for the considered applications, the loops
are large and they do not fit entirely on the available reconfigurable array. For
such cases, only the frequently executed paths of the loops are grouped in hy-
perblocks and executed on the reconfigurable hardware. Regarding the config-
uration overhead, there is a special instruction for loading a new configuration
and there is hardware support to avoid loading a configuration when it is al-
ready available. However, the authors assume that reconfigurable hardware is
”rapidly” reconfigurable in few cycles, in order to be efficient for short-running
loops. Additionally, configurations can be loaded only whenthe reconfigurable
hardware is idle.
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Chimaera[23][24]
Northwestern University

The Chimaera micro-architecture is a complementary approach to NAPA and
GARP for coupling the reconfigurable hardware to the core processor. In this
approach, the reconfigurable hardware is integrated as a newfunctional unit
(Reconfigurable Functional Unit RFU) in the host processor.Such tightly cou-
pling allows faster communication with the host processor as it is interfaced
only with a set of registers, but the RFU is limited in accessing the memory and
performing control flow operations. An important consequence of such archi-
tectural design is that the operations executed on the RFU usually replace only
a set of several (up to 10) instructions on the host processor, while in NAPA
and GARP approaches whole loops could be executed on the reconfigurable
hardware.

The Chimaera compiler does not require the programmer for indications about
the operations for reconfigurable hardware. Instead, the compiler automati-
cally combines sets of instructions of the host processor that have maximum 9
inputs and only one output into a new instruction for the reconfigurable hard-
ware.

The Chimaera compiler is based on the GCC compiler version 2.6.3. New
compiler optimizations have been added in order to automatically identify the
best patterns for the reconfigurable hardware executions. These optimizations
- such as Control Localization, SWAR - aim to eliminate the branch instruc-
tions and to increase the basic block boundaries in order to better exploit ILP
and medium-grain data parallelism. Regarding the reconfiguration overhead,
the reported results are based on simulations using different timing models.
Moreover, the execution stalls for the duration of configuration loading.

PipeRench[15][25]
Carnegie Mellon University

The Piperench architecture uses the reconfigurable hardware in a different
manner from the above mentioned approaches. The main idea behind it is the
pipelined reconfigurations, when large pipelined computations are executed on
a small piece of reconfigurable hardware by loading the configuration of each
stage of the pipeline in one or few cycles. This approach allows the execution
of computations that do not fit entirely on the reconfigurablehardware. How-
ever, this virtualization of the configurations imposes some additional con-
straints of the computations that can be executed on such type of hardware.
For example, the operations executed in one stage of the pipeline can be de-
pendent only of the operations in the current or previous stage.
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The PipeRench compiler is focused on the generation of the hardware configu-
rations for the considered isolated kernels. It automatically synthesizes, places,
and routes the design for each kernel, while hiding from the programmer all
notions of hardware resources, timing and physical layout.Nevertheless, the
programmer is allowed - if wanted - to give additional hints about bit width of
variables.

The source language of the considered kernels is DIL (Data Intermediate Lan-
guage), which is a single assignment language with C operators. The DIL
compiler applies a set of compiler optimizations - such as inlining, loop un-
rolling, in order to determine the minimum data width and to meet the target
cycle time. These optimizations are parameterized with architecture-specific
information. Regarding the reconfiguration overhead, the architecture imposes
the reconfiguration at each cycles. In order to achieve this goal, a wide onchip
configuration buffer is connected to the physical fabric.

ADRES[26][27]
IMEC

The ADRES architecture is a coarse-grained reconfigurable architecture com-
posed by a regular array of functional units and register files. Each functional
unit contains more configurations and support predicate operations.

The ADRES architecture and compiler are focused on exploiting loop level
parallelism. Their goal is to fully implement on the reconfigurable array the
considered kernels, using a model of the ADRES architecturein an XML-
based language which must be provided to the compiler.

The DRESC compiler is based on the IMPACT compiler frameworkfor VLIW
architectures. The main extension is the Modulo schedulingalgorithm which
performs a mapping of the program graph and architecture graph aiming to
achieve the optimal performance. The scheduling algorithmresembles the
placement and routing algorithms for FPGAs, but tightly coupled in one frame-
work. Due to the coarse-grained feature, the reconfiguration overhead is not a
problem for such architectures.

DLX+FPGA [28] [29]
Politecnico di Torino

The target architecture contains a 32 -bit RISC processor DLX extended with
an FPGA as a functional unit. The FPGA is dynamically reconfigurable and
each of its cells can store up to 4 configurations that can be instantly inter-
changed. New instructions are added for the operations executed on the FPGA,
with at most 4 inputs and 2 outputs, but maximum 4 registers per instructions.
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This very restrictive limitation is due to the encoding limits of the DLX ISA.

The kernels considered for execution on the reconfigurable hardware are manu-
ally selected - the selection is guided by standard profilers- and delimited with
pragma annotations. A set of tools based on the gcc toolchainis provided for
automatic design space exploration, including the compiler, assembler, simula-
tor and debugger. The new instructions for FPGA execution replace a relative
small number of DLX instructions, thus the gcc compiler can schedule them
without major modifications. Additionally, there is no instruction for loading
the configurations on the FPGA and the reconfiguration overhead is not signif-
icant.

Based on the presented examples, we can conclude that there are four major
shortcomings of current approaches, namely:

1. Opcode space explosion: a common approach ( e.g. [19], [18], [28]) is
to introduce a new instruction for each part of application mapped into
the FPGA. The consequence is the limitation of the number of operations
implemented into the FPGA, due to the limitation of the opcode space.
More specifically stated, for a specific application domain intended to
be implemented in the FPGA, the designer and compiler are restricted
by the unused opcode space.

2. Limitation of the number of parameters: In a number of approaches,
the operations mapped on an FPGA can only have a small number of
input and output parameters ([28], [23]). For example, in the architec-
ture presented in [29], due to the encoding limits, the fragments mapped
into the FPGA have at most 4 inputs and 2 outputs; also, in Chimaera
[23], the maximum number of input registers is 9 and it has oneoutput
register.

3. No support forparallel execution on the FPGA of sequential opera-
tions: an important and powerful feature of FPGA’s can be theparallel
execution of sequential operations when they have no data dependency.
Many architectures [30] do not take into account this issue and their
mechanism for FPGA integration cannot be extended to support paral-
lelism.

4. No modularity : each approach has a specific definition and imple-
mentation bounded for a specific reconfigurable technology and design.
Consequently, the applications cannot be (easily) ported to a new recon-
figurable platform. Further there are no mechanisms allowing reconfig-
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urable implementation to be developed separately and ported transpar-
ently. That is a reconfigurable implementation developed bya designer
A can not be included without substantial effort by the compiler devel-
oped for an FPGA implementation provided by a designer B.

A general approach that eliminates these shortcomings is required. In the rest
of this chapter, we introduce the Molen machine organization with the Molen
Programming Paradigm, and the DelftWorkBench toolchain with special em-
phasis on the Molen Compiler. We will mainly discuss how thisapproach
addresses the above mentioned problems and eventually solve them.

2.4 The Molen Programming Paradigm

In this thesis, we target reconfigurable architectures following the Molen ma-
chine organization, depicted in Figure 2.2. The two main components in
the Molen machine organization are the Core Processor, which is a general-
purpose processor, and the Reconfigurable Processor (RP), usually imple-
mented on an FPGA. Another key component is the Arbiter whichperforms
a partial decoding of the instructions received from the instruction fetch unit
and issue them to the appropriate processor (GPP or RP). Dataare fetched
(stored) by the Data Fetch unit from(to) the main memory. TheMemory MUX
unit is responsible for distributing data betwen the reconfigurable and the core
processor. The Exchange Registers (XREGs) are used for datacommunica-
tion between the Core Processor and Reconfigurable Processor. However, the
Reconfigurable Processor can access the main memory throughthe Memory
MUX.

The Reconfigurable Processor is further subdivided into theρµ-code unit and
the custom configured unit (CCU). Theρµ-code unit provides fixed and page-
able storage for the reconfiguration bitstreams and controls the CCU. The CCU
consists of reconfigurable hardware and it is intended to support and accelerate
additional and future functionalities that are not implemented/suitable for the
core processor. The Molen machine organization has been implemented in the
Molen Polymorphic processor on Virtex II Pro FPGA platform and described
in [31].

The envisioned support of operations by the reconfigurable processor can be
initially divided into two distinct phases:set andexecute. In the set phase,
the CCU is configured to perform the supported operations. Subsequently, in
the execute phase, the actual execution of the operations isperformed. This
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Figure 2.2: The Molen machine organization

decoupling allows the set phase to be scheduled well ahead ofthe execute
phase, thereby hiding the reconfiguration latency. As no actual execution is
performed in the set phase, it can even be scheduled upward across the code
boundary in the code preceding the RP targeted code.

One main advantage of the Molen machine organization is based on the rein-
troduction of the microcode for the emulation of the complexoperations that
are performed on the reconfigurable hardware. The microcode(denoded asρµ-
code) is a sequence of simpler and smaller basic operations that control both
reconfiguration and execution of the CCU. The consequence isthat a generic
instruction (setinstruction) can be used for any hardware configuration, as the
specific configuration is entirely controlled by the associated ρµ-code. Addi-
tionally, only one generic instruction (executeinstruction) is provided for start-
ing the execution on the reconfigured hardware of any implemented hardware
operation, as its effect is completely depended of its associated microcode. By
the introduction of theρµ-code, the Molen machine organization eliminates
the first shortcoming presented in the previous section and provide solid sup-
port for solving the remaining drawbacks.

The Molen Programming Paradigm [32] [33] is a sequential consistency
paradigm for programming CCMs possibly including a generalpurpose com-
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putational engine(s). The paradigm allows for parallel andconcurrent hard-
ware execution and it is intended (currently) for single program execution. The
Molen Programming Paradigm requires only a one-time architectural exten-
sion of few instructions to provide a large user reconfigurable operation space.
The complete list of the eight required instructions, denoted as polymorphic
instruction set architecture (π ISA), is as follows:

Six instructions are required for controlling the reconfigurable hardware:

• Two set instructions: these instructions initiate the configurations of the
CCU. When assuming partial reconfigurable hardware, we provide two
instructions for such purpose, namely:

– the partial set (p-set〈address〉 ) instruction performs those con-
figurations that cover common and frequently used functionsof an
application or set of applications. In this manner, a considerable
number of reconfigurable blocks in the CCU can be preconfigured.

– the complete set (c-set〈address〉) instruction performs the config-
urations of the remaining blocks of the CCU (not covered by the
p-set). This completes the CCU functionality by enabling itto per-
form the less frequently used functions. Due to the reduced amount
of blocks to configure, reconfiguration latencies can be reduced.

We must note that in case no partially reconfigurable hardware is
present, the c-set instruction alone can be utilized to perform all con-
figurations.

• execute〈address〉: this instruction controls the execution of the opera-
tions implemented on the CCU. These implementations are configured
onto the CCU by the set instructions.

• set prefetch〈address〉: this instruction prefetches the needed microcode
for CCU reconfigurations into a local on-chip storage facility (the ρµ-
code unit) in order to possibly diminish microcode loading times.

• execute prefetch〈address〉: the same reasoning as for the set prefetch
instruction holds, but now relating to microcode responsible for CCU
executions.

• break: this instruction is utilized to facilitate the parallel execution of
both the reconfigurable processor and the core processor. More pre-
cisely, it is utilized as a synchronization mechanism to complete the par-
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allel execution. Thus, the shortcoming regarding the support for parallel
execution is eliminated.

Two moveinstructions for passing values between the register file and ex-
change registers (XREGs) since the reconfigurable processor is not allowed
direct access to the general-purpose register file:

• movtx XREGa ← Rb: (move to XREG) used to move the content of
general-purpose register Rb to XREGa.

• movfx Ra ← XREGb: (move from XREG) used to move the content
of exchange register XREGb to general-purpose register Ra.

The〈address〉 field in the instructions introduced above denotes the location
of the reconfigurable microcode responsible for the configuration and execu-
tion processes, previously described. It must be noted thata single address
space is provided with at least2n−op addressable functions, where n repre-
sents the instruction length and op the opcode length. If2n−op is found to be
insufficient, indirect pointing or GPP-like status word mechanisms can extend
the addressing of the reconfigurable function space at will.One important ob-
servation is that the operands are not directly encoded in the instruction format;
instead, the microcode for each operation is responsible toaccess the associ-
ated XREGs. In consequence, the number of input and output values is limited
only by the number of available XREGs, which can be mapped in the local
memory of the reconfigurable hardware and thus, it is not a real limitation and
resolve the second shortcoming regarding reconfigurable architectures.

It should be noted that it is not imperative to include all instructions when im-
plementing the Molen organization. The programmer/implementor can opt for
different ISA extensions depending on the required performance to be achieved
and the available technology. There are basically three distinctive πISA possi-
bilities with respect to the Molen instructions introducedearlier - the minimal,
the preferred and the completeπISA extension. In more detail, they are:

• the minimal πISA: This is essentially the smallest set of Molen instruc-
tions needed to provide a working scenario. The four basic instructions
needed areset (more precisely: c-set),execute, movtx and movfx. By
implementing the first two instructions (set/execute) any suitable CCU
implementation can be loaded and executed in the RP. Furthermore, re-
configuration latencies can be hidden by scheduling the set instruction
considerably earlier than the execute instruction. The movtx and movfx
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instructions are needed to provide the input/output interface between the
RP targeted code and the remainder application code.Observation:
The minimalπISA extension is assumed in the rest of the thesis

• the preferred πISA: The minimal set provides the basic support, but it
may suffer from time-consuming reconfiguration latencies,which could
not be hidden, and that can become prohibitive for some real-time appli-
cations. In order to address this issue, twoset(p-set and c-set) instruc-
tions are utilized to distinguish among frequently and lessfrequently
used CCU functions. In this manner, the c-set instruction only config-
ures a smaller portion of the CCU and thereby requiring less reconfig-
uration time. As the reconfiguration latencies are substantially hidden
by the previously discussed mechanisms, the loading time ofmicrocode
will play an increasingly important role. In these cases, the two prefetch
instructions (set prefetch and execute prefetch) provide away to dimin-
ish the microcode loading times by scheduling them well ahead of the
moment that the microcode is needed. Parallel execution is initiated by
a πISA set/executeinstruction and ended by a general-purpose instruc-
tion.

• the completeπISA: This scenario involves allπISA instructions includ-
ing the break instruction. In some applications, it might bebeneficial
performance-wise to execute instructions on the core processor and the
reconfigurable processor in parallel. In order to facilitate this parallel ex-
ecution, the preferred ISA is further extended with the break instruction.
The break instruction provides a mechanism to synchronize the parallel
execution of instructions by halting the execution of instructions follow-
ing the break instruction. The sequence of instructions performed in
parallel is initiated by anexecuteinstruction. The end of the parallel
execution is marked by the break instruction. Theset instructions are
executed in parallel according to the same rules.

The Exchange Registers. The XREGs are used for passing operation param-
eters to the reconfigurable hardware and returning the computed values after
the operation execution. Parameters are moved from the register file to the
XREGs (movtx) and the results stored back from the XREGs in the register
file (movfx).

During the execution phase, the defined microcode can accessthe parameters
of its associated operation from specific XRs and return the result(s). A se-
quentialexecuteinstruction does not pose any specific challenge because the
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whole set of exchange registers is available. However, whenexecuting mul-
tiple executeinstructions in parallel, additional conventions are introduced in
order to avoid the overlapping of the used XREGs. A more detailed discussion
is presented in the next chapter.

The Molen paradigm facilitatesmodular system design. For instance, hardware
implementations described in an HDL (VHDL, Verilog or System-C) language
are mappable to any FPGA technology, e.g., Xilinx or Altera,in a straightfor-
ward manner. The only requirement is to satisfy the Molenset/executein-
terface. In addition, a wide set of functionally similar CCUdesigns (from
different providers), e.g. sum of absolute differences (SAD), can be collected
in a database allowing easy design space explorations. Thus, the fourth short-
coming regarding reconfigurable architecture is eliminated.

Interrupts and miscellaneous considerations.The Molen approach is based
on the GPP co-processor paradigm. Consequently, all known co-processor in-
terrupt techniques are applicable. In order to support the core processor inter-
rupts properly, the following parts are essential for any Molen implementation:

1. Hardware to detect interrupts and terminate the execution before the
state of the machine is changed, is assumed to be implementedin both
core processor and reconfigurable processor.

2. Interrupts are handled by the core processor. Consequently, hardware to
communicate interrupts to the core processor is implemented in CCU.

3. Initialization (via the core processor) of the appropriate routines for in-
terrupt handling.

It is assumed that the implementor of a reconfigurable hardware follows a co-
processor type of configuration. With respect to the GPP paradigm, the FPGA
co-processor facility can be viewed as an extension of the core processor ar-
chitecture. This is identical with the way co-processors, such as floating point,
vector facilities, etc., have been viewed in the conventional architectures.

Regarding the shortcomings presented in the previous section, the Molen Pro-
gramming Paradigm and the architectural extensions solve the aforementioned
problems as follows:

• There is only a one time architectural extension of few new instructions
to include an arbitrary number of configuration.
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Figure 2.3: The Delft Workbench Design Flow

• The programming paradigm allows for an arbitrary (only hardware real
estate design restricted) number of I/O parameter values tobe passed
to/from the reconfigurable hardware. It is only restricted by the imple-
mented hardware as any given technology can (and will) allowonly a
limited hardware.

• Parallelism is allowed as long as the sequential memory consistency
model can be guaranteed.

• Assuming that the interfaces are observed, modularity is guaranteed be-
cause the paradigm allows freedom of operation implementation.

2.5 DelftWorkBench

DelftWorkBench project aims to provide a semi-automatic tool platform for in-
tegrated hardware-software co-design targeting heterogeneous computing sys-
tems containing reconfigurable components which provide the required sup-
port for the Molen Programming Paradigm. Delft Workbench addresses the
entire design cycle rather than isolated parts. The design flow is presented in
Figure 2.3.
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Profiler: As shown in Figure 2.3, the first step is the identifications ofthe
application parts that can provide the required benefit whenimplemented and
executed on the reconfigurable hardware. The target objective can vary signifi-
cantly, from increased performance to reduced power consumption or a smaller
footprint. The profiler can collect and analyze execution traces of the program
and use this information in combination with human directives to propose a
number of candidate code segments.

In order to quantify the potential benefit of a certain task, the profiler relies on
the estimation cost model [34] of the target reconfigurable hardware that will
provide preliminary estimation about configuration delays, area usage, power
consumption, etc. Such a cost model will allow to filter away those candidates
that will not likely result in the anticipated improvement in the view of the
target objective. The input for the profiler is ANSI C code andthe output is
annotated C code with pragma directives to indicate the tasks considered for
execution on the reconfigurable hardware.

In theC2C step, the kernels proposed by the profiler are further analyzed and
transformed in order to better fit on the reconfigurable hardware. One main
transformation is graph restructuring [35] [36] that aims to determine which
clusters of basic operations are optimal for hardware execution, taking into
account their execution frequency and potential benefits. Advanced loop opti-
mization can further be applied to fully exploit the loop level parallelism and
to remove the data dependency by using the reconfigurable hardware. After
the C2C step, the set of tasks for hardware execution is completely defined.

Retargetable Compiler: Once the kernels have been identified, the compiler
generates the appropriate link code for the execution on thereconfigurable
Processor, while the rest of the application is compiled forthe GPP. The link
code mainly contains the following:

• code for passing parameters to the Reconfigurable Processorin XREGs

• instructions for hardware configuration

• instructions for starting the execution on the Reconfigurable Processor

• code for returning the computed results from XREGs

One main goal of the compiler is to generate high quality codetailored to the
specific features of the target architecture. In this case, specific optimizations
have to be included in the compiler in order to address the distinct charac-
teristics of the reconfigurable hardware such us the reconfiguration overhead,
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parallel execution, sw/hw final partitioning, reconfigurable hardware alloca-
tion. The compiler is the main focus of this thesis and it is further denoted as
the Molen compiler.

VHDL Generation: For the tasks executed on the reconfigurable hardware,
the VHDL design can be obtained using three approaches. The first one is the
manual VHDL generation and it is appropriate for critical oruncommon tasks.
However, this approach is a time-consuming and error prone task. The second
approach is to use IP cores which are already available for general tasks such
us DCT, IDCT. The third approach [37] is the automatic code generation from
the associated C code. As previously discussed, this approach is considered
in many research projects (see [38] [21] [39]), but the quality of the generated
code is far bellow the expectation and there is a large set of limitations on the
C code which can be automatically translated to VHDL. In DelftWorkBench
project, the automatic VHDL generation will address these limitations and the
research will focus on optimizations and scheduling techniques for loops and
memory accesses.

2.6 Conclusion

In this chapter, we presented the background for this thesisand an overview
of reconfigurable architectures. We identify the main problems of current ap-
proaches and present how the targeted Molen machine organization and pro-
gramming paradigm eliminates them. The main advantages of the Molen ap-
proaches can be summarized as follows:

Compact and transparent ISA extensionFor a given ISA, only a one time
architectural extension of up to 8 instructions is requiredin order to sup-
port a virtually unlimited number of reconfigurable operations. This
achievement is mainly based on the introduction of theρµ-code which
is the emulation code that allows to define generic instructions without
concern about their exact implementation on the reconfigurable hard-
ware. Additionally, the proposed ISA extension is application indepen-
dent and provides ISA compability and portability.

Technology independent and modular designHDL designs can be devel-
oped independently of the target reconfigurable hardware and they can
be easily integrated in the Molen organization (using vendor’s tools for
synthesis) as long as the described interfaces are preserved.
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Parallel processing The user can select from different levels of parallelism
supported by the Molen Programming Paradigm. When parallelism is
not the main concern, than minimalπISA extension can be used, while
the completeπISA allows for parallel execution on the reconfigurable
hardware and GPP.

In the next chapter, we present the basic Molen compiler backend that targets
reconfigurable architectures under the Molen Programming Paradigm. In the
following chapters, specific compiler optimizations and scheduling algorithms
are proposed to take advantage of the distinctive features of the reconfigurable
architectures.



Chapter 3

The Molen Compiler

When most alternative reconfigurable architectures rely onsimulations and es-
timations for validation purposes, we disposed of a physical implementation
of the Molen machine organization. The Molen Polymorphic processor ([40])
was implemented on a Virtex II Pro FPGA platform which consists of one
PowerPC General Purpose Processor immersed into the reconfigurable hard-
ware.

In this chapter, we present the Molen compiler framework we have developed
for the Molen Polymorphic processor, with emphasize on the extended Pow-
erPC backend. We first present in Section 3.1 the Molen compiler framework
and general extensions required for the Molen Programming Paradigm. We
shortly describe the specific features of the Molen Polymorphic processor in
Section 3.2 and next we discuss in details the PowerPC compiler backend we
have implemented in the Molen compiler. In section 3.4, we present as a proof
of concept an experiment with the M-JPEG multimedia application running
on the Molen Polymorphic processor with a 2.5 speedup over the PowerPC
processor alone. Finally, the chapter is concluded with Section 3.5.

