The Molen Compiler for
Reconfigurable Architectures

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen

op woensdag 20 juni 2007 om 10:00 uur

door

Elena MOSCU PANAINTE

inginer
Universitatea Politehnica Bucuresti
geboren te Adjud, Roemenie

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr. S. Vassiliadis

Toegevoegd promotor:
Dr. K. Bertels

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit fDel

Prof. dr. S. Vassiliadis, promotor Technische Universibelft

Prof. dr. K. Bertels Technische Universiteit Delft

Prof. dr. K. Goossens Technische Universiteit Delft

Prof. dr. R. Hartenstein Technische Universitat Kaisersrn
Prof. dr. R. Leupers RWTH Aachen University

Prof. dr. W. Najjar University of California Riverside
Prof. dr. J. Cardoso Instituto Superior Técnico Lisboa
Prof. dr. P.M. Sarro Technische Universiteit Delft, resdiol

ISBN: 978-90-812020-1-5

Keywords: Compiler backend, Compiler optimization, Rdamrable
architecture

Cover: Reconfigurable Computing as a new chess game

Copyright(©) 2007 E. Moscu Panainte

All rights reserved. No part of this publication may be reguwoed, stored in
a retrieval system, or transmitted, in any form or by any nseaectronic,
mechanical, photocopying, recording, or otherwise, withmermission of the
author.

Printed in the Netherlands

In memoriam Prof. Stamatis Vassiliadis, Prof. Irina Athanga Prof.
lonel Grigoras, Prof. Matei Stan

The Molen Compiler for
Reconfigurable Architectures

Elena MOSCU PANAINTE

Abstract

n this dissertation, we present the Molen compiler framewhbek targets
I reconfigurable architectures under the Molen Programmiagadigm.

More specifically, we introduce a set of compiler optimieas that ad-
dress one of the main shortcomings of the reconfigurabldtaattires, namely
the reconfiguration overhead. The proposed optimizatisesased on data
flow analyses at intraprocedural and interprocedural lewvel take into ac-
count the competition for reconfigurable hardware resaigned the spatio-
temporal mapping. The hardware configuration instructiaresscheduled in
advance of hardware execution instructions, in order tdoéixghe available
parallelism between the hardware configuration phase amddfuential ex-
ecution on the core processor. The intraprocedural opéiticiz uses the min
s-t cut graph algorithm to reduce the number of executedweel configura-
tions by identifying the redundant hardware configurationg also introduce
two allocation algorithms for the reconfigurable hardwasaurces that aim to
minimize the total reconfigured area and to maximize theaperformance
gain. Based on profiling results and software/hardwarenedibns, the com-
piler optimizations and allocation algorithms generatémjzed code for the
spatio-temporal constraints of the target reconfigurabtbitecture and input
application. Additionally, they guide the selection of thaare/software execu-
tion of the operations candidate for reconfigurable hardvexecution. In or-
der to evaluate the Molen compiler, we first present an erpent with a mul-
timedia benchmark application compiled by the Molen coema@ind executed
on the Molen polymorphic media processor with an overallesipge of 2.5
compared to the pure software execution. Subsequentlystireae that the
intraprocedural compiler optimization contributes to o®# % performance
improvement compared to the pure software execution, whéentraproce-
dural compiler optimization and the allocation algorithsignificantly reduce
the number of executed reconfigurations for the considessthimarks. Fi-
nally, we determine that the important performance impdaiur compiler
optimizations and allocation algorithms increases forfthere faster FPGAs.

Acknowledgments

The research presented in this thesis is the result of my woBomputer
Engineer group from TU Delft. The first thought of gratitudédve is for
Prof. Stamatis Vassiliadis, who was and remains the patrdimisogroup. He
created an international working environment with studdram all over the
world. He will always be a reference model as a researchehantin being,
who taught us to tackle our limitations and to enjoy any entexed problem
as a provocation to solve it. | appreciate very much his avand challenging
discussions as well as his love for Samos and for good foodh éspecially
grateful for the countless contributions of my supervistgf. Koen Bertels.
During my Ph.D study, he helped me to achieve an academiicedinly and
improve my technical writing. | specifically thank him forshinfinite patience
and sense of humour, even when | entered the panic mode. bvikalto
express my sincere gratitude to Prof. Sorin Cotofana, whgedeme find this
special group and motivated me to start this research.

Many thanks go to my colleagues, Georgi Kuzmanov and Casggeweg for
their support and encouragement they have always provietet A special
contribution to this thesis was provided by my friend andeamjue losif An-
tochi, who help me find my way at the beginning of my work. | al&ant to
thank my colleagues Behnaz Pourebrahimi and Yana Yankovhéar won-
derful company and open discussions. My Romanian friendréinares,
helped me to accommodate in the Netherlands and not to migs