3.1 The Molen Compiler Framework

The Molen compiler [41] currently relies on the StanfordSUIF2 (Stanford
University Intermediate Format)[42] for the front-end andthe HarvardMa-
chine SUIF[43] backend framework, as presented in Figure 3.1. TheSUIF2
compiler infrastructure was designed for research and development of new
compilation techniques that maximize code reuse by providing general ab-
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FPGA
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int f(int a, int b){
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.elf
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Figure 3.1: The Molen Compiler Structure

stractions and frameworks. Thus, new optimizations and transformations can
easily be added and the flexible IR can be extended to express new features of
the application or target architecture. It provides advanced analyses for loop
parallelism such as affine program transformations and interprocedural pro-
gram analysis and a C converter.

Machine SUIF is a flexible and extensible infrastructure for constructing com-
piler backends. Although it is based on the SUIF system, its optimizations and
analyses are not SUIF specific as they can be reused in other compiler en-
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vironments as long as the Optimization Programming Interface (OPI) is sup-
ported. It provides support for building control-flow graphs, control flow anal-
yses and bit vector dataflow analyses, as well as a set of optimizations such
as common subexpression elimination, dead code elimination, peephole opti-
mizations. Additionally, a set of backends are already available (e.g. Com-
paq Alpha, Intel x86, suifvm - SUIF virtual machine), together with a graph-
coloring register allocation and support for code finalization, assembly and C
printing. Finally, it also supports code instrumentation that allows develop-
ment of profile-driven optimizations that require accurateand specific profile
informations.

The Molen compiler’s input is C99 [44], with user’s pragmas that indicate the
kernel functions implemented on the reconfigurable hardware. Regarding the
C preprocessing step, the user has to indicate the appropriate system headers,
taking into account that the compilation is usually a crosscompilation (e.g.
running on a Linux machine while compiling to Xilinx FPGA platform). A
basic compilation flow of the Molen compiler typically contains the following
steps:

• Frontend Processing:

– c2s - C to SUIF converter

– call fpga - pragma recognition

– do lower - SUIF to Low SUIF converter

• Backend Processing:

– do s2m - SUIF to Machine SUIF converter

– do gen - code generation for a target architecture given as a param-
eter

– do il2cfg - converter from instruction list to control flow graph

– do raga - register allocation

– do cfg2il - converter from control flow graph to instruction list

– do fin - code finalization

– do il2cfg

– do raga - register allocation again for the virtual registers from
code finalization

– do cfg2il
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– do m2a - ascii/asm printer

• Assembler/Linker processing:

The GNU assembler and linker have been modified for the targetarchi-
tecture.

Additional optimizations and analyses can be easily included in the compila-
tion flow as independent steps. Such optimizations can be thestandard opti-
mizations provided by SUIF/MachineSUIF infrastructure orthe Molen opti-
mizations we have developed for reconfigurable architectures.

The Molen Compiler Extensions

In order to generate code according to the Molen ProgrammingParadigm, the
following target-independent Molen extensions have been implemented

• Code identification: for the identification of the code mapped on the re-
configurable hardware, we added a special pass (denoted ascall fpga)
in the SUIF front-end. This identification is based on code annotation
with special pragma directives (similar to [19]). More specifically, the
definitions of the functions executed on the reconfigurable hardware are
preceded by a pragma annotationcall fpgaand the name of the associ-
ated hardware operation, as included in the FPGA description file. In
this pass, all the calls of the recognized functions are marked for further
modifications.

• MIR extension: the MIR suifvm has been extended with SET/ EXE-
CUTE and MOVTX/MOVFX instructions at MIR (Medium Interme-
diate Representation) level.

• Register file extension: the Register File Set has been extended with the
XRs.

• MIR Code generation: code generation for the reconfigurable hardware
is performed when translating SUIF to Machine SUIF IRsuifvm, and
affects the function calls marked in the front-end.

An example of the code generated by the extended compiler forthe Molen Pro-
gramming Paradigm is presented in Figure 3.2. In the first part, the C program
is given. The function implemented in reconfigurable hardware is annotated
with a pragma directive namedcall fpga. It has incorporated the operation
name,op1 as specified in the FPGA description file. In the central part of
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mov     main.x <− $vr8.s32
movfx $vr8.s32 <− $vr5.s32(XR)

movtx $vr7.s32(XR) <− vr6.s32

exec     address_op1_EXEC

ldc       $vr6.s32(XR) <− 0

c=0;
for(i=0; i<b; i++)
    c = c + a<<i + i;
c = c>>b;
return c;
}
void main(){
int x,z;
z=5;

}
x= ; f(z, 7)

#pragma call_fpga op1

int c,i;
int f(int a, int b){

movtx $vr1.s32(XR) <− $vr2.s32

mrk      2, 14
mov     $vr2.s32 <− main.z

ldc        $vr4.s32 <− 7

set        address_op1_SET

movtx $vr3.s32(XR) <− $vr4.s32

main:
     

mov main.x <− $vr1.s32

.text_end main

mrk  2,13
ldc    $vr0.s32  <− 5
mov  main.z <− $vr0.s32

mrk  2, 14
ldc    $vr2.s32 <− 7

mrk  2, 15
ldc    $vr3.s32 <− 0
ret    $vr3.s32

C code Original MIR code
instructions for FPGA
MIR code extended with 

cal  $vr1.s32 <− f(main.z, $vr2.s32)

Figure 3.2: Code Generation at MIR level

the picture, the code generated by the original compiler forthe C program is
depicted. The pragma annotation is ignored and a standard function call is in-
cluded. The last part of the picture presents the code generated by the compiler
extended for the Molen Programming Paradigm; the function call is replaced
with the appropriate instructions for sending parameters to the reconfigurable
hardware in XRs, hardware reconfiguration, execution of theoperation and
the transfer of the result back to the GPP. The presented codeis at MIR level
(beforedo genpass) and the register allocation pass has not been applied.

The inter/intraprocedural optimizations and the FPGA areaallocation algo-
rithms from Figure 3.1 are general Molen optimizations aiming to reduce the
reconfiguration overhead. These optimizations use detailed profile information
regarding the kernels executed on the reconfigurable hardware. Software and
hardware features of the considered kernels are included inthe FPGA Descrip-
tion File; the hardware features are provided by the hardware designers, while
the software features address the execution on the GPP alone, and are measured
in the profiling phase. The PowerPCFPGA backend is a specific backend we
have implemented for the Molen Polymorphic processor (see Section 3.2) and
it is presented in details in Section 3.3.
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3.2 The Molen Polymorphic Processor

In this section, we discuss the implementation of a microarchitecture support-
ing the minimal MolenπISA on the Virtex II Pro with the embedded PowerPC
405 serving as the core processor. The Virtex II Pro family contains platform
FPGAs for designs that are based on IP cores and customized modules. The
family incorporates up to four IBM PowerPC RISC 405 processor blocks, with
the following main features:

• embedded 300+ MHz Harvard Architecture Block

• low power consumption: 0.9 mW/MHz

• five-stage data path pipeline

• hardware multiply/divide unit

• thirty-two 32-bit General Purpose Registers

• 16 KB two-way set-associative instruction cache

• 16 KB two-way set-associative data cache

• memory management unit (MMU)

– Variable page sizes (1 KB to 16 MB)

• dedicated on-chip memory (OCM) interface

• supports IBM CoreConnect” bus architecture

• debug and trace support

• timer facilities

Virtex-II Pro devices incorporate large amounts of 18Kb Block SelectRAM+
memory. The available memory resources for Virtex II Pro XC2VP20 is
around 300 Kb while for XC2VP50 is around to 700 Kb. OCM controllers pro-
vide dedicated interfaces between Block SelectRAM+ memoryand processor
block instruction and data paths for high-speed access routing resources.

These features make the The Virtex II Pro platform suitable for the imple-
mentation of the Molen machine organization. The first implementation was
performed on the Virtex II Pro XC2VP20 FPGA platform and followed by the
implementation on the larger Virtex II Pro XC2VP30 FPGA platform. In both
implementations, there is only one core processor, namely IBM PowerPC 405.
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A key element is the implementation of the arbiter which is described in de-
tail in [45] [46] [47]. The arbiter controls the proper coprocessing of the core
processor and the reconfigurable processor (see Fig. 2.2) bydirecting instruc-
tions to either of these processors. It also arbitrates the data memory access
of the reconfigurable and core processors and it distributescontrol signals and
the starting microcode address to theρµ–code unit. The arbiter operation is
based on the partial decoding of the incoming instructions and either directs
instructions to the core processor or generates an instruction sequence to con-
trol the state of the core processor. The latter instructionsequence is referred
to as arbiter emulation instructions and it is used upon decoding of either aset
or anexecuteinstruction, as explained below.

Software considerationsFor performance reasons, PowerPC special operat-
ing modes instructions were not used - exiting special operating modes is usu-
ally performed by an interrupt. Instead, the arbiter emulates a wait state by
using the branch to link register (blr) instruction and the exit from the wait
state by using branch to link register and link (blrl ) instruction. The difference
between these instructions is thatblrl modifies the link register (LR), whileblr
does not. The next instruction address is the effective address of the branch
target, stored in the link register. Whenblrl is executed, the new value loaded
into the link register is the address of the instruction following the branch in-
struction. Thus, the arbiter emulation instructions, are reduced to only one in-
struction for wait and one for wake-up emulation. The PowerPC architecture
allows out-of-order execution of memory and I/O transfers,which has to be
taken into account in the implementation. To guarantee thatdata dependency
conflicts do not occur during reconfigurable operation, the PowerPC synchro-
nization instruction (sync) can be utilized before asetor executeinstruction. In
other out-of-order execution architectures, data dependency conflicts should be
resolved by specific dedicated features of the target architectures. In in-order
architecture implementations, this problem does not exist.

Instruction encoding In this implementation, themovtxand movfx instruc-
tions are mapped to the existing PowerPC instructionsmtdcrandmfdcr. This
solution is imposed by the fact that the Virtex II Pro PowerPCcore has a dedi-
cated interface to the so-called Device Control Registers (DCR) [48] [49] [50]
and two instructions that support DCR transfers (namely,mtdcrandmfdcr). It
should be noted that this is a PowerPC specific implementation and not appli-
cable in the general case. This leaves only thesetandexecuteinstructions to be
encoded. We follow the PowerPC I-form and choose unused opcodes for both
instructions. The manner to distinguish asetinstruction, anexecuteinstruction
(using the same opcode), and resident/pageable (R/P) microcode addresses is
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via instruction modifiers.

3.3 Molen PowerPC Compiler Backend

The first step for compiling for the Molen Polymorphic processor is to have
a backend compiler that generates the appropriate binariesto be executed on
the PowerPC processor integrated on the Virtex II Pro board.Current Ma-
chineSUIF backends excluded the backend for PowerPC architecture. In this
section, we present the Molen PowerPC backend we developed for this pur-
pose and we focus on the PowerPC instruction generation, PowerPC register
allocation, PowerPC EABI stack frame allocation and software floating-point
emulation. We also describe the specific PowerPC backend extensions for the
Molen Polymorphic processor.

3.3.1 PowerPC Compiler Backend

In order for one application to utilize external and/or underlying software or
hardware, a binary interface - called Application Binary Interface (ABI) has to
be defined. For example, many applications have to include a set of libraries
(e.g. math) that are compiled using a number of platform dependent conven-
tions. One such set of conventions proposed for PowerPC 405 is the Embedded
Application Binary Interface (EABI) with the goal of reducing memory usage
and optimizing execution speed, as these are prime requirements of embedded
system software. The EABI describes conventions for register usage, parame-
ter passing, stack organization, small data areas, object file, and executable file
formats. A description of the key issues for the PowerPC compiler backend
we have implemented is presented in the rest of this section.

Register Usage

In user mode, The PowerPC 405 processor provides the following registers:

• General Purpose Registers (GPRs): 32 registers, each 32 bits wide, num-
bered r0 through r31;

• Condition Register (CR): a 32-bit register that reflects theresult of cer-
tain instructions and provides a mechanism for testing and conditional
branching; for example a branch based on the condition r3< 64 can be
implemented as follows:

; CR has 8 fields of 4 bits each
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cmplwi 3, r3, 64 ; CR3 field contain
; the result of the comparison

blt 3, LABEL_1 ; branch based on CR3
......

• Fixed-Point Exception Register (XER): a 32-bit register that reflects the
result of arithmetic operations that have resulted in an overflow or carry;

• Link Register (LR): a 32-bit register that is used by branch instructions,
generally for the purpose of subroutine linkage;

• Count Register (CTR): a 32-bit register that can be used by branch in-
structions to hold a loop count or the branch-target address;

• User-SPR General-Purpose Register (USPRG0): a 32-bit register that
can be used by application software for any purpose;

• SPR General-Purpose Registers (SPRG4- SPRG7): 32-bit registers that
can be used by system software for any purpose and available with read-
only access

• Time-Base Registers: a 64-bit incrementing counter implemented as two
32-bit registers (TBU and TBL) with read-only access

Register Type Usage

R0 Volatile Language specific
R1 Dedicated Stack Pointer (SP)
R2 Dedicated Read-only small data area anchor

R3 - R4 Volatile Parameter Passing/ return values
R5 - R10 Volatile Parameter Passing
R11 - R12 Volatile

R13 Dedicated Read-write small data area anchor
R14 - R31 Nonvolatile

Fields CR2 - CR4 Nonvolatile Condition Register
Other CR fields Volatile Condition Register
Other registers Volatile

Table 3.1: PowerPC EABI Register Usage

The PowerPC EABI register usage conventions are depicted inTable 3.1. Non-
volatile registers must have their original values preserved, therefore, functions
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FuncX:

mflr %r0 ; Get Link register
stwu %r1,-88(%r1) ; Save Back chain and move SP
stw %r0,+92(%r1) ; Save Link register
stmw %r28,+72(%r1) ; Save 4 non-volatiles r28-r31

....................................................

lwz %r0,+92(%r1) ; Get saved Link register
mtlr %r0 ; Restore Link register
lmw %r28,+72(%r1) ; Restore non-volatiles
addi %r1,%r1,88 ; Remove frame from stack
blr ; Return to calling function

Figure 3.3: Function’s Prologue and Epilogue

modifying nonvolatile registers must restore the originalvalues before return-
ing to the calling function.

The Stack Frame

In addition to the registers, each function may have a stack frame on the run-
time stack. The PowerPC architecture does not have a push/pop instruction
for implementing a stack. The EABI conventions of stack frame creation and
usage for parameter passing, nonvolatile register preservation, local variables,
and code debugging are presented in Fig. 3.4. The following requirements
apply to the stack frame:

• The address of the previous frame is stored in Back Chain Word, thereby
forming a linked-list of stack frames and it is always located at the lowest
address of the stack frame.

• The return address to the calling function is stored in the LRSave Word.

• In order to maintain 8-byte alignment of the stack frame, a Padding Area
may be introduced to guarantee such alignment.

• In the Function Parameters Area, additional function arguments are
stored when they do not fit into the designated registers R3-R10.

• When the number of local variables is higher than can be contained in
the available volatile registers, they are stored in Local Variables Area.
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SP

(optional, size varies)
Function Parameters Area

(optional, size varies)
Local Variables Area

CR Save Word
(optional)

GPR Save Area
(optional, size varies)

LR Save Word

Bach Chain Word

LR Save Word

Bach Chain WordOld SP

Padding for 8 byte stack alignment
(optional, size varies 1−7 bytes)

High address

Header
Frame

Figure 3.4: PowerPC EABI Stack Frame Organization

• When the nonvolatile CR fields are modified, its content needsto be
saved in the CR Save Word.

• GPR Save Area may be introduced to save nonvolatile GPR. Whensav-
ing any GPR, all the GPRs from the lowest through R31, inclusive, must
be saved.

The stack frame is created by a function’s prologue code and destroyed in its
epilogue code. In Fig. 3.3 is presented an example of function’s prologue and
epilogue.

Floating-Point Emulation

The PowerPC 405 is an integer processor and does not support the execution of
floating-point instructions in hardware. System software can provide floating-
point emulation support by supplying a call interface to subroutines within a
floating-point run-time library. The individual subroutines emulate the opera-
tion of floating-point instructions as presented in [51]. This method requires
the recompilation of floating-point software in order to addthe call interface
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and link in the library routines.

Op Type unsigned signed
rlwinm r1,0,0xff→ r4

char rlwinm r2,0,0xff→ r5
mullw r4, r5→r3
rlwinm r1,0,0xffff→ r4 extsh r1→ r4

short rlwinm r2,0,0xffff→ r5 extsh r2→ r5
mullw r4, r5→r3 mullw r4, r5→r3

int mulhwu r1, r2→ r3’ mulhw r1, r2→ r3’
mullw r1, r2→ r3” mullw r1, r2→ r3”
mullw r2”, r1” → r3”” mullw r2”, r1” → r3””
mulhwu r2”, r1”→ r3”’ mulhw r2”, r1”→ r3”’
mullw r2”, r1’ → r10 mullw r2”, r1’ → r10
mulhwu r2”, r1’→ r3” mulhw r2”, r1’→ r3”
mullw r2’, r1” → r12 mullw r2’, r1” → r12
mulhwu r2’, r1”→ r11 mulhw r2’, r1”→ r11

long long mullw r2’, r1’ → r13 mullw r2’, r1’ → r13
mulhwu r2’, r1’→ r3’ mulhw r2’, r1’→ r3’
addc r3”’, r10→ r3”’ addc r3”’, r10→ r3”’
adde r3”, r10→ r3” adde r3”, r10→ r3”
addze r3’→ r3’ addze r3’→ r3’
addc r3”’, r12→ r3”’ addc r3”’, r12→ r3”’
adde r3”, r13→ r3” adde r3”, r13→ r3”
addze r3’→ r3’ addze r3’→ r3’

Table 3.2: LIR translation of MIR instructionmul r1, r2→ r3

The compiler has to manage floating point arithmetic, comparisons, loads, and
stores by generating software floating point emulation (sfpe) code, rather than
using PowerPC floating point instructions - currently it is not fully supported
in the Molen compiler. In sfpe code:

• Floating point single precision scalars shall be treated aslong int scalars.

• Floating point double precision scalars shall be treated aslong long
scalars.

• Whenever a function has a variable argument list, it shall not set con-
dition register bit 6 to 1 (as usual for PowerPC architecture), since no
arguments are passed in the floating-point registers (as there are no FPR
included in PowerPC 405).

Code Selection
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Code selection is typically the first backend phase and maps machine inde-
pendent IR statements and operations into machine specific processor instruc-
tions. This phase is performed in Machine SUIF where each IR statement is
translated into equivalent assembly instructions. For example, for the MIR in-
structionmul r1, r2→ r3, the generated LIR set of instructions depends on the
operands type as presented in Table 3.2. In the case when bothoperands are of
type unsigned short (2 bytes), then a mask for each operand (to take the lower
16 bits) is required and the result of the single multiplication can be placed in
a 32-bit register. For integer operands, two multiplications are required when
a 8 byte result is expected.

For RISC targets with homogeneous register files, the translation of each MIR
instruction separately provides satisfactory results, since there are hardly com-
plex instructions and late improvement of the selected codeis still possible by
means of peephole optimization.

3.3.2 PowerPC Backend Extensions for the Molen Prototype:

The pure PowerPC backend we have previously presented has been extended to
generate the appropriate code for the Molen Polymorphic processor as follows:

• SET/EXECUTE instructions are included in the MIR (Medium-level
Intermediate Representation) and LIR (Low-level Intermediate Repre-
sentation) of the Molen compiler. In order not to modify the PowerPC
assembler and linker, the compiler generates the instructions in binary
form. For example, for the instructionexec 0x80000Cthe generated
code is.long 1A000031where the encoding format (presented in [52])
is recognized by the arbiter.

• MOVTX/MOVFX: The equivalent PowerPC instructions aremt-
dct/mfdcr. Moreover, the XRs (exchange registers) are not physical reg-
isters but they are mapped at fixed memory addresses.

• The XRs are allocated in contiguous locations as specified inthe Molen
Programming Paradigm in order to allow a simple manipulation of the
parameters.

In Figure 3.5, we present the code generated by the Molen compiler for the
DCT* function call executed on the reconfigurable hardware.In order to cor-
rectly generate the instructions for hardware configuration and execution, the
compiler needs information about the DCT* hardware implementation. This
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la 3, 12016(1) #load the address of the first param
la 12, 12016(1) #load the address of the second param
mtdcr 0x00000056,3 #send the address of the first parameter
mtdcr 0x00000057,12 #send the address of the second parameter
sync #
nop #synchronization
nop #
nop #
bl main. label0 #instr. required by the arbiter impl.
main. label0:
.long 0x1A000031 #exec 0x8000C
nop #synchronization

Figure 3.5: Code generated by the Molen compiler for the reconfigurable
DCT* execution

1: NO XRS = 512 # number of available XRs
2: START XR = 0x56 # the address of the first XR
3: OPNAME = dct # info about the DCT* operation
4: SETADDR = 0x39A100 # the address of SET
5: EXEC ADDR = 0x80000C # the address of EXEC
...............
k: END OP # end of the info about the DCT*
................................. # info about other operations

Figure 3.6: Example of an FPGA Description File

information is described in an FPGA Description File, whichcontains for the
DCT* operation the fields presented in Figure 3.6. Line 2 defines the start
memory address from where the XRs are mapped. In line 3, the compiler is
informed that there is a hardware implementation for the DCT* operation with
the microcode addresses for SET/EXECUTE instructions defined in lines 4-5.
The sync instruction from Figure 3.5 is a PowerPC instruction that ensures
that all instructions precedingsync in program order complete beforesync
completes. The sequences ofsyncandnop instruction are used to flush the
processor pipeline. The SET instruction is not included in the above example
because it is not supported (yet) by the Molen Polymorphic processor.
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3.4 M-JPEG Case Study

In this case study we report the performance improvements ofthe Molen im-
plementation on the Virtex II Pro for the multimedia video frame M-JPEG
encoder.

The Design Flow

The design flow used in our experiments is depicted in Figure 3.7. In the target
application written in C, the software developer introduces pragma annota-
tions for the functions implemented on the reconfigurable hardware. In these
annotations, the designer indicates the name of the associated hardware imple-
mentation as it is specified in the FPGA Description File. Thus, the designer
has the opportunity to select from a set of such implementations, which is par-
ticularly usefull for design space exploration [53]. Theseselected functions
are translated to Matlab and processed by the COMPAAN[54]/LAURA[55]
toolchain to automatically generate the VHDL code. The commercial tools
can then be used to synthesize and map the VHDL code on the target FPGA.
The application is compiled with the Molen compiler and the executable is
loaded and executed on the target Molen FCCM.

M-JPEG, Software and Hardware Implementations

The application domain of these experiments is the video data compressing.
We consider a real-life application namely Motion JPEG (M-JPEG) encoder
which compresses sequences of video frames applying JPEG compression for
each frame. The M-JPEG implementation is based on the publicdomain im-
plementation described in ”PVRG-JPEG CODEC 1.1”, PortableVideo Re-
search Group, Stanford University. The input video-framesused in these ex-
periments are presented in Table 3.3. The resolution of the input images is
relatively small, due to the memory limitations of the target Molen Polymor-
phic processor.

The most demanding function in M-JPEG application is 2D DCT with preshift
and bound transforms (named DCT*). In consequence, DCT* is the first func-
tion candidate for hardware implementation. The only modification of the
M-JPEG application that indicates the reconfigurable DCT* execution is the
introduction of the pragma annotation as presented in Figure 3.7. The hard-
ware implementation for execution of the DCT* function on the reconfigurable
hardware is described in [56]. The VHDL code is automatically extracted from
the DCT* application code using COMPAAN[54]/LAURA[55] tools. The Xil-
inx IP core for DCT and the ISE Foundation[57] are used to synthesize and
map the VHDL code on the FPGA. After the whole application is compiled
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COMPAAN

LAURA

VHDL Synthesizer

}

MATLAB

encoder
C  application

M−JPEG

DCT.c
Main.c

Quantize.c

VLE.c

#pragma call_fpga dct

SW Implemention HW Implemention

VIRTEX II Pro Platform FPGA

[16]

[17]Assembler
Linker

MOLEN COMPILER

void dct(TBlock *in, 
Tblock *out ) {

................

FCCM405
MOLEN FPGAPowerPC

Figure 3.7: The design flow

Name # frames Resolution Format Color/BW
[pixels]

tennis 8 48x48 YUV color
barbara 1 48x48 YUV color
artemis 1 48x48 YUV color

Table 3.3: M-JPEG video sequences

with the Molen compiler described in the previous section, the final step is
performed by the GNU assembler and linker with the C libraries included in
the Embedded Development Kit (EDK) [58] from Xilinx to generate the ap-
plication binary files. As previously mentioned, the targetFCCM is the Molen
Polymorphic processor with the IBM PowerPC 405 processor immersed into
the FPGA fabric.

Performance Measurements:The current Molen implementation is a proto-
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type version, which imposes the following constraints:

• the memory size fortext and data sections are limited to maximum
64K. In order for the M-JPEG executable to fulfill these limitations, we
rewrote the original application preserving only the essential features
for compressing sequences of video frames. Moreover, theselimitations
also restrict the size of the input video frames to 48x48 pixels (Table 3.3,
column 3).

• dynamic reconfiguration is not supported (yet) on the Molen prototype.
In consequence, we could not measure the impact on performance of
repetitive hardware configurations.

In addition, the performance measurements have been performed given the
following additional conditions:

• the input/output operations are extremely expensive for the current
Molen prototype, due to the standard serial connection implemented by
UART at 38400 bps between the Molen Polymorphic processor and the
external environment; this limitation can be removed by theimplementa-
tion of faster I/O system. We therefore did not include the I/O operation
impact in our measurements as they are not relevant for RC paradigm

• the DCT* hardware implementation requires a different format for the
input data than the software implementation. Consequently, an addi-
tional data format conversion is performed in software before and after
the DCT* execution on reconfigurable hardware.

• taking into account that the target PowerPC processor included in the
Virtex-II Pro platform does not provide hardware floating-point support
and that the required floating-point software emulation is extremely ex-
pensive, the integer DCT is used for both software and hardware imple-
mentation to allow a fair comparison.

The execution cycles for M-JPEG encoder and comparisons arepresented in
Table 3.4, Table 3.5 and Table 3.6. As we considered a sequence of 8 video
frames fortennis input sequence, we present only the minimal and maximal
values for each measurement in order to avoid redundant information.

Pure Software Execution: In Table 3.4, we present the results of our mea-
surements performed on the the Virtex II Pro platform, when the M-JPEG
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tennis [0-7] barbara artemis
MIN MAX

M-JPEG 33,671,821 33,779,813 34,014,157 34,107,893
DCT* 1,242,017 1,242,017 1,242,017 1,242,017
DCT* 22,356,306 22,356,306 22,356,306 22,356,306

cumulated
Maximal 66.18% 66.39% 65.73% 65.55%

improvement

Table 3.4: M-JPEG execution cycles on the PowerPC processor

application is entirely executed on the PowerPC processor.In row 1, the num-
ber of cycles used for executing the whole M-JPEG application is given. In
row 2, the cycles consumed by one execution of the DCT* function are given
and the next row contains the total number of cycles spent in DCT*. From
these numbers, we can conclude that 66% of the total execution time is spent
in the DCT* function, given the input set. This 66% represents the maximum
(theoretical) improvement that can be obtained by hardwareacceleration of the
DCT* function. The corresponding theoretical speedup - using Amdahl’s law
[59] - is presented in Table 3.6.

Execution on the Molen Polymorphic processor:In Table 3.5, we present
the number of cycles for the M-JPEG execution on the Molen Polymorphic
processor. From row 1 we can conclude that an overall speedupof 2.5 (Table
3.6, row 1) is achieved. The DCT* execution on the reconfigurable hardware
takes 4125 cycles (row 2) which is around 300 times less than the software
based execution on the PowerPC processor (Table 3.4, row 2).However, due
to the data format conversion required by the DCT* hardware implementation,
the overall number of cycles for one DCT* execution becomes 102,589 (Table
3.5, row 3), resulting in a 10 fold speedup for DCT* and a 2.5 speedup globally.

The performance efficiency (defined as the ratio between the achieved speedup
and the maximum speedup) is about 84% as presented in Table 3.6, last col-
umn. It is noted that this efficiency is achieved even though:

• the hardware implementation has been automatically but non-optimally
obtained (using COMPAAN[54]/LAURA[55] tools)

• additional software data conversion diminished the DCT* speedup in
hardware.
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tennis [0-7] barbara artemis
MIN MAX

M-JPEG 13,443,269 13,512,981 13,764,509 13,839,757
DCT* HW 4,125 4,125 4,125 4,125

DCT* HW + 102,589 102,589 102,589 102,589
Format conv.

Table 3.5: M-JPEG execution cycles on the Molen Polymorphicprocessor

tennis [0-7] barbara artemis
MIN MAX

Practical 2.50 2.51 2.47 2.46
speedup

Theoretical 2.96 2.98 2.92 2.90
speedup

Efficiency 84.17% 84.65% 84.70% 84.91%

Table 3.6: Comparison of M-JPEG execution cycles for SW/HW execution

From these measurements, we can conclude that even non-optimized imple-
mentation can be used to achieve considerable performance improvements. In
addition, taking into account that only one function (DCT*)is executed on the
reconfigurable hardware, we consider that an overall M-JPEGspeedup of 2.5x
from the theoretical speedup of 2.96 x confirm the viability of the presented
approach.

In these experiments, the DCT hardware implementation is preloaded on the
reconfigurable hardware and it is not changed during the application execu-
tion. However, for an extensive usage of the reconfigurable hardware, multiple
kernels with overlapping reconfigurable areas should be considered.

3.5 Conclusions

In this chapter, we presented the Molen compiler framework with emphasis
on the Molen PowerPC compiler backend we have developed for the Molen
Polymorphic processor. The compiler allows the automatic translation of the
application source C code using the extensions following the Molen Program-
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ming Paradigm. We also presented a complete experiment thatevaluated the
effectively realized speedup of reconfigurable hardware execution of the DCT*
function of the M-JPEG application. The generated code was executed on the
Molen Polymorphic processor and showed a 2.5 speedup. This speedup con-
sumed 84% of the total achievable speedup which amounts to 2.9. Taking into
account that hardly any optimization was performed and onlyone function ran
on the reconfigurable fabric, a significant performance improvement was nev-
ertheless observed. We emphasize that we do not compare the RC paradigm to
other approaches for multimedia applications boosting performance (such as
MMX, 3DNow!, SSE) which use dedicated hardware accelerators. The focus
of this chapter was rather on the compiler support for the Molen FCCM under
the RC paradigm.

In the following chapters, we will investigate the specific features of the target
reconfigurable architectures and propose advanced compiler optimizations and
analyses to efficiently exploit the advantages of the underlying reconfigurable
hardware.



Chapter 4

Dynamic SET Instruction Scheduling

The latest commercial FPGA platforms now offer support for partial and dy-
namic hardware configurations. Nevertheless, one of their main drawback re-
mains the huge reconfiguration latency. In order to hide thislatency, compiler
support is fundamental to automatically schedule and optimize the compiled
application code for efficient reconfigurable hardware usage.

When dealing with reconfigurable hardware, the compiler should be aware of
the competition for the reconfigurable hardware resources (FPGA area) be-
tween multiple hardware operations during the applicationexecution time. A
new type of conflict - called in this thesis ”FPGA area placement conflict” -
emerges between the hardware configurations that cannot coexist together on
the target FPGA due to a predefined spatial mapping.

In this chapter, we propose a general instruction scheduling algorithm that au-
tomatically minimizes the number of required hardware configurations taking
into account both the ”FPGA area placement conflicts” and thecharacteris-
tics of the compiled software application. More specifically, the algorithm
anticipates the hardware configurations in less frequentlyexecuted application
points avoiding the ”FPGA area placement conflicts”.

The chapter is organized as follows. In the following section, we present back-
ground information and related work. In section 4.2, we describe the goals and
the motivation of the proposed algorithm. A formal description of our schedul-
ing problem is included in Section 4.3. Section 4.4 introduces the instruction
scheduling algorithm. The M-JPEG case study is discussed inSection 4.5 and
finally, we present conclusions and future work.

47
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int fib( int n){
int f0 = 0, f1 = 1, fn, i;

if(n <= 1){
fn = n;

}
else {
for(i = 2; i <= n; i++){
fn = f0 + f1;
f0 = f1;
f1 = fn;

}
}
return fn;

}

Figure 4.1: C code for the computation of Fibonacci numbers

4.1 Background and Related Work

In this section, we present the basic compiler optimizationbackground includ-
ing data flow analysis and control flow graph representation that is used by
the proposed instruction scheduling algorithm described in detail in Section
4.4. Additionally, we present related approaches for the proposed scheduling
algorithm in the context of reconfigurable hardware usage.

4.1.1 Control Flow Graphs

A common representation of the input application used for compiler optimiza-
tions and analyses is thecontrol flow graph(CFG), which is a graph that por-
trays all paths that might be traversed during the application execution. Each
node in the graph is abasic block, i.e. a maximal sequence of consecutive
instructions, which may be entered only at the beginning andexited only after
the execution of the last instruction of the sequence. The successor/predecessor
relation between the nodes of the graph reflects the control flow of the appli-
cation.

As an example, we present in Figure 4.1 the C code for computing Fibonacci
numbers with the associated intermediate code as generatedin the Molen com-
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piler depicted in Table 4.1. The control flow graph for the C program is shown
in Figure 4.2. As shown in Table 4.1, the instructions are grouped in basic
blocks which are the nodes of the final CFG from Figure 4.2. Forexample, the
for loop from Figure 4.1 consists of B3, B4 and B5 basic blocks with B4 and
B5 included in the cycle of the CFG from Figure 4.2.

The algorithm for partitioning a list of instructions in basic blocks starts with
the identification of theleader instructions, which are the first instructions of
the basic blocks. As presented in [60] and [61], a leader instruction can be:

• the entry point of a procedure

• an instruction which is a target of a branch instruction

• an instruction which immediately follows a branch or returninstruction

The leader instructions are deliminators of the basic blocks; each basic block
start with a leader instruction and includes all consecutive instructions till the
next leader instruction (see Figure 4.1).

After the identification of the basic blocks, the control flowgraph is con-
structed by first adding two special basic blocks:entry andexit. These two
nodes are added for the simplicity of the algorithms for further optimizations
and transformations. Theentry node is connected to the initial basic block
(with no predecessor) and theexit node is connected to the final node (with no
successors). The edges of the graph are added to represent the control flow of
the application. An edge (Bi, Bj) is included in the CFG if:

• there is a branch from Bi to Bj, or

• Bi and Bj are consecutive basic blocks and the final instruction of Bi is
not an unconditional branch

Throughout this thesis, we denode a control flow graph as directed graph
G =< N,E >, with N the set of nodes,entry ∈ N , exit ∈ N , and
E ⊆ N ×N . An edge from a node n to a node m is denoted as (n,m). Further,
we define the set of successors and predecessors as follows:

Succ(n) = {m ∈ N | ∃(n,m) ∈ E}

Pred(n) = {m ∈ N | ∃(m,n) ∈ E}
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B0 entry
mrk 2, 1
ldc $vr0.s32← 0
mov fib.f0← $vr0.s32

B1 ldc $vr1.s32← 1
mov fib.f1← $vr1.s32
ldc $vr2.s32← 1
bgt fib.n,$vr2.s32,fib.FibonacciTmp7
mrk 2, 5

B2 mov fib.fn← fib.n
jmp fib. FibonacciTmp8
fib. FibonacciTmp7:
mrk 2, 8

B3 ldc $vr3.s32← 2
mov fib.i← $vr3.s32

B4 fib. FibonacciTmp5:
bgt fib.i,fib.n,fib.FibonacciTmp4
mrk 2, 9
add $vr4.s32← fib.f0,fib.f1
mov fib.fn← $vr4.s32
mrk 2, 10
mov fib.f0← fib.f1
mrk 2, 11

B5 mov fib.f1← fib.fn
mrk 2, 8
mov fib. FibonacciTmp6← fib.i
ldc $vr6.s32← 1
add $vr5.s32← fib. FibonacciTmp6,$vr6.s32
mov fib.i← $vr5.s32
jmp fib. FibonacciTmp5
fib. FibonacciTmp4:

B6 fib. FibonacciTmp8:
mrk 2, 14
ret fib.fn

B7 exit

Table 4.1: MIR intermediate code for the C code from Figure 4.1
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B0

B3

B4

B1

B2

B6

B7

B5

Figure 4.2: Control flow graph for the C code from Figure 4.1

4.1.2 Data Flow Analyses

A large number of compiler optimizations require the examination of the entire
program. For example, when an assignment of a variable (without side effects)
is not used further in the application, it can be safely removed. In order to
determine if the variable is used later, the whole application must be analyzed.

A typical example for data flow analysis is the well-known reaching definition
problem. A definitiond of a variablev reaches a pointp in the application if:

• there is a path fromd to p

• variablev is not redefined on the path fromd to p (also expressed asd is
not killed).

The first step of computing the reaching definitions is to identify the definitions
of the target application and to associate them to a unique identifier. In Figure
4.3, we present a simplified version of the control flow graph from Figure 4.2
and Table 4.1, with the nine definitions represented asd1d2...d9.
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GEN KILL
B0 - 000000000 - 000000000
B1 d1d2d3 111000000 d7d8 000000110
B2 d4 000100000 d6 000001000
B3 d5 000010000 d9 000000001
B4 - 000000000 - 000000000
B5 d6d7d8d9 000001111 d2d3d4d5 011110000
B6 - 000000000 - 000000000
B7 - 000000000 - 000000000

Table 4.2: GEN and KILL sets for the CFG from Figure 4.3

In the next step, the local information associated with eachbasic block is com-
puted. More specifically, for the considered problem, we determine two sets
of elements, namely GEN and KILL. The GEN set (generated definitions) for
basic block B contains all the definitions included B which reach the end of
the basic block. The KILL set (killed definitions) of a basic block B includes
all the definitions outside B that redefine identifiers already defined in B.

For an efficient computation of these sets and of additional data flow informa-
tion, the sets of definitions (or application objects, for the general case) are
represented as bit vectors. In many dataflow analyses, bit representation (0/1)
is a powerfull mechanism that efficiently represents the required informations.
In the considered example, we assume that the definitiondi is associated with
bit i from a bit vectorb1b2...bn. The GEN and KILL sets for the CFG from
Figure 4.3 are presented in Table 4.2.

The next step is the propagation of the local information in the CFG using the
following data flow equations for each basic block i:

RDout(i) = GEN(i) ∪ (RDin(i)−KILL(i)) (4.1)

RDin(i) =
⋃

j∈Pred(i)

RDout(j) (4.2)

RDin(entry) = ∅ (4.3)

The above equations are used for the computations of two setsof elements
RDout and RDin which reflect the reaching definition for the entire procedure.
Thus, a definition is reaching the output of a basic block i if (see Equation 4.1):
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entry

receive n
f0 = 0
f1 = 1
bgt n,1,tmp7

tmp7:
  i = 2

fn = n
jmp tmp8

tmp7:
  i = 2
tmp7:
  i = 2

tmp5:
  bgt i,n, tmp4

fn = f0 + f1
f0 = f1
f1 = fn
i = i +1
jmp tmp5

tmp4, tmp8:
  ret fn

exit

B5

B7

B1

B0

B2

B3

B6

B4

d3
d2
d1

d5

d9
d8
d7
d6

d4

Figure 4.3: Schematic CFG for the C code from Figure 4.1

• it is generated by the basic block i, or

• it is reaching the input of basic block i and it is not killed inthe basic
block i.

From Equation 4.2, a definition is reaching the input of a basic block i if it is
reaching the output of one of the predecessors of i. In the initialization phase
(see Equation 4.3), we assume that there is no definition thatreaches the entry
node.

For solving the above equations, the most frequently used method is the it-
erative computation, where the input and output sets (RDin and RDout) are
iteratively computed till they converge to a fixed set of values, which will not
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Iteration 1 Iteration 2
IN OUT IN OUT

B0 000000000 000000000 000000000 000000000
B1 000000000 111000000 000000000 111000000
B2 111000000 111100000 111000000 111100000
B3 111000000 111010000 111000000 111010000
B4 111010000 111010000 111011111 111011111
B5 111010000 100001111 111011111 100001111
B6 111110000 111110000 111111111 111111111
B7 111110000 111110000 111111111 111111111

Table 4.3: RDin and RDout sets for the CFG from Figure 4.3

change in the following iterations. For the reaching definition problem, the re-
sults of each iteration are presented in Table 4.3. For the considered example,
only two iterations are required to reach the fixed set of values. Based on these
results, we can conclude that all definitions can reach the final node B7.

4.1.3 Related Work

As presented in the previous chapter, the code generated by the Molen com-
piler for a hardware operation (an operation performed on the reconfigurable
hardware) includes i) parameter passing, ii) the SET instruction, iii) the EX-
ECUTE instruction and iv) returning the computed results. This sequence of
instructions where the SET instruction is immediately followed by the associ-
ated EXECUTE instruction is referred to in the rest of this thesis as ”simple
scheduling”.

In [62], it has been reported that this simple scheduling produces signifi-
cant performance decrease due to the huge reconfiguration latency of current
FPGA. Many approaches for reducing the reconfiguration latency are hardware
approaches, such as coarse grain reconfigurations or multi context FPGAs (see
[27]) and hardware configuration prefetching (see [63] [64]). However, the re-
configurable hardware market is still mainly dominated by FPGAs and there
are few approaches that address the reconfiguration overhead issue at compiler
level. In order to deal with this drawback, an instruction scheduling algorithm
has been proposed in [65] for a particular case when there is only one hardware
operation in the whole application. The main idea is to move the SET instruc-
tions outside loops in order to eliminate redundant hardware configurations.
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In order to achieve significant performance improvement forreal applications,
more than one operation is usually implemented in hardware.As the available
area of the reconfigurable platforms is limited, the coexistence of all hard-
ware configurations on the FPGA for all application execution time may be
restricted. Moreover, hardware implementations of these operations can be
developed by different IP providers that can impose a predefined FPGA area
allocated for each operation, resulting ”FPGA-area placement conflicts”. Two
hardware operations have an ”FPGA-area placement conflicts” (or just con-
flict in the rest of the thesis) if i) their combined reconfigurable hardware area
is larger than the total available FPGA area or ii) the intersection of their hard-
ware areas is not empty. In Figure 4.4(a) we sketch a possibleFPGA area
allocation for three operations performed on the FPGA. We observe that op1
and op2 cannot fit together on the FPGA (thus op1 conflicts withop2) while
op2 and op3 have a common overlapping area (thus op2 conflictswith op3).

In [66], a run-time heuristic scheduling algorithm is proposed for applications
with deterministic behaviour. Such scheduling requires detailed information
for all tasks (including all software tasks) of the application and imposes lim-
itations due to the deterministic behaviour of the target application. A com-
piler approach that considers the restricted case of two consecutive and non-
conflicting hardware operations is presented in [67]. In this approach, the hard-
ware execution of the first operation is scheduled in parallel with the hardware
configuration of the second operation. Our approach is more general as it per-
forms scheduling for any number of hardware operations at procedural level
and not only for two consecutive hardware operations. The performance gain
produced by our scheduling algorithm results from reducingthe number of
performed hardware configurations. The proposed algorithmis similar to the
standard compiler optimization for partial expression redundancy elimination
presented in [68], with emphasis on the ”FPGA-area placement conflicts” be-
tween the hardware operations, as described in Section 4.4.

4.2 Motivation

Figure 4.4(b) shows the control-flow graph of a procedure, when op1, op2
and op3 operations are performed on the reconfigurable hardware and they are
placed on the FPGA as presented in Figure 4.4(a). The numbersassociated
with each edge of the graph represent the execution frequency of the edge.
One first observation is the redundant repetitive executionof SET op1 instruc-
tion from B5 in the loop B4-B5-B6. Additionally, it should benoticed that
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moving this SET op1 instruction on (B1, B2) edge will also make redundant
the SET op1 instruction from B13. In the initial simple scheduling, the FPGA
is configured for op1 100 times in B5 and 10 times in B13. As a result of
our scheduling algorithm, the hardware configuration for op1 will be executed
only 20 times. The hardware configuration for op2 from B10 cannot be moved
further then B7, as it will change the hardware configurationfor op3 that must
be performed in B7. There are no redundant configurations forop3, thus the
hardware execution of op3 has to be preceded each time by the hardware con-
figuration. When the hardware configuration consumes all theperformance
gain produced by the hardware execution of op3, the scheduler can switch to
its software execution on the GPP (General-Purpose Processor).

In this chapter, we propose a general approach for intraprocedural instruction
scheduling of the hardware configuration instructions taking into account the
”FPGA-area placement conflicts”. It is based on the state-of-art compiler op-
timization for partial expression redundancy eliminationpresented in [68]. In
order to incorporate the ”FPGA-area placement conflicts” between the hard-
ware operations, we introduce a new data-flow analysis as described in Section
4.4. Additionally, it can switch for one operation from hardware execution to
its software execution when the hardware operation provides no performance
improvement even after the scheduling phase.

4.3 Problem Statement

We represent the control flow graph of a procedure as a directed graph G
< N,E,w > where the nodes N represent the basic blocks, the edges E rep-
resent the control flow dependencies and the weight functionw: E → R+

represents the execution frequency of each edge. The operations implemented
in hardware are included in HW set. We defineDEFop the set of basic blocks
n∈N that contain an instructionSET opimmediately followed byEXEC opin-
struction - the input graph G contains the SET and EXECUTE instructions for
an operation in consecutive order according to the simple scheduling. A node
n∈DEFop is called a definition node for op. In our example from Figure 4.4,
B5 and B13 are definition nodes for op1.

An ”FPGA-area placement conflict” between two operations op1 and op2 is
represented as op1= op2. The information about these conflicts is provided
by a symmetric function f : HW x HW→ {0,1}, where f(op1, op2) = 1 if
op1 = op2, and 0 otherwise. We define the set of conflicting nodes foran
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# SET op1  :   20
# SET op2  :   10+10= 20
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Figure 4.4: Motivational example for instruction scheduling of hardware con-
figurations (b) with FPGA-area placement constraints (a)



58 CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING

operation op as follows:

Conflictop = {n ∈ N |∃opi ∈ HW,n ∈ DEFopi
∧ op = opi}. (4.4)

A node n∈ Conflictop is called a conflict node for op. In Figure 4.4, B10 and
B14 are conflict nodes for both op1 and op3.

In order to simplify this discussion, we make the following assumptions. We
assume that there is a singleentry node with no predecessor (pred(entry) =∅,
where pred(n)={m ∈ N | (m,n)∈ E}) and a singleexit node with no successor
(succ(n) =∅, where succ(n)={m ∈ N | (n,m) ∈ E}). Also, we assume that
a node cannot be simultaneous inDEFop andConflictop. In consequence,
when more conflicting operations are included in the same basic node, this
node must be split into a set of nodes, one for each operation.The final as-
sumption is that only the SET/EXECUTE instructions included in the CFG
affect the reconfigurable hardware.

For each operation op, we consider a set of insertion edgesδop ⊆ E. The
merit of δop is measured by the functionWδ =

∑

e∈δop
w(e). Loosely stated,

the objective of our algorithm is to move upwards the SET instructions from
DEFop on less frequently executed edges, in order to reduce the total number
of performed SET instructions. A formal description of thisproblem is as
follows:

PROBLEM Given a directed, weighted graph G< N,E,w > and a set of
hardware operations HW, each defined inDEFop ⊆ N and with conflicts in
Conflictop ⊆ N , find a set of insertion edgesδ ⊆ E for each op∈ HW which
minimizesWδ under the following constraints:

• ∀ n ∈ DEFop, for all paths fromentry to n, there is an insertion edge
(u, v) ∈ δ,

• ∄ k∈ Conflictop such that k is included in any subpath from v to n

The minimization ofWδ guarantees that a smaller or equal number of SET in-
structions will be performed in the final CFG graph than in theinput graph. The
first constraint reflects the requirement that hardware configuration (the SET
instruction) must precede the hardware execution (the EXECinstruction) on
all paths. The second constraint assures that no conflict operation will change
the hardware configuration before the operation execution.
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4.4 Instruction Scheduling Algorithm

The problem of removing redundant hardware configurations is similar to the
well-known problem of removing redundant expressions. As hardware con-
figurations do not cause any exception, we can use an aggressive speculative
scheduling for the hardware configurations in order to anticipate them on less
frequently executed paths and thus, to make redundant the hardware configu-
rations from frequently executed paths. We introduce the scheduling algorithm
that solves the problem defined in the previous section in three steps. In the
first step, the subgraphs where the hardware configurations can be anticipated
are constructed. Next, a minimum s-t cut algorithm is applied to find the op-
timal insertion edgesδop for each hardware operation. Finally, a switch from
hardware to software execution is introduced for the cases when the expense
of hardware configurations in the newly inserted nodes stilloutperforms the
performance gain of hardware execution.

4.4.1 Step 1: The Anticipation Subgraph

Constructing the anticipation graph is a key step in our algorithm. The main
goal is to eliminate from the initial graph the edges that cannot propagate up-
wards the SET instructions due to hardware conflicts. This step contains two
uni-directional data-flow analyses and one pass for constructing the anticipa-
tion subgraph by removal of non-essential edges.

Partial Anticipability

A hardware configuration for operation op is partially anticipated in a point m
if there is at least one path from m to the exit node that contains a definition
node for op and none of the paths from m to the first such definition node
contains a conflict node for op.

A confluence conflict node n is a node with two successors s1 ands2 such that
op1 is partially anticipated at the entry point of s1, op2 is partially anticipated
at the entry point of s2 and op1= op2. Due to hardware conflicts, op1 and
op2 cannot be both anticipated in the confluence conflict noden. We consider
a restricted partial anticipability analysis where the confluence conflict nodes
limit the partial anticipability for both op1 and op2. This is a backward data-
flow problem, where the data-flow equations for a basic block iare defined as
follows:
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Figure 4.5: Set of PANT and AVAL values for the input graph from Figure 4.4
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PANTin(i) = Gen(i) ∪ (PANTout(i)−Kill(i)) (4.5)

PANTout(i) =
⊎

j∈Succ(i)

PANTin(j) (4.6)

PANTout(exit) = ∅ (4.7)

In the first equation, Gen(i) is the set of hardware operations generated in the
basic block i. A hardware operation op1 is generated in a basic block i if i
∈ DEFop . The set Kill(i) includes all hardware operations that are in conflict
with the operations generated in the basic block i.

According to Equation 4.5, a hardware operation op∈ PANTin(i) is partially
anticipated at theentryof a basic block i if it is generated in i or if it is partially
anticipated at the exit of i and it is not killed in i.

The second equation differs from standard data-flow equations involved in it-
erative data-flow analysis where the join operator is

⋃

or
⋂

. The operator
⊎

is a conditional reunion that excludes the conflicting hardware operations and
defined as follows:

A
⊎

B = {x ∈ A
⋃

B| 6 ∃y ∈ A
⋃

B,x = y}

This operator is used to stop the partial anticipability of the operations with
hardware conflicts at confluence points. According to 4.6, a hardware opera-
tion op∈ PANTout(i) is partially anticipated at the exit of a basic block i if it
is partially anticipated at the entry of any successor of i and i is not a conflict
confluence node for op. In Figure 4.5, we present the values for PANT for the
input graph presented in Figure 4.4. Based on these values, we can determine
that the SET instructions for op1 and op3 can be safely anticipated till B1. For
the basic blocks where these values are missing, there are implicitly assumed
as∅.

Availability

A hardware configuration for operation op is available at a point p if every
path from the entry node to p contains a definition node for op and after this
node, there is no conflict node prior to reaching p. We use the standard forward
data-flow analysis for availability described by the following set of data-flow
equations:
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AV ALout(i) = Gen(i) ∪ (AV ALin(i) −Kill(i)) (4.8)

AV ALin(i) =
⋂

j∈Pred(i)

AV ALout(j) (4.9)

AV ALin(entry) = ∅ (4.10)

The Gen and Kill sets are the same as in the previous data-flow problem for
partial anticipability. As the availability problem is related to the paths from
the entry node, it is expressed as aforward data-flow analysis. According to
Equation 4.8, an operation is available at the exit of a basicblock i if it is
generated in the basic block i or it is available at the input and it is not killed
in the basic block i. Subsequently, an operation is available at the input of a
basic block i if it is available at the exit of all predecessors of basic block i, as
expressed in equation 4.9.

This analysis is used to eliminate the hardware configurations when they are
already available. The values for AVAL for our example graphare presented
in Figure 4.5. For example, we notice that in B14, op1 is available at the input
but not at the exit of B14, as it is killed by the hardware configuration of the
conflicting operation op2.

Constructing the Anticipation Graph

Based on the previously presented data-flow analysis results, for each oper-
ation op∈ HW we eliminate from the initial graph the nodes which are not
essential as follows. We call an edge (u,v) an essential edgefor op if

Ess(u, v) = {(u, v) ∈ E|op /∈ AV ALout(u)∧op ∈ PANTin(v)}. (4.11)

The reduced graphGrd contains the nodes

Nrd = {n ∈ N |∃m ∈ N,Ess(n,m) ∨ Ess(m,n)}

and the edges

Erd = {(u, v) ∈ E|Ess(u, v)}.

By construction, the reduced graph may contain a set of disconnected sub-
graphs. In order to connect them, we introduce a new pseudo entry node
(called s) and a pseudo exit node (called t) and the edgesEst = {(s, n)|n
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Figure 4.6: The anticipation graph for op1 (a), op2 (b) and op3 (c) from Figure
4.4

has no predecessor inNrd}
⋃

{(n, t)|n has no successor inNrd} with infinite
execution frequency, in order to guaranty that the newly introduced edges will
not be included in the final set of insertion edges. For our example from Figure
4.4, the anticipation graphs are presented in Figure 4.6.

4.4.2 Step 2: Minimums-t Cut

In this step, the set of insertion edges from our problem definition is deter-
mined by applying a minimum s-t cut algorithm. The purpose ofthe min cut
algorithm is to select the less frequently executed edges from the anticipation
graph on all paths to the definition nodes. In consequence, the min cut algo-
rithms assures the minimization requirement and the first constraint from our
problem definition, while the construction of the anticipation graph secures the
second constraint.

One of the important advantages of using a min cut algorithm is to avoid mov-
ing upwards SET instructions on edges inside loops. In our optimization, we
used Edmonds-Karp minimum s-t cut algorithm[69] from Mascopt [70]. For
the three hardware operations from Figure 4.4, their minimum cuts are pre-
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sented in Figure 4.6. We notice that for op3 (depicted in Figure 4.6 (c)), the
SET instruction from B7 can propagate further then B2 (on edge (B1, B2)).
The minimum cut algorithm chooses the edge (B2, B3) as its execution fre-
quency is smaller (10 versus 20 for (B1,B2)).

4.4.3 Step 3: Selection of Software/Hardware Execution

In the cases when, even after our scheduling, the hardware configuration and
execution is more expensive than the pure software execution, the scheduling
algorithm can switch for this operation from hardware execution to software
execution. In this case, all the SET instructions for this operation are elim-
inated and its EXECUTE instructions are replaced by standard calls to the
associated software function. In our example from Figure 4.4, op3 may be in
this case if one hardware configuration and one hardware execution is more
expensive than one software execution.

In order to determine which operations are switched to software execution,
the compiler reads the needed information about software/hardware features
of each operation from a special file, named FPGA descriptionfile. The
relevant information include the reconfiguration overhead, FPGA area, soft-
ware/hardware latency, execution frequency, etc.

4.5 M-JPEG Case Study

The presented instruction scheduling algorithm has been implemented as a
MachSUIF pass [43] within the Molen compiler which generates code for the
Molen Polymorphic processor implemented on the Virtex II Pro FPGA plat-
form. The overall time-complexity of the scheduling algorithm is mainly de-
termined by the two data-flow analyses and the min s-t cut algorithm. For the
data-flow analyses, the time complexity in the worst-case isO(|N | ∗ (b + 2)),
where b is the maximum number of back edges on any acyclic pathin the graph
G. The time complexity of the Edmonds-Karp algorithm isO(|N |∗ |E|2), thus
the proposed scheduling algorithm has an overall polynomial time complexity.
The compilation time spent in the scheduling phase for the considered appli-
cations is negligible (around 1 s) compared to the overall compilation time.

The target C application of this case study is the multimediabenchmark Mo-
tion JPEG (M-JPEG) encoder and the input sequence contains 30 color frames
from ”tennis” in YUV format with a resolution of 256x256 pixels. The op-
erations performed on the FPGA areDCT (2-D Discrete Cosine Transform),
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HW Execution SW Execution
Op EXEC Area SET One call %Total

Name [cycle] [slice] [cycle] [cycle] M-JPEG

DCT 416 848 431771 44396 80 %
Quant 73 397 202073 1494 3 %
VLC 272 193 98237 6921 12.5 %

Table 4.4: HW/SW features for the operations that candidatefor hardware
implementation

QuantizationandVLC (Variable Length Coding). The Xilinx IP cores for DCT
[71], Quantization [72] and VLC [73] are used for the estimations of the hard-
ware implementations. The GPP included in the Molen prototype is the IBM
PowerPC 405 processor at 250 MHz.

We present in Table 4.4 the characteristics of DCT, Quantization and VLC
hardware and software executions. Based on the characteristics of the
XC2VP20 chip, for which a complete configuration of 9280 slices takes about
20 ms, we estimated the configuration time for each operation(Table 4.4, col-
umn 4) in terms of PowerPC processor cycles.

The profiling results for the software execution from Table 4.4 are based on
simulations using the PowerPC simulator from Simics [74]. Comparing the
values from Table 4.4 (column 4 and 5), we notice that the hardware configu-
ration alone is about 10 times more expensive than the complete software exe-
cution. Using Amdahl’s law[59], we determine that the simple scheduling (as
described in Section 4.1) for DCT will slowdown the M-JPEG benchmark up
to 10x. For this reason, we compare the performance of our scheduling algo-
rithm to the pure software approach rather than theinefficientsimple schedul-
ing.

The estimated performance for the M-JPEG application for different possible
conflicts between the three hardware operations are presented in Figure 4.7.
The standard unit of this comparison is the pure software execution (SW) when
the M-JPEG benchmark is completely performed on the GPP alone. The per-
formance of our instruction scheduling algorithm for the real Xilinx hardware
implementations is denoted as REAL. As recently some hardware approaches
[75] have been proposed for reducing the hardware configuration time, we also
analyze the impact of our scheduling algorithm when the hardware configura-
tion is accelerated by a factor of 20x1 compared to the current values from

1 The factor has been chosen arbitrarily. Mutatis mutandis, similar observations will then
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Figure 4.7: Comparison of estimated performance for our scheduling algo-
rithm for M-JPEG benchmark

Table 4.4, column 4. The performance of our instruction scheduling algorithm
combined with this faster hardware configuration is presented in Figure 4.7 as
FAST. For completeness, we also present the IDEAL case when the hardware
configuration is performed in zero cycles.

We notice that for the ”no conflict” case, the performance improvement is
about 94 % (equivalent to a 16x speedup) for both REAL and FASTschedul-
ing and very close to the IDEAL performance. In this case, theinstruction
scheduling algorithm moves the hardware configurations forall three opera-
tions at the procedure entry point. In consequence, there isonly one hardware
configuration for each hardware operation, thus the difference between REAL
and FAST is negligible.

For the rest of the ”conflict” cases, the scheduler for REAL will switch from
hardware execution to software execution for the conflicting operations. For
example, when there is a DCT - Quantization conflict, the scheduler will move

hold.
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both DCT and Quantization operation in software, while the third non conflict-
ing operation VLC remains in hardware; its hardware configuration needs to
be performed only once, at the procedure entry point.

For the FAST scheduling, even when one operation has a conflict, it may re-
main in hardware, thanks to the 20x faster hardware configuration. For the
case with DCT - Quantization - VLC conflicts, both DCT and VLC are per-
formed in hardware and produce a performance improvement of43 % as the
fast hardware configuration does not consume all performance gain of the hard-
ware execution. The scheduler selects the software execution for Quantization,
in order to prevent a performance decrease produced by its hardware config-
uration and execution (16 % for Quantization). Therefore, the performance
improvement for simple scheduling (all operations executed on the reconfig-
urable hardware) and 20x faster reconfigurations is 27 % while our scheduling
algorithm contributes to a performance improvement between 43 % and 94 %
compared to SW.

In consequence, we notice that for the non-conflict case, ouralgorithm capi-
talizes the maximum performance gain that can be obtained byhardware ex-
ecution of the considered operations. Finally, the resultspresented in Figure
4.7 emphasize the important performance impact of our scheduling algorithm
even for the future faster FPGAs.

4.6 Conclusions

In this chapter, we have introduced a general scheduling algorithm for hard-
ware configuration instructions. This algorithm takes intoaccount specific fea-
tures of the reconfigurable hardware such as the ”FPGA area placement con-
flicts” and the reconfiguration latencies of each hardware operations. Based
on the characteristics of the compiled application, the scheduling reduces the
number of performed hardware configurations preserving theapplication se-
mantics. It combines advanced compiler techniques (such asdata flow analy-
ses) with powerful graph theory algorithms (min s-t cut).

The results of our case study show that the performance is dramatically im-
proved by using our scheduling algorithm, and this improvement will hold for
future faster FPGA platforms. In the next chapter, we propose an extension
of the presented scheduling algorithm where the anticipation of the hardware
configuration instructions is applied at the interprocedural level.





Chapter 5

Interprocedural SET Scheduling

As presented in the previous chapter, the potential speedupof the kernel hard-
ware executions can be completely wasted by inappropriate repetitive hard-
ware reconfigurations. In this chapter, we thoroughly investigate the impact
on the overall performance of hardware reconfiguration overhead and present
an interprocedural optimization that extend the anticipation of the hardware
configuration instructions at the interprocedural level. More specifically, we
study and compare four cases: a) the pure software approach when the whole
application is executed only on the GPP; b) the simple scheduling of hardware
configurations when each hardware execution is preceded by the correspond-
ing hardware configuration; c) the execution of only one function on the re-
configurable hardware when only a single hardware configuration is needed
and d) the proposed optimization that anticipates the hardware reconfiguration
instructions.

The chapter is organized as follows: in the next section, we present a motiva-
tional example to illustrate the proposed optimization andits results for a real
application. The interprocedural optimization algorithmis described in details
in Section 5.2. Consequently, we present a profiling experiment and analyze
the impact on performance of the hardware reconfiguration for the MPEG 2
benchmark for the considered study cases. Finally, we conclude with Section
5.4.

69
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5.1 Motivational Example

In order to illustrate the goals and the main features of the proposed interproce-
dural optimization, we present in Figure 5.1 a motivationalreal example. The
presented subgraph is included in the call graph of the MPEG2encoder multi-
media benchmark where an edge< pi, pj > represents a call from procedure
pi to procedurepj. We consider that the procedures SAD, DCT and IDCT are
executed on the reconfigurable hardware and that initially the hardware config-
uration (a SET instruction) is performed before each hardware execution (an
EXEC instruction), according to the simple scheduling presented in Section
4.2.

One first observation is that the configuration for the SAD operation can be
safely anticipated in themotion estimation procedure. This anticipation will
significantly reduce the number of performed hardware configurations as it will
not be performed for each macroblock but only for each frame of the input se-
quence. This observation also holds for the DCT configuration in transform
and the IDCT configuration initransform . Moreover, the SAD configuration
from motion estimation can be moved upwards in theputseqprocedure, im-
mediately preceding the call site ofmotion estimation in putseq. Addition-
ally, it can be noticed that the propagation of the SAD configuration fromput-
seqto themain procedure depends on the FPGA area allocation for SAD, DCT
and IDCT. When the SAD operation does not have anyFPGA-area placement
conflict (see Section 4.2) with the other two hardware operations DCTand
IDCT, its configuration can be safely performed only once, atthe entry point
in themain procedure.

The optimization proposed in this chapter allows to anticipate the hardware
configurations at interprocedural level, while prior work was limited to opti-
mizations at procedural level (intraprocedural). Secondly, although the inter-
procedural optimizations are considered to provide littlebenefit and signifi-
cantly increase the compiler complexity, we show that our optimization signif-
icantly reduces the number of hardware configurations (a major drawback of
the current FPGAs), while the complexity is not significantly increased.

5.2 Interprocedural SET Optimization

The main goal of the proposed interprocedural optimizationpresented in this
section is to appropriately schedule the SET instructions taking into account
the hardware conflicts between the available hardware operations. As such
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Figure 5.1: Motivational example for MPEG2 encoder
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Interprocedural Optimization Algorithm

INPUT: Call graphG =< N, S, r >, hardware conflictsf : HWxHW− > {0, 1}
OUTPUT: Insertion edges L
1. //Verify assumptions for G

check if G is DAG

2. //RMOD computation
traverse G in reverse topological order

compute for each procedure p

RMOD(p) = LRMOD(p)
S

s∈Succ(p)

RMOD(s)

//Compute CF
for each procedure p

CF (p) = {op1 ∈ RMOD(p)|∃op2 ∈ RMOD(p), op1 = op2}
3. //Compute the insertion edges

L = ∅
for each edge< pi, pj >

for eachop ∈ [RMOD(pj) − CF (pj)] ∩ CF (pi)
L = L ∪ < pi, pj , op >

for eachop ∈ [RMOD(r) − CF (r)]
L = L ∪ < r, r, op >

Table 5.1: The interprocedural optimization algorithm forhardware configu-
ration instructions

hardware configuration does not cause an exception, a speculative algorithm
is used for scheduling the hardware configuration instructions. As shown in
Table 5.1, the interprocedural optimization consists of three steps. In the first
step, the application’s call graph is constructed based on an interprocedural
control-flow analysis. Next, the set of live hardware configurations for each
procedure is determined using an interprocedural data-flowanalysis. Finally,
the hardware configuration instructions are anticipated inthe call graph taking
into account the available conflicting operations.

5.2.1 Step 1: Construction of the Call Graph

Starting point of the proposed optimization is the construction of the ap-
plication’s call graph. Given an applicationP consisting of a set of pro-
cedures< p1, p2, ..., pn >, the application’s call graph of P is the graph
G =< N,S, r > with the node setN = {p1, p2, ..., pn} , the setE ⊆ N
x N , where< pi, pj >∈ E denotes a call site inpi from which pj is called,
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and the distinguished entry noder ∈ N representing the main entry procedure
of the application. An example of a real call (sub)graph is presented in Figure
5.1.

The construction of the call graph for a application writtenin C is straightfor-
ward as there are no higher-order procedures in the C programming language.
For this purpose, we used thesbrowsercg library included in thesuifbrowser
package available in the SUIF environment. We also usedlink suif pass al-
ready available in SUIF2 in order to link all SUIF files of the initial application
in one large SUIF file, which is used for the construction of the call graph. The
constructed call graph is the input of the optimization algorithm as presented
in Table 5.1. As explained in the next subsection, the constructed graph is
required to be a DAG (Directed Acyclic Graph) (see Table 5.1,step 1).

5.2.2 Step 2: Propagation of Hardware Configuration Instruction

The goal of the interprocedural data-flow analysis is to determine what hard-
ware operation can modify the FPGA configuration as a side effect of a pro-
cedure call. We define LRMOD(p) (Local Reconfigurable hardware MODi-
fication) as the set of hardware operations associated with aprocedurep. In
order to simplify this discussion, we assume that there is atmost one hard-
ware operation that can be associated with a procedure. Morespecifically,
op1 ∈ LRMOD(p) if there is a pragma annotation that indicates that proce-
durep is executed on the reconfigurable hardware and its associated hardware
operation is namedop1. RMOD(p), Reconfigurable hardware MODification,
represents the set of all hardware operations that may be executed by an in-
vocation of procedurep and it can be computed using the following data-flow
equation:

RMOD(p) = LRMOD(p)
⋃

s∈Succ(p)

RMOD(s) (5.1)

An hardware operationop may be performed by calling procedurep if op is
associated with procedurep (i.e. op ∈ LRMOD(p)) or if it can be performed
by a procedure that is called from procedurep. For an efficient computation,
the RMOD values should be computed in reverse topological order (i.e. re-
verse invocation order) when the call graph does not containcycles (see step
2 from Table 5.1). The RMOD values for the example presented in Figure
5.1 are shown in Figure 5.2. For the basic blocks where LRMOD values are
missing, they are implicitly assumed as∅. We notice that by callingputseq
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Figure 5.2: Interprocedural data-flow analysis for MPEG2 encoder

procedures, all three hardware operationssad, dct andidct may be performed
on the reconfigurable hardware.

Due to the increasing complexity of the interprocedural data-flow analysis, this
step is performed only when the call graph G satisfies the following criteria.
We assume that there are noindirect procedure calls(using pointer to func-
tions). These limitations can be eliminated by consideringall candidate set of
functions that have the same prototype. Another limitationconcerns the data-
flow equations for procedures with recursive procedure calls (when the call
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graph contains cycles). In this case, the strongly connected components (scc)
should be computed and the data-flow equation should be collapsed for each
scc into a single equation. The proposed optimization is applied only when the
call graph is a DAG.

5.2.3 Step 3: Placement of Hardware Configuration Instructions

In this step, the hardware configuration instructions are anticipated in the call
graph taking into account the possible hardware conflicts discovered in the
previous step. In the first phase, the set of conflicting operations CF (p) is
computed for each procedure included in the call graph basedon theRMOD
values as follows:

CF (p) = {op1 ∈ RMOD(p)|∃op2 ∈ RMOD(p), op1 = op2} (5.2)

Next, for each edge of the call graph< pi, pj >, if there is an hardware opera-
tion op which does not have conflicts inpj (op 6∈ CF (pj)) but it has conflicts
in the calling functionpi (op ∈ CF (pi)), then a SET op instruction is inserted
at all call sites ofpj from pi. Finally, for all non-conflicting operations of the
entry node of the call graph G (i.e.RMOD(r)− CF (r)), the corresponding
SET instructions are inserted at the beginning of ther procedure (see step 3
from Table 5.1).

The CF values for the example presented in Figure 5.1 are shown in Figure 5.3,
for the case where all considered hardware operations conflict with each other.
For the basic blocks where CF values are missing they are implicitly assumed
as ∅. It can be noticed that the hardware configuration instructions cannot
simultaneously propagate upwards ofputseq procedure due to the considered
hardware conflicts.

In Figure 5.4, we present an example similar to the example from Figure 5.3,
but with a different set of conflicting hardware operations.We notice that in
this case, the hardware configurations forsadand idct cannot be anticipated
further due to their FPGA area conflict, while the SET instruction for thedct
hardware operation can be safely moved to the application entry point.



76 CHAPTER 5. INTERPROCEDURALSET SCHEDULING

motion_estimation transform itransform

field_estimate frame_estimate

field_ME

sad dct

sad idct

dct idct

dist1

sad

main

putseq

full_search

frame_ME dct idct

//for each macroblock

// for each frame

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad}

RMOD = {dct}

RMOD = {dct}

RMOD = {idct}

RMOD = {idct}

RMOD = {sad}

RMOD = {sad}

RMOD = {sad, dct, idct}

RMOD = {sad, dct, idct}

LRMOD = {sad}

LRMOD = {dct} LRMOD = {idct}

CF = {sad, dct, idct}

CF = {sad, dct, idct}

Figure 5.3: Interprocedural optimization for MPEG2 encoder
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Figure 5.4: Interprocedural optimization for MPEG2 encoder
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Name # frames Resolution

carphone 96 176x144
claire 168 360x288

container 300 352x288
football 125 352x240
foreman 300 352x288
garden 115 352x240
mobile 140 352x240
tennis 112 352x240

Table 5.2: MPEG test sequences

5.3 A MultiMedia Based Evaluation

In order to evaluate the impact on performance of the dynamichardware con-
figurations and the proposed optimization, we consider the MPEG2 encoder
multimedia benchmarks and the test sequences presented in Table 5.2. Build-
ing on previous work [41][32], we look at the following time consuming func-
tions that are implemented in reconfigurable hardware: SAD (sum of absolute-
difference), 2D DCT (2 dimensional discrete cosine transform) and IDCT (in-
verse DCT). We consider a Molen machine organization [76] with an x86 as
the GPP. More specifically, the compiler generates code for the x86 architec-
ture while the measurements are performed on an AMD Athlon XP1900+ at
1600 MHz.

We basically performed four experiments to assess the impact of hardware
reconfiguration and proposed optimization. Firstly, we analyze the pure soft-
ware approach and determine the theoretical (maximal) performance improve-
ment that can be achieved by hardware acceleration of the considered func-
tions. Secondly, we investigate the impact on performance of real reconfig-
urable hardware implementations for the considered functions, when a simple
scheduling is used for the hardware configurations. Next, wedetermine the
performance improvement achieved by hardware execution ofeach function
when only one initial hardware configuration is required. Finally, we present
the results of the proposed optimization when all considered hardware opera-
tions are executed on the reconfigurable hardware.
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Video SAD (16x16) DCT (8x8) IDCT (8x8)
sequence # Cycles % Time # Cycles % Time # Cycles % Time
carphone 997 31.69 37796 28.19 2612 1.95
claire 1092 36.46 37796 26.44 2177 1.53
container 1008 34.44 37590 27.04 2208 1.59
football 1484 42.74 37537 22.93 2827 1.73
foreman 1298 39.93 37572 24.35 2193 1.42
garden 1311 40.21 37594 24.70 2463 1.62
mobile 1092 35.95 37536 26.30 2519 1.77
tennis 1344 41.23 37531 24.39 2221 1.44

Average 1203 37.83 37593 25.54 2402 1.63

Table 5.3: Profiling results for MPEG2 encoder

5.3.1 Scenario 1: MPEG 2 Profiling Results for Pure Software Ex-
ecution

We first compute the number of cycles each function consumes for the input
sequences given in Table 5.2 when executed on the target GPP without re-
configurable hardware acceleration. These profiling results for the MPEG2
encoder benchmark are presented in Table 5.3. The cumulatedtime spent by
SAD, DCT and IDCT functions (Table 5.3, column 3,5 and 7) in the pure soft-
ware approach represents about 65 % of the total MPEG2 execution time. In
consequence, the hardware acceleration of these functions(as proposed in the
Molen approach) can produce a significant speedup of the MPEG2 encoder
up to 3x. The results from Table 5.3, column 3 suggest that theSAD func-
tion is the best candidate for hardware implementation as itcan provide up
to around 40 % performance improvement. Whereas for the encoding phase,
IDCT cannot yield substantial performance improvement, indecoding phase,
this function is heavily used and can then produce a significant performance
increase.

5.3.2 Scenario 2: A Simple Hardware Reconfiguration Scheduling

We first present the target reconfigurable hardware platformand the features
of the hardware implementations for the considered functions. Next, we intro-
duce the formula we used for computing the performance of theMolen FCCM.
Finally, we present the MPEG2 performance results for the reconfigurable
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Op Area EXEC HW Speedup
[slices] [cycles]

SAD 831 133 9 x
DCT 4314 1184 31 x
IDCT 5436 1200 2 x

Table 5.4: FPGA area and hardware execution parameters for the considered
kernels

Op SET SET MAX SET/SETMAX
[ms] [cycles] Mean st.dev

SAD 2 3200000 1070 167 2991
DCT 10 16000000 36409 80 439
IDCT 12 19200000 1202 225 15973

Table 5.5: Hardware configuration parameters for the considered kernels

hardware execution of the considered functions when a simple scheduling for
hardware configurations is assumed.

Reconfigurable Hardware Platform Before discussing the performance im-
provement that can be achieved by using the reconfigurable hardware, we
present the target FPGA platform included in our experiments. We target the
Xilinx Virtex II Pro, XC2VP20 chip and the 2D DCT and 2D IDCT cores
available as IPs in the Xilinx Core Generator Tool ([71], [77]) as well as the
SAD implementation presented in [32]. The area required by each function is
given in Table 5.4, column 2. We present the estimated hardware execution
time of each function in terms of the target Athlon processorcycles, given in
Table 5.4, column 3. Based on the characteristics of the XC2VP20 chip, for
which a complete configuration of 9280 slices takes about 20 ms, we estimate
the reconfiguration time for the considered functions as presented in Table 5.5,
column 2.

Performance Estimation for Molen FCCM Execution As the presented
Molen FCCM does not (currently) support dynamic hardware configuration,
we determine the performance of the Molen FCCM based on the measured
profiling results for the GPP included in the MOLEN FCCM as follows:

nMolen ≃ nX86 − nf + ncall · cost (5.3)
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cost = xSET + yEXEC (5.4)

where

• nMolen: the total number of GPP cycles spent in the considered applica-
tion by the Molen processor;

• nX86: the total number of GPP cycles when the considered application
is performed only on the GPP;

• nf : the total number of GPP cycles spent in functionf whenf is exe-
cuted exclusively on the GPP;

• ncall: the number of calls to functionf in the considered application;

• cost: the number of cycles for one execution of functionf on FPGA;

• xSET : the number of GPP cycles required for one configuration of the
FPGA for functionf ;

• yEXEC : the number of GPP cycles required for one execution on the
FPGA of functionf ; for the considered hardware implementation, the
execution time is not dependent on the input data.

In our experiments, we have measured the values fornX86, nf andncall in-
cluded in Formula 5.3. To this purpose, we used theHalt library[78] available
in Machine SUIF. This library is an instrumentation packagethat allows the
compiler to change the code of the application being compiled in order to col-
lect information about the application’s own behavior (at run-time). In order
to minimize the impact of external factors on the measurements, we run the
applications in single mode and with the highest priority inLinux.

MPEG 2 Performance Results for A Simple Hardware Reconfiguration
SchedulingOn the basis of the hardware execution times from Table 5.4 and
the average software execution time given in Table 5.3 column 2,4,6, we de-
termine that the hardware acceleration of the considered kernels (Table 5.4,
column 4) is up to 31x. However, a simple scheduling where thecorrespond-
ing SET and EXECUTE instructions for hardware configurationand hardware
execution are consecutively executed for each operation can completely waste
the hardware speedup. Due to the huge reconfiguration latency and repetitive
hardware configurations, the use of reconfigurable hardwarewill result in a
slowdown of the MPEG2 benchmark (computed asnMolen/nX86 using For-
mula 5.3) by 2-3 orders of magnitude (Table 5.6, row 2) when compared to
pure software execution on the GPP alone.
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Based on the profiling result (Table 5.3), the reconfigurablehardware execution
times (Table 5.4) and Formula 5.3, we determine the upper boundary for a
SET instruction latency that ensures that the Molen FCCM is not slower than
the pure software approach (nMolen ≃ nX86). We refer to this boundary as
SET MAX and is described by:

SET MAX ≃
nf

ncall

− yEXEC (5.5)

The mean SETMAX values and standard deviations are presented in Table
5.5, (columns 4-5). We notice that the complete hardware configuration of the
currently available FPGA platforms (SET) accounts for 3-4 orders of magni-
tude (see Table 5.4, last column) more reconfiguration time than SETMAX
and produces for the MPEG 2 benchmark a performance decreasing of 2-3 or-
der of magnitude (Table 5.6, row 2). In consequence, withoutan appropriate
scheduling of the SET instructions, the overall performance is decreased due
to the huge reconfiguration latency in spite of the faster hardware execution
time. In Appendix A, we present in more details the design space exploration
for multimedia applications, with an extended set of architectural parameters.

5.3.3 Scenario 3: Single Hardware Reconfiguration

In order to avoid the above presented limitation and to exploit the performance
improvement achieved by the hardware execution of the considered functions,
we analyze the case when only one function is executed on the reconfigurable
hardware while the other functions are switched to the software execution (on
GPP). In this case, only one hardware configuration is required for each func-
tion. We estimate the effect of this transformation on performance using the
ceteris paribus approach meaning that the performance improvement of each
function is individually estimated while assuming that none of the other func-
tions are implemented in reconfigurable hardware.

The MPEG2 performance results for this scenario are presented in Table 5.6,
row 3. It can be observed that, by removing the repetitive SETinstruc-
tions for each function, a significant performance improvement (computed as
nf−ncall∗yEXEC−xSET

nX86
) can be observed. The performance efficiency (the rap-

port between estimated performance improvement for the real hardware imple-
mentations and the theoretical performace improvement) ispresented in Table
5.6, row 4 and it emphasizes that the individual improvementof each function
is close to the maximum possible improvement.
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SAD DCT IDCT
Simple Scheduling 1012 x 108 x 131 x
Slowdown
Single Hardware 33.61 % 24.68 % 0.75 %
Reconfiguration Perf
Theor. Maximal 37.83 % 25.54 % 1.63 %
Performance Impr
Performance 89 % 97 % 46 %
Efficiency

Table 5.6: MPEG 2 encoder performance results with and without anticipated
hardware configuration

5.3.4 Scenario 4: Interprocedural Optimization Results

After having assessed the performance contribution of eachfunction, we inves-
tigate the impact of the proposed interprocedural optimization which allows
the reconfigurable hardware execution for all considered functions. The de-
scribed optimization algorithm has been implemented in theMolen compiler,
more specifically in the SUIF compiler frontend. The optimization is applied
on the call graph for MPEG2 encoder with 111 nodes (i.e. the applications
contains 111 procedures).

The aim of the proposed optimization is to significantly reduce the number of
the executed SET instructions for each hardware operation.In the results pre-
sented in the rest of this section, we compare the number of executed hardware
configurations with and without our optimization (denoted as SETOPT and
respectively NOSET OP cases).

The number of hardware configurations for the considered functions in the
MPEG2 encoder benchmark is presented in Table 5.7. When measuring the
effects of the proposed optimization (Table 5.7, columns 4-8), we consider dif-
ferent possible conflicts between SAD, DCT, and IDCT; in the best case there
is no conflict (column 4), while in the worst case all hardwareoperations are in
conflict with each other (column 8). One important observation is the 3-5 order
of magnitude decrease in the number of hardware configurations produced by
our optimization algorithm. The main cause of this decreaseis the particular
feature of the MPEG2 algorithm where the SAD, DCT and IDCT hardware
configurations can be anticipated at the frame level rather than macroblock
level (see Figure 5.3). In consequence, due to our optimization algorithm, the
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Initial With interprocedural SET optimization
Sequence HW op [# SETs] No SAD SAD DCT All

conflict DCT cf IDCT cf IDCT cf cf
SAD 7932972 1 96 96 1 96

carphone DCT 63360 1 96 1 96 96
IDCT 63360 1 1 96 96 96
SAD 54779496 1 168 168 1 168

claire DCT 399168 1 168 1 168 168
IDCT 399168 1 1 168 168 168
SAD 98044520 1 300 300 1 300

container DCT 712800 1 300 1 300 300
IDCT 712800 1 1 300 300 300
SAD 36219280 1 125 125 1 125

football DCT 264000 1 125 1 125 125
IDCT 264000 1 1 125 125 125
SAD 98044520 1 300 300 1 300

foreman DCT 712800 1 300 1 300 300
IDCT 712800 1 1 300 300 300
SAD 32997680 1 115 115 1 115

garden DCT 242880 1 115 1 115 115
IDCT 242880 1 1 115 115 115
SAD 40435160 1 140 140 1 140

mobile DCT 295680 1 140 1 140 140
IDCT 295680 1 1 140 140 140
SAD 32494000 1 112 112 1 112

tennis DCT 236544 1 112 1 112 112
IDCT 236544 1 1 112 112 112

Table 5.7: The impact of the interprocedural optimization on the number of
required hardware configurations in MPEG2 encoder

hardware configuration is transformed from a major bottleneck in a negligi-
ble factor on performance. A second observation is that, forthe no conflict
case, our optimization algorithm eliminates all hardware configurations and
introduces at the application entry point only one hardwareconfiguration for
each hardware operation; thus, all the hardware configurations but one from
the initial application (Table 5.7, column 2) are redundant.

In order to conclude this section, four points should be noticed regarding the
presented results and optimization. Firstly, the reduction of the number of
hardware configurations depends on the characteristics of the target applica-
tions. As previously presented, the impact of our optimizations for MPEG2
encoder is substantial, while for other applications (e.g.M-JPEG) it depends
on the possible hardware conflicts between operations. Second, it should be
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mentioned that this optimization can also increase the number of hardware
configurations, e.g. when the considered procedure associated to the hardware
operations have multiple call sites and conflicting operations. Flow-sensitive
data-flow analysis and profile information can be used to prevent this situa-
tion. Nevertheless, taking into account that the hardware configuration can be
performed in parallel with the execution of other instructions on the GPP, the
reconfiguration latency may be (partially) hidden. The finalobservation is that
a significant reduction of the number of executed hardware configurations is
directly reflected in a significant reduction in power consumption, as the FPGA
reconfigurations is a main source of power consumption (see [79]).

5.4 Conclusions

In this chapter, we extended the Molen compiler developed tosupport the
Molen Programming Paradigm to study the conditions under which substantial
performance improvements can be obtained with hardware acceleration using
FCCMs. Based on profiling results, we showed that potential speedups can
be completely outweighed by inappropriate scheduling of the reconfiguration
instruction. When theoretically a performance improvement of up to 65 % is
achievable, the slowdown caused by improper scheduling canbe as large as a
factor 1000 (e.g. for SAD). We also showed that given a suitable scheduling
up to 97 % of the maximal performance improvement can be obtained. The
optimization presented in this chapter reduces the number of executed hard-
ware configurations by a factor of 3-5 order of magnitude whencompared to
the simple scheduling.

In the previous and current chapters, we assume a predefined FPGA area al-
location for the operations executed on the reconfigurable hardware. In the
next chapter, we will address the FPGA area allocation problem in order to
minimize the conflicting operations and the reconfigurationoverhead.





Chapter 6

Compiler-driven FPGA-area
Allocation

Although the new generations of FPGAs provide support for partial and dy-
namic configuration, the huge reconfiguration latency is still a major short-
coming of the current FCCMs (see [80]). In this chapter, we propose two
FPGA-area allocation algorithms for the tasks executed on the reconfigurable
hardware. The goal is to minimize the FPGA-area which is reconfigured at
runtime and improve the overall performance, taking into account the applica-
tion runtime features. More specifically, we use the reconfiguration frequency
for the target application to guide the allocation algorithms. Two scenarios are
discussed: the first one corresponds to the case when all hardware operations
must be placed/executed on the target FPGA while in the second scenario, a
hardware operation can be switched to its pure software execution on the core
processor in order to reduce the pressure/competition for the FPGA area. Both
FPGA-area allocation problems are formulated as 0-1 integer linear program-
ming (LP) problems and efficient LP solvers are used for finding the optimal
solutions.

The chapter is organized in six sections. The background andrelated work is
presented in the following section. Next, we discuss some motivational exam-
ples and define the FPGA-area allocation problem addressed in this chapter.
The proposed allocation algorithms are detailed in section6.3. Finally, we
provide the evaluation of the proposed algorithms and present conclusions and
future work.

87
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6.1 Related Work

Previous approaches for FPGA-area allocation are mainly focused on cases
where the whole application is decomposed in tasks which areentirely exe-
cuted on the FPGA. In [81], the authors propose an optimal module placement
based on packing classes. A solution based on backtracking with bounding
heuristics is presented in [82]. In [83], the authors address the allocation and
space-time instruction scheduling based on maps of probabilities that are used
to represent the allocations of hardware resources and the time slots. The prob-
abilities reflect the confidence of the allocation and can be adjusted by the
tools involved in the scheduling. Other approaches [63] [84] [85] addresses
the HW/SW partitioning problem and the reconfiguration latency minimiza-
tion problem in the context of configuration prefetching and/or multi-context
devices. The proposed solutions require detailed information (such as data
flow graphs, dependency graphs of tasks) about the application’s features and
regular application behavior.

A similar approach targeting the Xputer architecture [86] is presented in [87],
where the optimization of overall execution time does not rely on ILP solvers -
as in our approach, but it is based on a simulated annealing algorithm [88]. An-
other approach (see [89] [90] [91] [64] [92]) is the task allocation at run-time
in an operating system for reconfigurable computing. This general approach
is not suitable for the single application execution cases -as assumed in the
Molen Programming Paradigm, due to the increased overhead introduced by
the operating system. Additionally, information about specific application be-
havior is not used by the operating systems in order to guide this allocation,
thus optimization opportunities can be lost.

The work presented in [93] [94] addresses compiler optimization for reducing
the number of redundant FPGA configurations based on a predefined FPGA-
area allocation. In consequence, the compiler optimization will benefit from
an efficient FPGA-area allocation that minimizes the FPGA-area overlaps for
a target application. In this chapter, we propose two FPGA-area allocation
algorithms that reduce furthermore the number of FPGA configurations by
minimizing the total reconfigured area for a given trace of execution.
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6.2 Problem Overview and Definition

6.2.1 Motivational Example

In order to intuitively introduce the FPGA-area allocationproblem, we use a
motivational example ( Figure 6.1(a)) which sketches an FPGA device and the
area requirements for three operations implemented on the FPGA. In this chap-
ter, we assume FPGAs with column-based reconfiguration (thereconfiguration
may only be performed for a full column of CLBs of the chip) such as the well-
known Xilinx Virtex devices. For one application that uses the three hardware
operations, a simple FPGA area allocation (presented in 6.1(b)) places all op-
erations starting with the first column. Due to the FPGA area overlaps, such
allocation requires the FPGA reconfiguration before each execution of the con-
sidered operations. As shown in [80], FPGA reconfiguration is slow and thus,
repetitive FPGA reconfigurations can produce a significant performance de-
crease. In consequence, a better FPGA-area allocation is required in order to
reduce the reconfiguration overhead. An allocation strategy is possible only
when the placement of the hardware operations is not predefined.

Two important observations can be made regarding the example from Figure
6.1. The first observation is that the three considered operations cannot fit
together on the FPGA as the sum of the area of their hardware implementations
exceeds the total available FPGA-area. The second observation concerns the
simple allocation strategy, where there is unused FPGA-area while parts of
the FPGA have to be reconfigured before each execution. For the considered
example, even when the Rop2 and Rop3 do not have overlapping FPGA-area,
the placement of Rop1 will introduce FPGA-area overlaps with one of the two
operations.

In order to determine an efficient FPGA-area allocation, we propose an ap-
proach that divides the hardware operations in two categories: FIX and RW.
An operation is called FIX if it has no overlapping area with any other hard-
ware operations in the considered application. Such a FIX operation requires
only one initial FPGA configuration (which can be preloaded and can be ne-
glected). An operation is called RW (reconfigurable) if its area overlaps with
other operations and it has to be configured before each execution.

Loosely stated, the main idea of our approach is to minimize the reconfigured
FPGA-area based on the reconfiguration frequency of each operation. Using
profiling information, we determine the execution order forthe hardware op-
erations (called trace) and compute the reconfiguration frequency in the trace.
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Figure 6.1: Example: a) Total FPGA-area and three Rops; b) a simple FPGA-
area allocation c) optimal allocation based on the execution trace

The goal is to allocate the larger and frequently reconfigured operations as FIX
operations. The example shown in Figure 6.1(c) presents theoptimal FPGA-
area allocation for a given execution trace. We can observe the elimination of
hardware configurations for the operations allocated as FIXoperations (Rop1
in this example). The selection of the FIX operations is based on 0-1 linear
programming and is explained in Section 6.3. The used terminology and a
formal description of the allocation problem is presented in the rest of this
section.
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6.2.2 Problem statement

We represent a set ofn reconfigurable hardware operations (Rops) asROP =
{Rop1, Rop2, ..., Ropi, ..., Ropn}, where each operationRopi occupies for its
hardware implementation an FPGA-areaAi. The total available area of the
target FPGA device isS. Although in this chapter we address the case when
the reconfiguration is column-based (the area is expressed as the number of
columns), the extension to the 2D or 3D cases is straightforward.

An execution trace is a sequence of Rops that are executed fora set of
representative input data for the target application and itis represented as
T : Ropi, Ropj , ..., Ropk, .... A trace is normalized if it does not contain two
identical consecutive Rops. This normalization represents the fact that con-
secutive hardware reconfigurations for the same Rop are redundant and can be
eliminated by compiler optimization (see [80]) or hardwareprefetching. For
eachRopi ∈ ROP and a normalized trace T, the reconfiguration frequency
n(T )i represents the number of occurrences ofRopi in the trace T.

As previously explained, the idea of our approach is to divide the ROP set in
two subsets FIX and RW, where

ROP = FIX
⋃

RW andFIX
⋂

RW = ∅.

The Rops in the FIX set will have a dedicated area allocated onthe FPGA that
is not used by other Rops (they do not have area overlaps with other Rops).
The advantage is that the FIX Rops will not require an FPGA reconfiguration
before their executions. The total area occupied by the FIX Rops is

AFIX =
∑

Ropj∈FIX

Aj .

The Rops in RW set are the operations that have area overlaps.The re-
configuration overhead is proportional to the FPGA-area which is reconfig-
ured at runtime. The aim is to minimize the total reconfiguredareaARW =

∑

Ropi∈RW

n(T )i ∗Ai which is the sum of the area of the Rops from RW multi-

plied by their reconfiguration frequency. The minimizationcorresponds to the
minimization of the reconfiguration overhead and implicitly, to the improve-
ment of the overall performance gain. A formal description of this problem is
as follows:

Problem Given a setROP = {Rop1, Rop2, ..., Ropi, ..., Ropn}, a total
available FPGA-area S, a normalized execution trace T, eachRopi having an
FPGA-areaAi and the reconfiguration frequencyn(T )i, find RW ⊆ ROP
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that minimizes the reconfigured area
∑

Ropi∈RW

n(T )i ∗Ai, under the following

constraint:

• ∀Ropk ∈ RW , Ak +
∑

Ropj∈FIX

Aj ≤ S, whereFIX = ROP −RW .

The constraint represents the requirement that any RW Rop must have enough
available area to coexists on the FPGA at the execution time with all FIX
Rops. Implicitly, as the FPGA-area is a positive number, theconstraint ex-
presses also the requirement that all FIX Rops should fit together on the target
FPGA. Once the RW set has been determined for the above mentioned prob-
lem, an effective FPGA-area allocation is straightforward. Assuming thatAi

represents the number of required columns, an FPGA-area allocation asso-
ciates with each Rops, the number of the first column whereAi is placed.
In the first step, the FIX Rops are consecutively allocated onthe FPGA:
for each Ropi ∈ FIX,Ci = CFIX andCFIX = Ci + Ai with the initial
CF IX = 1. Ci represents the column number of the first column allocated
for Ropi. In the second step, the RW Rops are all allocated at the end ofthe
FPGA-area allocated for the FIX Rops:∀Ropk ∈ RW,Ck = CFIX .

6.3 FPGA-area Allocation Algorithms

For the problem defined in the previous section, we propose its formulation
as an integer linear pseudo-Boolean (0-1) programming problem and con-
sequently, the solutions can be determined using efficient solvers (see [95]).
More specifically, we propose two scenarios. The first case (associated with
the FIX/RW Algorithm) corresponds to the above mentioned problem, where
the Rops are placed in the FIX or in the RW part on the FPGA. In the second
case (corresponding to the FIX/RW/SW Algorithm), we assumethan an Rop
can have three options for execution: on the FIX or RW part or additionally,
it can be switched to its software execution (on GPP). The last options can be
preferred for those Rops where the huge reconfigurations latency consumes the
gain produced by the fast execution on the FPGA. In the rest ofthis section,
we introduce in detail the two FPGA-area allocation algorithms.
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6.3.1 FIX/RW Algorithm

As previously presented, we translate the FPGA-area allocation problem in a
0-1 linear programming problem to produce an optimal solution using efficient
solvers.

0-1 SelectionIn the considered case, any Rop can be executed on the FIX or
RW part of the FPGA. In consequence, we associate with anyRopi a variable
xi such that

xi =

{

0 if Ropi ∈ FIX
1 if Ropi ∈ RW

.

Finding the optimal partition of ROP in FIX and RW is reduced to finding the
optimal 0-1 values for allxi.

Objective function In the problem definition in Section 6.2, the minimization
of the reconfigured area

∑

Ropi∈RW

n(T )i ∗ Ai can be expressed as the following objective function

∑

Ropi∈ROP

n(T )i ∗ Ai ∗ xi. If Ropi is a FIX Rop, thenxi = 0 and it does not

increase the reconfigured area as it does not need any configuration. In conse-
quence, only the contribution of the RW Rops is included in the minimization
objective function.

Linear Pseudo-Boolean InequalitiesThe system of linear pseudo-Boolean
inequalities of the linear programming problem formulation corresponds to
the constraints included the initial problem. The constraint that

∀Ropk ∈ RW , Ak +
∑

Ropj∈FIX

Aj ≤ S

can be expressed as follows:
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min: +2*39*x1 + 3*13*x2 + 3*16*x3;

C1: + 13*x2 + 16*x3 ≤ 58 - 39
C2: + 39*x1 + 16*x3 ≤ 58 - 13
C3: + 39*x1 + 13*x2 ≤ 58 - 16

Figure 6.2: LP problem for the MPEG2 example in Section 6.4 and FIX/RW
Algorithm
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A1 ∗ x1 +
∑

Ropj∈ROP

Aj ∗ xj ≤ S

A2 ∗ x2 +
∑

Ropj∈ROP

Aj ∗ xj ≤ S

.........................................

Ai ∗ xi +
∑

Ropj∈ROP

Aj ∗ xj ≤ S

.........................................

An ∗ xn +
∑

Ropj∈ROP

Aj ∗ xj ≤ S

This system of inequalities should be interpreted as follows:

(1) The term
∑

Ropj∈ROP

Aj ∗ xj represents the permanently configured FPGA-

area occupied by FIX Rops:
∑

Ropj∈ROP

Aj ∗ xj =
∑

Ropj∈FIX

Aj ∗ xj.

(2)The second observation regards the first term in the inequalities, namely
Ai ∗ xi. For the cases whenRopi ∈ FIX =⇒ xi = 0, the termAi ∗ xi can be
eliminated. Theith inequality is transformed in

∑

Ropj∈ROP

Aj ∗ xj ≤ S which represents the constraint that the total area allo-

cated for FIX Rops should be smaller or equal than the total available FPGA-
area S. Similarly, for the cases whenRopi ∈ RW =⇒ xi = 1, the inequality
is transformed in

Ai ∗ xi +
∑

Ropj∈ROP

Aj ∗ xj ≤ S which represents the constraint that an RW
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Rop has to fit on the FPGA together with all FIX Rops.

In our model implementation, eachith inequality should not contain bothxi

andxi; thus it can be reduced as follows:

Ai ∗ xi +
n

∑

j=1

Aj ∗ xj ≤ S ⇐⇒

Ai ∗ xi + Ai ∗ xi +

i−1
∑

j=1

Aj ∗ xj +

n
∑

j=i+1

Aj ∗ xj ≤ S ⇐⇒

Ai ∗ (xi + xi) +

i−1
∑

j=1

Aj ∗ xj +

n
∑

j=i+1

Aj ∗ xj ≤ S ⇐⇒

i−1
∑

j=1

Aj ∗ xj +

n
∑

j=i+1

Aj ∗ xj ≤ S −Ai

Example A real example (discussed in details in Section 6.4) is presented
in Figure 6.2, for three Rops withA1 = 39, A2 = 13, A3 = 16, n(T )1 =
2, n(T )2 = 3, n(T )3 = 3 andS = 58. The solution to this problem is{x1 =
0, x2 = 1;x3 = 1}, which corresponds toFIX = {Rop1} and RW =
{Rop2, Rop3}.

6.3.2 FIX/RW/SW Algorithm

The FIX/RW algorithm previously presented has two important limitations: i)
it cannot find a viable FPGA allocation if there is anRopi with Ai > S be-
cause the constraint set is unsatisfiable; and ii) although the FPGA execution
is (usually) faster than the software execution for any Rop,the reconfigura-
tion overhead can significantly increase the overall execution time. In order
to eliminate these limitations, we propose the FIX/RW/SW algorithm where
the Rops can additionally be switched to software execution. The FPGA-area
allocation problem can again be formulated as 0-1 LP problemincluding the
following components.

0-1 SelectionIn this case, a Rop has three options for execution: on the FIX
or RW part on the FPGA or additionally in software (SW). The allocation
problem involves the division of ROP in three subsets FIX, RWand SW, such
that

ROP = FIX
⋃

RW
⋃

SW

and
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FIX
⋂

RW = ∅, FIX
⋂

SW = ∅, RW
⋂

SW = ∅.

These options can be expressed using three boolean variables for eachRopi,

namelyxfixi, xrwi andxswi, wherexfixi =

{

1 if Ropi ∈ FIX
0 if Ropi 6∈ FIX

and

similar for xrwi andxswi.

Moreover, a Rop must be included in only one subset; this constraint can be
expressed as:

xfixi + xrwi + xswi = 1.

Finding the optimal partition of ROP in FIX, RW and SW is reduced to finding
the optimal 0-1 values for allxfixi, xrwi andxswi.

Objective function In the problem definition of the previous FIX/RW Algo-
rithm, the goal of the objective function is the minimization of the total recon-
figured area. This objective function cannot be used in the current scenario as
all Rops can be switched to their software execution. In the FIX/RW/SW al-
gorithm, the goal is the performance gain and the new objective function is the
minimization of the execution time for the considered Rops and is expressed
as
n

∑

i=1

cost fixi ∗ xfixi +
n

∑

i=1

cost rwi ∗ xrwi +
n

∑

i=1

cost swi ∗ xswi,

where cost fixi/cost rwi/cost swi represent the total execution time for
Ropi in FIX/RW/SW respectively and their values can be determined using
profiling information and estimations.

Linear Pseudo-Boolean InequalitiesThe system of linear pseudo-Boolean
inequalities of the linear programming problem formulation is similar to the
previous FIX/RW system:

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A1 ∗ xrw1 +
n

∑

j=1

Aj ∗ xfixj ≤ S

A2 ∗ xrw2 +

n
∑

j=1

Aj ∗ xfixj ≤ S

.........................................

Ai ∗ xrwi +

n
∑

j=1

Aj ∗ xfixj ≤ S

.........................................

An ∗ xrwn +
n

∑

j=1

Aj ∗ xfixj ≤ S
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min: +cost fix1 ∗ xfix1 +cost fix2 ∗ xfix2 +cost fix3 ∗ xfix3 +
+cost rw1 ∗ xrw1 +cost rw2 ∗ xrw2 +cost rw3 ∗ xrw3+
+cost sw1 ∗ xsw1 +cost sw2 ∗ xsw2 +cost sw3 ∗ xsw3

C1: xfix1 +xrw1 +xsw1 = 1
C2: xfix2 +xrw2 +xsw2 = 1
C3: xfix3 +xrw3 +xsw3 = 1
C4: 39 xrw1 +39 xfix1 +13 xfix2 +16 xfix3 ≤ 58
C5: 13 xrw2 +39 xfix1 +13 xfix2 +16 xfix3 ≤ 58
C4: 16 xrw3 +39 xfix1 +13 xfix2 +16 xfix3 ≤ 58

Figure 6.3: The linear problem description for the MPEG2 example presented
in Section 6.4 and FIX/RW/SW Algorithm

The main idea is the same as in the previous algorithm: each RWRop must
have allocated enough FPGA-area to fit with all FIX Rops on theFPGA.

Example One linear model for the three Rops presented in Section 6.4 and
FIX/RW/SW Algorithm is presented in Figure 6.3. For the estimated costs,
the solution to this linear problem is{xfix1 = 1, xfix2 = 1, xsw3 = 1},
while the other boolean variables are zero.

As a final observation for both algorithms, we notice that thegenerated FPGA-
area allocations will preserve the application semantics even when the input
execution trace T is not a representative trace. In such cases, some performance
gain may be lost, but the application has the correct behavior.

Additionally, we notice that in the translation to the linear programming prob-
lem we do not take into account the Rops order in the normalized trace. The
reason is that the order information transforms our problemin a non-linear
problem. Our future work will address the searching of the optimal solutions
as the naive backtracking solution is expensive for a significant number of
Rops and large traces.

6.4 Results

In this section, we present the compiler extensions of the Molen compiler (see
Section 3) regarding the two FPGA-area allocation algorithms discussed above
and the evaluation of the performance achieved by the proposed algorithms in
the MPEG2 and MJPEG case study.
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Compiler Extension for FPGA-area Allocation The presented FPGA-area
allocation algorithms are integrated in the Molen compileras two Machine-
SUIF (see [78]) passes and the user is allowed to choose the allocation to be
used. The compiler extensions involve the following:

• extraction ofprofile information for guiding the FPGA-area allocation
algorithm: we use code instrumentation techniques in orderto deter-
mine: theexecution traceT, the costs (measured in processor cycles)
for the software executionscost sw and theexecution frequencyof the
considered Rops.

• linear programming solver integration: we use an efficientLP solver
implementation based on Davis-Putman enumeration methodspresented
in [95] and publically available as a software package.

• elimination of FPGA reconfiguration instructions for FIX Ro ps: the
SET instructions for the FIX Rops are all eliminated from theappli-
cation code and one SET instruction is added for each FIX Rop at the
application entry point.

• SW switching for SW Rops in FIX/RW/SW Algorithm: all SET in-
structions of SW Rops are eliminated from the application code and the
EXEC instructions associated to the SW Rops are transformedin stan-
dard function calls.

Target Applications, Rops and FPGA The target C applications consid-
ered in this section are the well-known multimedia benchmarks MPEG2 and
MJPEG encoders. The input sequence for the MPEG2 is the set ofthree frames
that comes with the benchmark, while for MJPEG we use 30 colorframes from
”tennis” in YUV format with a resolution of 256x256 pixels.

The Rops candidate for execution on the FPGA are

• for MPEG2 - SAD (sum of absolute-difference),2D DCT (2 dimen-
sional discrete cosine transform) andIDCT (2D inverse DCT) with the
real FPGA implementations presented in [31], and

• for MJPEG- DCT, Quantization andVLC (Variable Length Coding)
with the the real FPGA implementations for Quantization andVLC pre-
sented in [96].
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XC2VP20

XC2VPX20

XC2VP30

XC2VP40

XC2VP50

XC2VP4

XC2VP7

SAD DCT IDCT DCT Quant VLC

FIX Rop SW Rop

MPEG2 MJPEG

Figure 6.4: FPGA allocation for the FIX/RW/SW algorithm

The target reconfigurable platforms are Xilinx Virtex II Prodevices (see [50])
with CLB array sizes varying from 40 x 22 for XC2VP4 up to 88 x 70for
XC2VP50 and also including one PowerPC processor. The required FPGA-
area (expressed in slices) and FPGA execution time (converted in PowerPC at
300 MHz cycles) for the considered Rops are presented in Table 6.1, columns
2-3. We estimate the FPGA reconfiguration time per CLB based on the to-
tal configuration time: 47.55 ms for the whole XC2VP50 chip (CLB array of
88x70) using SelectMAP at 50MHz (as presented in [49]); thus, the recon-
figuration overhead (converted in PowerPC cycles) is 2315 cycles per CLB.
The basic configuration time for the considered Rops is presented in Table
6.1, columns 4. For the software execution, the profiling results for computing
cost sw for each Rop are based on simulations using the PowerPC simulator
from Simics [74]. The time spent for the software execution for the considered
Rops reported to the total software execution time is presented in Table 6.1,
last column.

FPGA-area Allocation Algorithms Evaluation A comparison between the
estimated performance for the MPEG2 / MJPEG encoder applications and the
two FPGA-area allocation algorithms is presented in Figure6.5. The reference
unit of this comparison (SW) is the pure software execution when all Rops are
executed on the GPP. We also include in this comparison the performance esti-
mated for the naive FPGA-area allocation presented in Section 6.2 and denoted
as NAlloc for MPEG2. The performance for the proposed algorithms are rep-



100 CHAPTER 6. COMPILER-DRIVEN FPGA-AREA ALLOCATION

Rop Name Area[Slices] EXEC[cycles] SET[Kcycles] SW [%]
MPEG2

SAD 13613 49 7880 62 %
DCT 4314 306 2498 15%
IDCT 5436 315 3146 1 %

MJPEG
DCT 4314 306 2498 80%
Quant 1179 104 683 3%
VLC 6422 110 3718 12.5 %

Table 6.1: HW/SW features for the Rops that candidate for FPGA execution

resented as FIX/RW Alg and FIX/RW/SW Alg. The correspondingsolutions
for the FIX/RW/SW algorithm are graphically represented inFigure 6.4.

In all cases, we considered that only one FPGA reconfiguration is performed
before a sequence of consecutive Rop executions. Otherwise, in the case when
an FPGA configuration is performed before each Rop execution, the over-
all performance is decreased by several orders of magnitude(see [80]). For
both algorithms, we use an efficient LP solver implementation based on Davis-
Putman enumeration methods presented in [95] and publically available as a
software package.

From Figure 6.5, we notice that the FIX/RW algorithm does notgenerate solu-
tions for the FPGAs with relatively small CLB arrays (as explained in Section
6.3.2), while FIX/RW/SW algorithm guarantees that a better(or equal, in the
worst case) solution compared to SW is selected. However, for the FPGA
devices with large CLB arrays both algorithms select the best solution - all
Rops allocated as FIX Rops - which corresponds to an overall performance
improvement of 61 % for MPEG2 and 94 % for MJPEG. In an example sce-
nario using the FIX/RW algorithm for the MPEG2 application and XC2VP40
device where the partial and dynamic hardware configurationis needed, it can
be observed that the reconfiguration overhead is reduced by 47 %. For the
MJPEG application, the reconfiguration overhead is reducedin all cases by at
least 36 %.

In Figure 6.4, we notice that FIX/RW/SW algorithm does not select RW Rops,
but SW or FIX Rops are preferred. This observation is explained by the huge
reconfiguration latency of the considered devices. Additionally, we present in
Figure 6.6, the influence of the reconfiguration overhead on the solutions gen-
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Figure 6.5: Performance comparison for the FPGA-area allocation algorithms

erated by FIX/RW/SW algorithm for the MPEG2 application andXC2VP30
device. An important observation is that the RW Rops are usedonly when
the reconfiguration latency is at least 10 times smaller thanthe current val-
ues. In consequence, the FPGA reconfiguration must be at least one order of
magnitude faster for an efficient dynamic FPGA usage.

The proposed allocation algorithms can be easily integrated with the schedul-
ing algorithms presented in Chapter 4 and Chapter 5. After the elimination of
the hardware reconfiguration for the reconfigurable operations allocated in the
FIX set by the two allocation algorithms, the scheduling algorithms will ad-
dress only the SET instructions for the reconfigurable operations allocated in
the RW set. As a final conclusion, we note that the scheduling algorithms will
cooperate with the allocation algorithms to further decrease the reconfiguration
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Figure 6.6: The influence of the RW overhead over the FIX/RW/SW algorithm
for MPEG2 and XC2VP30 device

overhead.

6.5 Conclusions

In this chapter, we have presented two FPGA-area allocationalgorithms for
minimizing the huge reconfiguration overhead of the currentFPGAs. Two sce-
narios have been proposed: the traditional placement problem when all Rops
are executed on the FPGA and the goal is the minimization of the total re-
configured area and additionally, the case when any Rop can beswitched to
its software execution and the objective function is to maximize the overall
performance gain.

The algorithms incorporate advanced 0-1 LP solvers and use profiling infor-
mation such as the reconfiguration frequency and software execution time as
well as hardware information such as configuration time and hardware execu-
tion time for finding the optimal Rops allocations. The presented results show
that a performance gain of up to 61 % for MPEG2 and 94 % for MJPEGis
to be expected when the proposed allocation algorithms are used. Addition-
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ally, the proposed allocation algorithms can be integratedwith the scheduling
algorithms proposed in the previous chapters.





Chapter 7

Conclusions

In this thesis, we addressed the design and implementation of the Molen com-
piler for reconfigurable architectures under the Molen Programming Paradigm.
More specifically, we first presented the basic compiler extensions required for
code generation for reconfigurable architectures. Additionally, we have imple-
mented a PowerPC compiler backend and presented as a proof ofconcept a
real experiment with a multimedia benchmark compiled for and executed on
the Molen Polymorphic Media Processor. Given these basic compiler exten-
sions, we subsequently proposed a set of advanced compiler optimizations that
address one main shortcoming of the current FPGAs, namely the reconfigura-
tion overhead. Assuming a predefined FPGA area allocation, we proposed two
compiler optimizations - at intra and interprocedural level, that aim to antici-
pate the hardware reconfiguration instructions and to reduce the total number
of required reconfigurations. Finally, we proposed two efficient FPGA area
allocation algorithms based on profiling results and advanced LP solvers that
further reduce the reconfiguration overhead.

In this chapter we present the conclusions of this thesis which are organized
as follows. Section 7.1 presents a summary of the thesis. Next, we present
the major contributions of this thesis and in Section 7.3, wepropose future
research directions.

7.1 Summary

In this dissertation we investigated compiler optimizations for reconfigurable
architectures that specifically address the reconfiguration overhead. The work
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presented in this thesis can be summarized as follows.

In Chapter 2, we presented background information for reconfigurable archi-
tectures, with a classification and a set of representative examples for different
approaches of reconfigurable architectures. Consequently, we identified the
major shortcomings of these approaches, which can be summarized as:

• limited number of new instructions for the reconfigurable hardware and
constraints over the instruction operands, due to the instruction encoding
formats.

• technology dependent hardware implementation for the operations exe-
cuted on the reconfigurable hardware

• lack of support for parallel execution of the reconfigurableoperations.

In order to address these shortcomings, we presented the Molen machine orga-
nization and Programming Paradigm that provide a compact ISA extension for
a virtually infinite number of new reconfigurable operations, modularity and
parallel execution on the reconfigurable hardware. Finally, we described the
DelftWorkBench project that aims to provide the semi-automatic tools that aid
the designer in mapping and execution of the input application on the target
reconfigurable architecture under the Molen Programming Paradigm.

In Chapter 3, we presented the Molen compiler for reconfigurable architectures
under the Molen Programming Paradigm. The compiler is a key component
of the DelftworkBench design tool chain as it produces code tailored for the
software and hardware features of the target application and architecture. We
first presented the compiler framework based on the SUIF/MACHINESUIF in-
frastructure and the general extensions for the Molen Programming Paradigm
which involves ISA extension, Register file extensions as well as hard-
ware/software co-design information. Next, we discussed the specific exten-
sions which have been implemented for the Molen PolymorphicMedia Proces-
sor which includes a PowerPC backend. Finally, we describedan experiment
with a multimedia application compiled by the Molen compiler and executed
on the Molen Polymorphic Processor with an average speedup of 2.5 compared
to the pure software execution.

In Chapter 4 we first presented a formal problem statement forSET instruction
scheduling where the goal is the minimization of the reconfiguration overhead
based on the reduction of the number of total executed hardware reconfig-
urations. Next, we presented an intraprocedural compiler optimization that
solves the presented problem using advanced data-flow analyses and graph
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algorithms. More specifically, we introduced a modified data-flow analysis
for partial anticipability that reflects the spatial constraints of the reconfig-
urable hardware. Additionally, we used the data flow analysis for availability
to determine the redundant hardware configurations, when the FPGA is al-
ready configured for a specific operation by a previous SET instruction and a
new SET instruction is not longer required. In order to minimize the number
of executed reconfigurations, we used the minimum s-t cut algorithm on a re-
duced control flow graph and identify the less frequently executed edges where
the SET instructions can be conservatively moved, preserving the application
semantics. Using profile information and software/hardware estimation, the
proposed optimization selected the software/hardware execution for the can-
didate operations for execution on the reconfigurable hardware based on the
performance improvement criterion. Finally, we estimatedthat the proposed
optimization have a significant impact on performance for the current FPGAs
and additionally, the proposed SET scheduling is usefull even for future faster
FPGAs.

In Chapter 5 we investigated the impact of the reconfiguration overhead of
the current FPGAs on the overall performance and determine that the basic
code generation without specific optimizations regarding the reconfiguration
overhead can significantlydecreasethe overall performance compared to pure
software execution. Additionally, we estimated that the FPGA execution of the
considered hardware operations can provide anaccelerationof several order of
magnitudes compared to their execution on the GPP. Thus, in order to exploit
the faster reconfigurable hardware execution and to reduce the reconfigura-
tion overhead, we proposed a compiler optimization that is an extension of the
compiler optimization proposed in Chapter 4 and it anticipates the hardware
reconfiguration instructions at the interprocedural level, in the application call
graph. The interprocedural SET scheduling is based on a simplified interpro-
cedural dataflow analysis and it takes into account the spatial constraints of the
target reconfigurable hardware.

In Chapter 6 we proposed two compiler-driven FPGA-area allocation algo-
rithms that aim to minimize the overall reconfiguration overhead and to maxi-
mize the overall performance improvement compared to the pure software ex-
ecution. In both algorithms, the FPGA allocation problem was formulated as
a 0-1 LP problem and efficient LP solvers were used to find efficient solutions.
The main idea was to divide the FPGA area in two parts: one fixed, which
is not modified at execution time and one reconfigurable, which is reconfig-
ured at execution time. Next, the “promising” operations were allocated in the
fixed part based on profile information and software/hardware estimations. In
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the first algorithm, the objective function involved in the 0-1 LP problem is
the minimization of the total reconfigured area, which is proportional to the
overall reconfiguration overhead. However, for some hardware operations the
reconfiguration overhead cannot be hidden and it will significantly reduce the
overall performance. In order to address such situations, the second algorithm
introduced the switching to software execution of such operations and the ob-
jective function was to maximize the overall performance improvement. For
the considered multimedia benchmarks, the proposed allocation algorithms
can provide significant performance improvements for medium size FPGAs.
Additionally, we determined that the dynamic hardware reconfiguration is ef-
ficiently used when the reconfiguration latency is at least 10times smaller than
the reconfiguration latency of the current FPGAs.

7.2 Contributions

The main contributions of this thesis can be summarize by thefollowing:

• We have implemented in the Molen compiler the general extensions for
code generation for reconfigurable architectures under theMolen Pro-
gramming Paradigm and specific extensions for the Molen Polymorphic
Media Processor. The presented experiment shows that an average 2.5 x
overall speedup is achieved with only one hardware operation executed
on the FPGA.

• We have performed a design space exploration for reconfigurable archi-
tectures under the Molen Programming Paradigm and identifythat the
reconfiguration overhead can have a major negative impact onthe over-
all performance, when dynamic reconfiguration is required.

• We have proposed a modified dataflow analysis for partial anticipability
that reflects the characteristics of the SET instructions. More specifi-
cally, we proposed the conditional reunion operator to limit the antici-
pation of the SET instructions for conflicting hardware operations.

• We have proposed an intraprocedural compiler optimizationfor hiding
and reducing the reconfiguration overhead, that combines data flow anal-
ysis for partial anticipability and availability, a graph algorithm for mini-
mum s-t cut and hardware/software selection. The algorithmcontributes
to 94 % overall performance improvement for the considered bench-
marks.
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• We have presented an interprocedural compiler optimization that per-
forms the anticipation of the hardware reconfiguration instructions at
interprocedural level, based on a simplified interprocedural data flow
analysis.

• We have proposed an FPGA-area allocation algorithm for reducing the
total reconfiguration overhead. The allocation problem is translated in
a 0-1 LP problem and the operations are placed as fixed hardware oper-
ations or reconfigurable operations. The algorithm contributes to up to
61.3 % performance improvement for MPEG2 encoder benchmarkand
94 % for MJPEG benchmarks.

• We have proposed an FPGA area allocation algorithm for the maximiza-
tion of the overall performance improvement, where each operation can
be allocated as fixed, reconfigurable or switched to its pure software ex-
ecution.

7.3 Future Research Directions

For the research presented in this thesis, we suggest the following directions
for future improvements:

• Hardware/software selection, SET instruction schedulingalgorithms
and FPGA-area allocation algorithms should be tightly coupled. Such
integration is similar to the well known problem of couplingcode gen-
eration, register allocation and instruction scheduling and its complexity
should be analyzed.

• New heuristics should be investigated for the extension of the con-
ditional reunion operator used by the intraprocedural SET instruction
scheduling, in order to allow the anticipation of “promising” SET in-
structions above the conflict points.

• The interprocedural SET instruction scheduling algorithmshould be ex-
tended to take into account profile informations such as the execution
frequency for the basic blocks where the SET instructions should be
placed. Such extension can prevent the increasing of the number of ex-
ecuted SET instructions.

• FPGA-area allocation algorithms should be extended to consider dy-
namic placement of the hardware operations on the target FPGA. In the
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thesis, we considered that a hardware operation is synthesized for an
unique placement for the entire applications.

• FPGA-area allocation algorithms should be extended to takeinto ac-
count also the order of the hardware reconfigurations, not only the re-
configuration frequency. However, this extension will transform the al-
location problem into a non-linear problem.

• Compiler analyses, transformations and scheduling algorithms should
be proposed for efficient parallel execution of EXEC instructions. We
notice that altough standard compiler techniques can be used, the paral-
lelism that can be exploited by reconfigurable architectures under the
Molen Programming Paradigm may differ from the loop level paral-
lelism or instruction level parallelism which is usually targeted by tradi-
tional compiler techniques.



Appendix A

Multimedia Design Space Exploration

In this appendix we examine the potential of the Molen approach in terms
of execution time for the well-known multimedia applications MPEG2 and
JPEG encoders and decoders. The multimedia benchmarks are particularly
suitable for the Molen approach as they usually involve intensive computation
for highly regular operations, intensive I/O or memory accesses and require
real-time processing capabilities. More specifically, we perform a design space
exploration study and quantitatively analyze:

• performance boundaries: we first determine the maximal performance
gains for each operation implemented on the reconfigurable hardware.
We also compute for each operation the latency range of the valid hard-
ware designs whose execution on the reconfigurable hardwareis faster
then the pure software execution. Consequently we show thatfor real
operation implementations the MPEG2 encoder executed on the Molen
processor achieves 53 % performance improvement compared to the
pure software execution.

• parameter exchange: we investigate the effects on performance of the
parameter passing between the general purpose processor (GPP) and re-
configurable hardware and we show that the overhead is negligible.

• memory bottlenecks: we examine the effect of the data communication
between the reconfigurable hardware and memory on performance and
show that for DCT a high IO bandwidth (512 bytes/cycle) is required
when a fast execution time of around 20-30 cycles is imposed.For SAD
and IDCT, the data communication bandwidth is not a constraint.
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Name # frames Resolution

carphone 96 176x144
claire 168 360x288

container 300 352x288
football 125 352x240
foreman 300 352x288
garden 115 352x240
mobile 140 352x240

standard 3 128x128
tennis 112 352x240

Table A.1: MPEG test sequences in YUV format

On the basis of our design space exploration, the hardware designer can com-
pute in advance for each hardware implementation the globalperformance im-
provement and the influence of memory or parameter passing latencies on the
overall performance. For example, when a specific speed-up is imposed, the
designer is aided to choose the operations that can achieve the required speed-
up and the IO bandwidth that eliminates the bottlenecks in the system.

A.1 The MPEG2 and JPEG Case Study

In this section we explore the hardware constraints for implementing on an
FPGA a set of well-known time-consuming multimedia operations. The main
goal is to determine the parameters that have a substantial impact on the system
performance and their range of values in order for the Molen processor to
outperform the standalone GPP.

Target Architecture and Applications We consider a Molen machine organi-
zation with an x86 as the Core Processor. More specifically, the compiler gen-
erates code for the x86 architecture while the measurementsare performed on
an AMD Athlon XP 1900+ at 1600 MHz. The considered applications are a set
of multimedia benchmarks consisting of the Berkeley MPEG2 encoder and de-
coder and the SPEC95 JPEG encoder and decoder. The time-consuming oper-
ations candidate for hardware execution are SAD (sum of absolute-difference),
2D DCT (2 dimensional discrete cosine transform), IDCT (inverse DCT), VLC
(variable length coding) and VLD (variable length decoding). The input data
are representative series of test images and scenes of various sizes, presented
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Name Resolution

boat.ppm 512x512
clegg.ppm 814x880

frymire.ppm 1118x1105
lena.ppm 512x512

mandrill.ppm 507x509
monarch.ppm 768x512
peppers.ppm 512x512

sail.ppm 768x512
serrano.ppm 629x794
tulips.ppm 768x512

penguin.ppm 1024x739
specmun.ppm 1024x768

vigo.ppm 1024x768

Table A.2: JPEG test images

in Tables A.1 and A.2.

In this thesis we assume that the GPP and FPGA do not run concurrently and
that the execution of an operation on the FPGA is each time preceded by the
FPGA configuration (even if the previous configuration is thesame). More-
over, we assume that the FPGA performs only one operation at the same time.
In order to evaluate the performance of the Molen processor for one applica-
tion where a functionf is executed on the FPGA, we compute the number of
GPP cycles for the Molen processor using:

nMolen ≃ nX86 − nf + ncall · cost (A.1)

cost = xSET + yEXEC + npar ∗ zMOV XR + c

where

• nMolen: the total number of GPP cycles spent in the considered applica-
tion by the Molen processor;

• nX86: the total number of GPP cycles when the considered application
is executed exclusively on the GPP;

• nf : the total number of GPP cycles spent in all executions of function f
on the GPP;
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• ncall: the number of calls to functionf in the considered application;

• cost: the number of GPP cycles for one execution of functionf on
FPGA; the time for FPGA configuration and execution is converted in
GPP cycles.

• xSET : the number of GPP cycles required for one configuration of the
FPGA for functionf ;

• yEXEC : the number of GPP cycles required for one execution on the
FPGA of functionf ; it may depend on the input data. In order to be
constant for the chosen set of input data we consider the largest values;

• npar: the number of instructions for sending the parameters fromGPR
to XR and returning the results;

• zMOV XR: the number of GPP cycles for one MOVXR instruction
(movtx or movfx)

• c: quantifies the calling convention differences in number ofGPP cycles.
As c is small (< 10 cycles) for the considered applications, we neglect
it.

In our design space exploration, we first analyze the pure software execution
and extract the relevant profile information for the considered applications and
functions. Based on the profile information and Formula A.1,we examine the
performance and the hardware parameters for the target Molen FCCM. The
profile information is extracted usingHalt Library [78] for code instrumenta-
tion. Additionally, we develop a set of analysis routines tomeasure the number
of cycles executed in a specific function (using RDTSC - Read Time Stamp
Counter instruction) and the number of function calls. Morespecifically, we
have measured the values fornX86, nf andncall included in Formula A.1. In
order to minimize the impact of external factors on the measurements, we run
the applications in single mode and with the highest priority in Linux.

As illustrated in Formula A.1, the cost per function call fora reconfigurable
execution is determined by the cost of the FPGA configuration(xSET ), FPGA
execution (yEXEC) and transfer of parameters (zMOV XR). The influence of
these factors on the overall performance and their optimal ranges are explored
in the rest of this section.

Cost RangeThe purpose of the GPP extension with reconfigurable hard-
ware is to achieve a performance improvement over the GPP alone, meaning
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MPEG encoder
Input SAD DCT IDCT VLC I VLC II

carphone 997 37796 2612 2631 2196
claire 1092 37595 2177 1710 1524

container 1008 37590 2208 1842 1476
football 1484 37537 2827 2795 2318
foreman 1298 37572 2193 1577 1494
garden 1311 37594 2463 2046 1524
mobile 1092 37536 2519 2123 1564

standard 1199 37549 3423 2930 2239
tennis 1344 37531 2221 1702 1578

MPEG decoder
Input IDCT VLD I VLD II

carphone 2513 1763 1347
claire 2056 745 659

container 2087 880 586
football 2678 1940 1499
foreman 2071 568 606
garden 2332 1091 662
mobile 2398 1177 722

standard 3295 - -
tennis 2099 718 713

Table A.3: Software cost (bold) expressed in GPP cycles for the functions
included in MPEG2 application

nMolen < nX86 which holds when

cost < nf/ncall. (A.2)

The values for limit cost (nf/ncall) in Formula A.2 are presented in Tables A.3
and A.4. They represent the cut-off points for the hardware execution from
where an implementation provides a performance improvement. We refer to
the minimal values of each operation as the software cost (presented in bold
in Tables A.3 and A.4). For an implementation that executes the operation in
a number of cycles less than the software cost, a performanceimprovement is
guaranteed to hold for all input data in the study.

Performance boundariesFor each operation, we determine the number of
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JPEG encoder JPEG decoder
Input VLC DCT IDCT VLD
boat 2272 2746 2905 7322
clegg 3631 2748 3701 13950

frymire 3371 2758 3313 12989
lena 2469 2759 3461 8080

mandrill 3463 2759 3686 12967
monarch 2403 2758 3360 7836
penguin 2488 2762 3453 8014
peppers 2505 2764 3463 8369

sail 3110 2758 3545 11276
serrano 2955 2766 3698 10753

specmun 2375 2776 3389 7389
tulips 2882 2760 3571 10177
vigo 2550 2755 3424 8444

Table A.4: Software cost (bold) expressed in GPP cycles for the functions
included in JPEG application

cycles it consumes in the pure software approach from the overall application
(nf/nX86) as presented in Table A.5 (second column). These values represent
the maximal improvements of the overall performance that can be achieved by
hardware acceleration of the considered functions. We notice that implement-
ing the SAD function on the FPGA can improve the overall performance up
to 38 % while the overall improvement for VLC is very low (0.2 %). When
taking into account all the functions for MPEG2 encoder (Fig. A.1), the max-
imal reduction of the number of cycles is 65 % compared to the pure software
implementation.

We are also interested in determining the boundaries between which any real
implementation should be situated. The upper boundary is when there is no
improvement, meaningnMolen = nX86 and the lower (theoretical) boundary
corresponds to an infinite hardware acceleration (cost = 0) of each function.
These boundaries are presented in Fig. A.1 and they limit thedesign space
where a hardware designer should place a particular implementation. When
all operations are designed to execute at the software cost,then an overall
performance improvement is still guaranteed (6 % in Fig. A.1). This improve-
ment is due to the safe choice of minimal value for the software cost in order
to guarantee no performance decreasing even for the worst case input data.

For the real, non-optimized FPGA implementations described in [32], we also
plotted in Fig. A.1 the performance for the same operations assuming that
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Figure A.1: Relative performance boundaries and a real implementation anal-
ysis

compiler optimizations hide the configuration latency (xSET = 0) as pre-
sented in [94] [93]. After converting the reported number ofcycles to our
target processor, we obtain 53% performance improvement.

Parameter Passing ImpactIn order to understand the impact of the Molen
parameter passing mechanism, we assume a scenario in which the cost from
Formula A.1 is exclusively spent for passing parameters (cost = npar ∗
zMOV XR and xSET = yEXEC = 0). Under this theoretical assumption
we compute the maximal number of cycles forzMOV XR as zMOV XR =
software cost/npar given in Table A.5 (last column). In order to interpret
the results, it is important to realize that MOVXR instructions resemble the
move general purpose register instructions which usually require a small num-
ber (∼ 3) of cycles. Our computations show that for the SAD function, a
MOV XR instruction can be executed in up to 166 cycles before the maximal
performance (38 % in Table A.5, second column) is consumed. In the case of
DCT, the MOV XR can take up to 37531 cycles before the penalty is higher
than the maximal performance gain of 25.4 %.

In order to analyze the communication overhead between GPP and FPGA, we
assumed an exaggerated scenario in which the cost for the hardware configu-
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Function MAX Improv MOV XR max

MPEG2 encoder
SAD 38.0 % 166
DCT 25.4 % 37531
IDCT 1.6 % 2177
VLC I 0.2 % 225
VLC II 0.1 % 369

MPEG2 decoder
IDCT 38.3 % 2056
VLD I 3.1 % 284
VLD II 2.0 % 586

JPEG encoder
VLC 14.7 % 568
DCT 14.0 % 2746

JPEG decoder
IDCT 49.5 % 581
VLD 24.3 % 732

Table A.5: Marginal improvement for each function and the maximal cost for
MOV XR (cycles)

ration and execution is half of the software cost. The impactof zMOV XR is
presented in Fig. A.2 showing that the MPEG2 encoder is the only applica-
tion whose performance may be negatively influenced byzMOV XR. This is
explained by the low software cost for SAD (compared to DCT, Table A.3 )
and the large number (8) of parameters. In conclusion, we consider that for
the operations under considerations, transferring parameters and returning the
results is not a bottleneck in the system.

Communication FPGA - Memory Finally, we investigate the FPGA-memory
data communication bandwidth as some parameters passed to the FPGA in
XRs are pointers to blocks of data placed in external memory.In this context,
we assume that access to memory is sequential and symmetrical (number of
cycles to read and write one block of data are equal). In orderto determine the
amount of data transferred to/from external memory, we introduce a special
pass in the compiler to annotate each basic block of the considered functions
with the number of read and write memory instructions, as well as the corre-
sponding number of bytes. Stack operations are not considered as read/write
(R/W) operations, as the FPGA implementation most probablywill not use a
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Figure A.2: zMOV XR impact when passing parameters requires software
cost/2

stack. In Table A.6, we present the number of read and write memory oper-
ations together with the corresponding number of bytes (RB and WB). In
column RW B, the total number of read and written bytes (RB + W B) is
given.

When we assume automatic transformation and FPGA mapping performed by
tools such as Compaan [54], that preserve the memory accesses performed in
software, we can analyze the memory bandwidth. As far as the results for
DCT are concerned, our calculations are done using the Berkeley implemen-
tation of the MPEG2 encoder benchmark including forward DCT-double pre-
cision. Figure A.3 shows the computed bandwidth requirements for different
execution times. Our calculations indicate that DCT is the most demanding
function. The reasons of this high bandwidth requirement are: (i) the use of
doubles (8 bytes) to minimize information loss during compression, (ii) tem-
porary results are also stored in memory and (iii) the parameters are each time
read from memory. If a fast DCT design of around 20-30 cycles is required
then around 512 bytes need to be transferred per cycle to fully utilize the DCT
unit. Fast SAD and IDCT implementations are less demanding as far as IO
is concerned. If SAD is going to be implemented in around 5 cycles, as de-
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Figure A.3: Execution time for different bandwidth

Function Read R B Write W B R W B

MPEG2 encoder
SAD 235 235 0 0 235
DCT 2112 13824 192 1152 14976
IDCT 254 636 128 256 892
VLC I 129 197 1 4 201
VLC II 128 192 0 0 192

MPEG2 decoder
IDCT 254 636 128 256 892
VLD I 288 962 72 270 1232
VLD II 225 749 55 207 956

JPEG encoder
VLC 184 547 118 472 1019
DCT 256 1024 128 512 1536

JPEG decoder
IDCT 344 995 128 320 1315
VLD 1849 6752 539 1926 8678

Table A.6: Number of loads/stores performed in the pure software approach
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scribed in [97], then a bandwidth of 47 bytes per cycle is enough to have a
performance gain of 37 % (which is close to the maximal 38 % improvement).
When a bandwidth of 128 bytes per cycle is assumed, then a SAD operation
can be performed without starvation even in 2 cycles. Similar conclusions can
be drawn for IDCT. We finally also computed the bandwidth requirements tak-
ing into account the weighted execution times for each function. This curve
reflects the requirements of a possible real implementationand suggests that a
fast execution time of around 50 cycles for all operations requires a bandwidth
of 83 bytes per cycle.

We emphasize that the presented results are based on the assumption that
yEXEC is constant (requiring the maximal possible delay) for a specific func-
tion, even though it can vary according to the specific input data (e.g. for VLD
function). Therefore, the actual performance improvements may be higher that
presented in this appendix.





Bibliography

[1] R. Hartenstein, “A decade of reconfigurable computing: Avisionary ret-
rospective,” inProceedings of Design, Automation and Test in Europe,
(Munich, Germany), pp. 642–649, March 2001.

[2] D. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C.Ebeling, “Ar-
chitecture design of reconfigurable pipelined datapaths,”in Advanced Re-
search in VLSI, pp. 23–40, 1999.

[3] C. Ebeling, D. Cronquist, and P. Franklin, “RaPiD - reconfigurable
pipelined datapath,” in6th International Workshop on Field Pro-
grammable Logic and Applications (FPL 96), vol. 1142, (Darmstadt,
Germany), pp. 126–135, Springer-Verlag Lecture Notes in Computer Sci-
ence (LNCS), September 1996.

[4] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B.Greenwald,
H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “Evaluation
of the raw microprocessor: An exposed-wire-delay architecture for ILP
and streams,” inProceedings of International Symposium on Computer
Architecture, June 2004.

[5] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. L. Hutch-
ings, “A reconfigurable arithmetic array for multimedia applications,” in
Proceedings 7th ACM International Symposium on Field-Programmable
Gate Arrays (FPGA 99), pp. 135–143, February 1999.

[6] B. Kastrup, J. van Meerbergen, and K. Nowak, “Seeking (the right)
problems for the solutions of reconfigurable computing,” in9th Interna-
tional Workshop on Field-Programmable Logic and Applications (FPL
99), (Glasgow, Scotland), pp. 520–525, Springer-Verlag Lecture Notes
in Computer Science (LNCS), September 1999.

123



124 BIBLIOGRAPHY

[7] R. Wittig and P. Chow, “Onechip: An FPGA processor with reconfig-
urable logic,” in4th IEEE Symposium on FPGAs for Custom Comput-
ing Machines (FCCM 96), (Napa Valley, California), pp. 126–135, April
1996.

[8] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. C. Filho,
“MorphoSys: An integrated reconfigurable system for data-parallel and
computation-intensive application,” inIEEE Transactions on Computers,
vol. 49(5), pp. 465–481, May 2000.

[9] J. Jacob and P. Chow, “Memory interfacing and instruction specification
for reconfigurable processors,” in7th ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays (FPGA 99), (Monterey, Cali-
fornia), pp. 145–154, February 1999.

[10] P. Athanas and H. Silverman, “Processor reconfiguration through
instruction-set metamorphosis,” inIEEE Computer, vol. 26(3), pp. 11–
18, March 1993.

[11] S. Trimberger, “Reprogrammable instruction set accelerator,” in U.S.
Patent No. 5,737,631, April 1998.

[12] T. Miyamori and K. Olukotun, “A quantitative analysis of reconfigurable
coprocessors for multimedia applications,” in6th IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM 98), (Napa Valley, Cal-
ifornia), pp. 2–22, Springer-Verlag Lecture Notes in Computer Science
(LNCS), April 1998.

[13] S. Sawitzki, A. Gratz, and R. Spallek, “Increasing microprocessor perfor-
mance with tightly-coupled reconfigurable logic arrays,” in 8th Interna-
tional Workshop on Field-Programmable Logic and Applications (FPL
98), (Tallin, Estonia), pp. 411–415, September 1998.

[14] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami, “A dag-based design
approach for reconfigurable VLIW processors,” inIEEE Design and Test
Conference in Europe, (Munich, Germany), pp. 778–780, March 1999.

[15] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,and R. R.
Taylor, “Piperench: A reconfigurable architecture and compiler,” IEEE
Computer, vol. 33(4), pp. 70–77, April 2000.

[16] R. Razdan and M. Smith, “A high performance microarchitecture with
hardware-programmable functional units,” in27th Annual International



BIBLIOGRAPHY 125

Symposium on Microarchitecture MICRO-27, (San Jose, California),
pp. 172–180, November 1994.

[17] B. Kastrup, A. Bink, and J. Hoogerbrugge, “Concise: A compiler-driven
cpld-based instruction set accelerator,” inProceedings of FCCM’99,
(Napa Valley CA), pp. 92–100, April 1999.

[18] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera reconfigurable
functional unit,” in Proc. IEEE Symp. on Field-Programmable Custom
Computing Machines, (Napa, California), pp. 87–96, 1997.

[19] M. B. Gokhale and J. M. Stone, “Napa C: Compiling for a Hybrid
RISC/FPGA Architecture,” inProceedings of FCCM’98, (Napa Valley,
CA), pp. 126–137, April 1998.

[20] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. Arnold,
and M. Gokhale, “The napa adaptive processing architecture,” in Pro-
ceedings of IEEE Symposium on FPGAs for Custom Computing Ma-
chines, pp. 28–37, April 1998.

[21] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garparchitecture
and C compiler,”IEEE Computer, vol. 33(4), pp. 62–69, April 2000.

[22] C. Hauser and J. Wawrzynek, “GARP: A MIPS processor witha recon-
figurable coprocessor,” inProc. of the 5th IEEE Symposium on Field-
Programmable Custom Computing Machines, pp. 12–21, April 1997.

[23] Z. A. Ye, N. Shenoy, and P. Banerjee, “A C compiler for a processor with
a reconfigurable functional unit,” inACM/SIGDA Symposium on FPGAs,
(Monterey, California, USA), pp. 95–100, Feb 2000.

[24] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The Chimaera recon-
figurable functional unit,” inProc. of the 5th IEEE Symposium on FPGAs
for Custom Computing Machines, (Los Alamitos, Caliornia), pp. 87–96,
1997.

[25] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.Taylor,
and R. Laufer, “A coprocessor for streaming multimedia acceleration,”
in Proc. of the 26th International Symposium on Computer Architecture,
(Georgia, USA), pp. 28–39, 1999.

[26] B. Mei, F. Veredas, and B. Masschelein, “Mapping an h.264/avc decoder
onto the adres reconfigurable architecture,” inProceedings International



126 BIBLIOGRAPHY

Conference on Field Programmable Logic and Applications (FPL 2005),
(Tampere, Finland), pp. 622–625, August 2005.

[27] B. Mei, S. Vernalde, D. Verkest, H. de Man, and R. Lauwereins, “Dresc:
A retargetable compiler for coarse-grained reconfigurablearchitectures,”
in FPT 2002, (Hong Kong , China), pp. 166–173, December 2002.

[28] A. L. Rosa, L. Lavagno, and C. Passerone, “Hardware/software design
space exploration for a reconfigurable processor,” inProc. of DATE 2003,
(Munich, Germany), pp. 570–575, March 2003.

[29] F. Campi, M. Toma, A. Lodi, A. Cappelli, R. Canegallo, and R. Guerri-
eri, “A VLIW processor with reconfigurable instruction set for embedded
applications,” inIn ISSCC Digest of Technical Papers, pp. 250–251, Feb
2003.

[30] M. Sima, S. Vassiliadis, S.Cotofana, J. van Eijndhoven, and K. Vis-
sers, “Field-programmable custom computing machines - a taxonomy,”
in 12th International Conference on Field Programmable Logicand Ap-
plications (FPL), vol. 2438, (Montpellier, France), pp. 79–88, Springer-
Verlag Lecture Notes in Computer Science (LNCS), Sep 2002.

[31] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Moscu Panainte, “The Molen Polymorphic Processor,”IEEE Transac-
tions on Computers, vol. 53(11), pp. 1363– 1375, November 2004.

[32] S. Vassiliadis, S. Wong, and S. Cotofana, “The molenρµ-coded pro-
cessor,” in11th International Conference on Field Programmable Logic
and Applications (FPL), vol. 2147, (Belfast, UK), pp. 275–285, Springer-
Verlag Lecture Notes in Computer Science (LNCS), Aug 2001.

[33] S. Vassiliadis, G. Gaydadjiev, K. Bertels, and E. MoscuPanainte, “The
Molen Programming Paradigm,” inProceedings of the Third Interna-
tional Workshop on Systems, Architectures, Modeling, and Simulation,
(Samos, Greece), pp. 1–7, July 2003.

[34] R. J. Meeuws, Y. D. Yankova, and K. Bertels, “Towards a quantitative
model for hardware/software partitioning,” inRCosy Report, p. 57, April
2006.

[35] C. Galuzzi, E. Moscu Panainte, Y. D. Yankova, K. Bertels, and S. Vassil-
iadis, “Automatic selection of application-specific instruction-set exten-
sions,” inCODES+ISSS 2006 - Proceedings of the 4th international con-



BIBLIOGRAPHY 127

ference on Hardware/software codesign and system synthesis, pp. 160–
165, October 2006.

[36] C. Galuzzi, K. Bertels, and S. Vassiliadis, “A linear complexity algorithm
for the automatic generation of convex multiple input multiple output
instructions,” inProceedings of ARC 2007, pp. 130–141, March 2007.

[37] Y. D. Yankova, K. Bertels, S. Vassiliadis, R. J. Meeuws,and A. Vir-
ginia, “Automated hdl generation: Comparative evaluation,” in Proceed-
ings of International Symposium on Circuits and Systems (ISCAS2007),
May 2007.

[38] Z. Guo and W. Najjar, “A compiler intermediate representation for recon-
figurable fabrics,” inProc. of the 16th International Conference on Field
Programmable Logic and Applications (FPL 2006), (Madrid, Spain), Au-
gust 2006.

[39] J. Cardoso and H. Neto, “Towards an automatic path from JavaTM byte-
codes to hardware through high-level synthesis,” inIEEE International
Conference on Electronics, Circuits and Systems, vol. 1, (Lisboa, Portu-
gal), pp. 85–88, 1998.

[40] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “Themolen media
processor: Design and evaluation,” inProceedings of the International
Workshop on Application Specific Processors, WASP 2005, pp. 26–33,
September 2005.

[41] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “Compiling for the
Molen Programming Paradigm,” in13th International Conference on
Field Programmable Logic and Applications (FPL), vol. 2778, (Lisbon,
Portugal), pp. 900–910, Springer-Verlag Lecture Notes in Computer Sci-
ence (LNCS), Sep 2003.

[42] http://suif.stanford.edu/suif/suif2.

[43] http://www.eecs.harvard.edu/hube/software.

[44] “Iso/iec 9899,” (http://www.open-std.org/JTC1/SC22/WG14/www/standards).

[45] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “Themolen media
processor: Design and evaluation,” inProceedings of the International
Workshop on Application Specific Processors, WASP 2005, pp. 26–33,
September 2005.



128 BIBLIOGRAPHY

[46] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “TheVirtex II Pro
MOLEN processor,” inProceedings of the 4th International Workshop on
Computer Systems: Architectures, Modelling, and Simulation (SAMOS
2004), pp. 192–202, July 2004.

[47] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “TheMOLEN pro-
cessor prototype,” inProceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2004), pp. 296–
299, April 2004.

[48] Xilinx Corporation, PowerPC Processor Reference Guide, September
2003.

[49] Xilinx Corporation,Virtex-II Pro Platform FPGA Handbook v2.0, Octo-
ber 2002.

[50] Xilinx Corporation,Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Functional Description, June 2004.

[51] S. Sobek and K. Burke,PowerPC Embedded Application Binary Inter-
face 32-Bit Implementation, Version 1.0.

[52] G. Kuzmanov and S. Vassiliadis, “Arbitrating Instructions in anρµ-coded
CCM,” in Proceedings of the 13th International Conference on Field Pro-
grammable Logic and Applications (FPL’03), vol. 2778, (Lisbon, Por-
tugal), pp. 81–90, Springer-Verlag Lecture Notes in Computer Science
(LNCS), September 2003.

[53] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “Multimedia recon-
figurable hardware design space exploration,” inProceedings of the 16th
IASTED International Conference on Parallel and Distributed Comput-
ing and Systems (PDCS 2004), pp. 398–403, November 2004.

[54] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan:Deriving pro-
cess networks from matlab for embedded signal processing architec-
tures,” inProc. of CODES’2000, (San Diego, CA), pp. 13–17, May 2000.

[55] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Deprettere, “ Laura:
Leiden Architecture Research and Exploration Tool,” in13th Interna-
tional Conference on Field Programmable Logic and Applications (FPL),
vol. 2778, (Lisbon, Portugal), pp. 911–920, Springer-Verlag Lecture
Notes in Computer Science (LNCS), Sep 2003.



BIBLIOGRAPHY 129

[56] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, andE. Deprettere,
“System design using Kahn process networks: The Compaan/Laura ap-
proach,” inProc. of DATE 2004, (Paris, France), pp. 340–345, Feb 2004.

[57] http://www.xilinx.com/iseeval/index.htm.

[58] http://www.xilinx.com/ise/embedded/edk.htm.

[59] G. Amdahl, “Validity of the single processor approach to achieving
large-scale computing capabilities,” inProceedings of AFIPS Confer-
ence, pp. 483–485, 1967.

[60] A. V. Aho, R. Sethi, and J. D. Ullman,Compilers: principles, techniques,
and tools. Addison-Wesley Longman Publishing, 1986.

[61] S. Muchnick,Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[62] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “Dynamic Hardware
Reconfigurations: Performance Impact on MPEG2,” inProceedings of
SAMOS, vol. 3133, (Samos, Greece), pp. 284–292, Springer-VerlagLec-
ture Notes in Computer Science (LNCS), July 2004.

[63] J. Noguera and R. Badia, “A hw/sw partitioning algorithm for dynam-
ically reconfigurable architectures,” inProceedings of Design, Automa-
tion and Test in Europe, (Munich, Germany), March 2001.

[64] J. Noguera and R. Badia, “Run-time HW/SW codesign for discrete event
systems using dynamically reconfigurable architectures,”in Proceed-
ings of the 13th international symposium on System synthesis, (Madrid,
Spain), pp. 100–106, 2000.

[65] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “ThePowerPC back-
end molen compiler,” inFPL, vol. 3203, (Antwerp, Belgium), pp. 434–
443, Springer-Verlag Lecture Notes in Computer Science (LNCS),
September 2004.

[66] J. Resano, D. Mozos, and F. Catthoor, “A hybrid prefetchscheduling
heuristic to minimize at run-time the reconfiguration overhead of dy-
namically reconfigurable hardware,” inDATE 2005, (Munich, Germany),
pp. 106–111, March 2005.



130 BIBLIOGRAPHY

[67] X. Tang, M. Aalsma, and R. Jou, “A compiler directed approach to hiding
configuration latency in Chameleon processors,” inFPL, vol. 1896, (Vil-
lach, Austria), pp. 29–38, Springer-Verlag Lecture Notes in Computer
Science (LNCS), Aug 2000.

[68] Q. Cai and J. Xue, “Optimal and efficient speculation-based partial
redundancy elimination,” inACM CGO, (San Francisco, California),
pp. 91–102, 2003.

[69] J. Edmonds and R. Karp, “Theoretical improvements in algorithmic ef-
ficiency for network flow problems,” inJournal of the ACM, vol. 19 (2),
pp. 248–264, 1972.

[70] J.-F. Lalande, M. Syska, and Y. Verhoeven, “Mascopt - a network op-
timization library: Graph manipulation,” Tech. Rep. RT-0293, INRIA
Sophia Antipolis, 2004 route des lucioles - BP 93 - FR-06902 Sophia
Antipolis, April 2004.

[71] L. Pillai, “Video compression using DCT,” inApplication Note: Virtex-II
Series, (http://direct.xilinx.com/bvdocs/appnotes/xapp610.pdf).

[72] L. Pillai, “Quantization,” inApplication Note: Virtex and Virtex-II Series,
(http://direct.xilinx.com/bvdocs/appnotes/xapp615.pdf).

[73] L. Pillai, “Variable length coding,” inApplication Note: Virtex-II Series,
(http://direct.xilinx.com/bvdocs/appnotes/xapp621.pdf).

[74] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics:A full sys-
tem simulation platform,”IEEE Transactions on Computers, vol. 35(2),
pp. 50–58, February 2002.

[75] B. Blodget, C. Bobda, M. Huebner, and A. Niyonkuru, “Partial and dy-
namic reconfiguration of Xilinx Virtex-II FPGAs,” inFPL, vol. 3203,
(Antwerp, Belgium), pp. 801–810, Springer-Verlag LectureNotes in
Computer Science (LNCS), September 2004.

[76] S. Vassiliadis, G. Kuzmanov, S. Wong, E. Moscu Panainte, G. N. Gay-
dadjiev, K. Bertels, and D. Cheresiz, “PISC: Polymorphic instruction set
computers,” inProceedings of the International Workshop on Applied
Reconfigurable Computing (ARC 2006), pp. 274–286, March 2006.

[77] L. Pillai, “Video compression using IDCT,” inApplication Note: Virtex-
II Series, (http://direct.xilinx.com/bvdocs/appnotes/xapp611.pdf).



BIBLIOGRAPHY 131

[78] M.Mercaldi, M. D. Smith, and G. Holloway, “The halt library,” in The
Machine-SUIF Documentation Set, (Hardvard University), 2002.

[79] R. Fischer, K. Buchenrieder, and U. Nageldinger, “Reducing the power
consumption of FPGAs through retiming,” in12th IEEE International
Conference and Workshops on the Engineering of Computer-Based Sys-
tems (ECBS’05), pp. 89–94, 2005.

[80] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “Instruction schedul-
ing for dynamic hardware configurations,” inProceedings of Design, Au-
tomation and Test in Europe (DATE 05), (Munich, Germany), pp. 100–
105, March 2005.

[81] S. Fekete, E. Khler, and J. Teich, “Optimal FPGA module placement with
temporal precedence constraints,” inProceedings of Design, Automation
and Test in Europe 2005 (DATE 01), pp. 658–665, 2001.

[82] R. Maestre, F. J. Kurdahi, N. Bagherzadeh, H. Singh, R. Hermida, and
M. Fernndez, “Kernel scheduling in reconfigurable computing,” in Pro-
ceedings of Design, Automation and Test in Europe (DATE ’99), pp. 90–
96, 1999.

[83] S. Swenson, “Spatial instruction scheduling for raw machines,” inMas-
ter’s thesis, Massachusetts Institute of Technology, Feb 2002., 2002.

[84] S. Hauck, “Configuration prefetch for single context reconfigurable co-
processors,” inProceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pp. 65–74, February 1998.

[85] K. Chatha and R. Vemuri, “Hardware-software codesign for dynam-
ically reconfigurable architectures,” in9th International Workshop on
Field-Programmable Logic and Applications (FPL 99), (Glasgow, UK),
pp. 175–184, Springer-Verlag Lecture Notes in Computer Science
(LNCS), September 1999.

[86] R. H. A. Hirschbiel and M. Weber, “A novel paradigm of parallel com-
putation and its use to implement simple high performance hardware,” in
Proceedings of the Joint International Conference on Vector and Parallel
Processing, pp. 51–62, March 1990.

[87] R. Hartenstein, J. Becker, and R. Kress, “Two-level partitioning of image
processing algorithms for the parallel map-oriented machine,” in Pro-
ceedings of the 4th International Workshop on Hardware/Software Co-
Design, pp. 77–84, March 1996.



132 BIBLIOGRAPHY

[88] L. Lin, “High-level synthesis, introduction to chip and system design,”
Kluwer Acad. Publ., Boston, London, 1992.

[89] M. A. George, M. Pink, D. Kearney, and G. Wigley, “Efficient allocation
of FPGA area to multiple users in an operating system for reconfigurable
computing,” inProceedings of Engineering of Reconfigurable Systems
and Algorithms (ERSA02), pp. 238–242, 2002.

[90] H. Walder and M. Platzner, “Online scheduling for block-partitioned re-
configurable devices,” inIn Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, (Munich, Germany), pp. 290–
295, 2003.

[91] M. Dales, “Managing a reconfigurable processor in a general purpose
workstation environment,” inIn Proceedings of the Design, Automa-
tion and Test in Europe Conference and Exhibition, (Munich, Germany),
pp. 10980–10985, 2003.

[92] B. Jeong, S. Yoo, S. Lee, and K. Choi, “Hardware-software cosynthesis
for runtime incrementally reconfigurable FPGAs,” inProceedings of Asia
and South Pacific DAC, pp. 169–174, January 2000.

[93] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “TheMolen compiler
for reconfigurable processors,”ACM Transactions in Embedded Comput-
ing Systems (TECS), vol. 6(1), February 2007.

[94] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “Interprocedural com-
piler optimization for partial run-time reconfiguration,”Journal of VLSI
Signal Processing, vol. 43(2), pp. 161–172, May 2006.

[95] P. Barth, “A Davis-Putnam based enumeration algorithmfor linear
pseudo-Boolean optimization,” Research Report MPI-I-95-2-003, Max-
Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken, Ger-
many, January 1995.

[96] Sundance, “Fc-jpeg04 jpeg compression design specification,”
(http://www.sundance.com/docs/FC-JPEG04 Sundance - 300504.pdf),
pp. 1–4, 2004.

[97] S. Vassiliadis, E. A. Hakkennes, S. Wong, and G. G. Pechanek, “The
sum-of-absolute-difference motion estimation accelerator,” in Proceed-
ings of the 24th Euromicro Conference, (Vasteras, Sweden), pp. 559–566,
Aug 1998.



List of Publications

International Journals

1. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadis,The Molen Com-
piler for Reconfigurable Processors, ACM Transactions in Embedded
Computing Systems (TECS), February 2007, Volume 6 , Issue 1

2. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadis,Interprocedural
Compiler Optimization for Partial Run-Time Reconguration ,
Journal of VLSI Signal Processing, pp. 161-172, May 2006, Volume
43, Number 2

3. S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M. Bertels, G.K.
Kuzmanov, E. Moscu Panainte,The Molen Polymorphic Processor,
IEEE Transactions on Computers, pp. 1363- 1375, November 2004,
Volume 53, Issue 11

International Conferences

1. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadis,Compiler-driven
FPGA-area Allocation for Reconfigurable Computing, Proc. of
Design, Automation and Test in Europe 2006 (DATE 06), pp. 369-374,
March 2006

2. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadis,Instruction
Scheduling for Dynamic Hardware Configurations, Proc. of Design,
Automation and Test in Europe 2005 (DATE 05), pp. 100-105, 2005

3. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadis,Interprocedural
Optimization for Dynamic Hardware Configurations , Proc. of the
International Workshop on Systems, Architectures, Modeling, and
Simulation (SAMOS 05), pp. 2-11, July 2005, Springer-Verlag Lecture
Notes in Computer Science (LNCS)

133



134 List of Publications

4. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadis,The PowerPC
Backend Molen Compiler, in 14th International Conference on
Field-Programmable Logic and Applications (FPL’04), pp. 434-443,
September 2004, Springer-Verlag Lecture Notes in ComputerScience
(LNCS), vol. 3203

5. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadis,Dynamic Hardware
Reconfigurations: Performance Impact on MPEG2, Proc. of the
International Workshop on Systems, Architectures, Modeling, and
Simulation (SAMOS 04), pp. 284-292, July 2004, July 2003, Springer-
Verlag Lecture Notes in Computer Science (LNCS), vol. 3133

6. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadis,Multimedia Re-
configurable Hardware Design Space Exploration, Proc. of the
16th IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS 2004), pp. 398-403, November 2004

7. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadis,Compiling for
the Molen Programming Paradigm, Proc. of the 13th International
Conference on Field Programmable Logic and Applications (FPL’03),
pp. 900-910, September 2003, Springer-Verlag Lecture Notes in
Computer Science (LNCS), vol. 2778

8. S. Vassiliadis, G. N. Gaydadjiev, K.L.M. Bertels, E. Moscu Panainte,
The Molen Programming Paradigm, Proc. of the Third International
Workshop on Systems, Architectures, Modeling, and Simulation
(SAMOS 03), pp. 1-10, July 2003, Springer-Verlag Lecture Notes in
Computer Science (LNCS), vol. 3133

Publications not directly related to this dissertation

1. CG Galuzzi, E. Moscu Panainte, Y. D. Yankova, K.L.M. Bertels, S. Vas-
siliadis,Automatic Selection of Application-Specific Instruction-Set
Extensions, Proc. of the 4th international conference on Hard-
ware/software codesign and system synthesis (CODES+ISSS 2006),
pp. 160-165, October 2006

2. E. Moscu Panainte, I. Athanasiu, S. D. Cotofana,An Optimization
Framework for Retargetable Compilers, Proc.. 13th International
Conference on Control Systems and Computer Sciences (CSCS-13),
pp. 427-432, May 2001



Samenvatting

I
n dit proefschrift presenteren wij de opzet van de Molen compilerbe-
doeld voor herconfigureerbare architecturen die vallen onder het Molen
Programeer Paradigma. In het bijzonder introduceren wij een pakket van

compiler optimalisaties dat één van de belangrijkste tekortkomingen van her-
configureerbare architecturen, namelijk configuratie overhead, tegengaat. De
voorgestelde optimalisaties zijn gebaseerd op inter- en intra procedurele data-
flow analyse, met inachtneming van de concurrentie strijd omde beschikbare
herconfigureerbare hardware en van de ruimte-tijd toewijzing. De hardware
configuratie instructies zijn geplaatst voor de hardware operatie instructies, zo-
dat gebruik wordt gemaakt van het aanwezige parallellisme tussen de hardware
configuratie fase en de sequentiële uitvoer van operaties op de hoofd processor.
De introprocedurele optimalisatie maakt gebruik van het ’min s-t cut’ graaf al-
goritme met het doel het aantal hardware configuraties te verminderen door de
overtollige configuraties te identificeren. Daarnaast presenteren wij twee al-
goritmen voor het toewijzen van de beschikbare herconfigureerbare hardware,
die het totale te herconfigureren gebied minimaliseren en detotale prestatie
verbetering maximaliseren. Gebaseerd op profilering en software/hardware
schattingen, genereren de compiler optimalisaties en de toewijzing algoritmes
geoptimaliseerde code voor de bedoelde herconfigureerbarearchitectuur en
toepassing, zodanig dat deze voldoet aan de ruimte-tijd beperkingen. Tevens
assisteren zij bij de keuze tussen hardware en software uitvoering van de oper-
aties die geschikt zijn voor uitvoering op de herconfigureerbare hardware. Ten
einde de Molen compiler te evalueren, presenteren wij, ten eerste, een exper-
iment met een toepassing uit een multi-media benchmark, gecompileerd met
de Molen compiler en uitgevoerd op de Molen polymorphic media processor.
Het programma blijkt 2,5 keer sneller voltooid te zijn op de herconfigureerbare
hardware dan het geval is bij een pure software aanpak. Vervolgens maken wij
de inschatting dat de intraprocedurele compiler optimalisaties tot 94 % aan
prestatie verbetering, vergeleken met een pure software benadering, bijdragen,
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terwijl de intraprocedurele compiler optimilisaties en detoewijzing algoritmes
het aantal herconfiguraties aanzienlijk vermindert voor degebruikte bench-
marks. Ten slotte stellen wij vast dat de belangrijke invloed, van onze compiler
optimalisaties en toewijzing algoritmes, op de prestatieszullen toenemen voor
toekomstige snellere FPGAs.
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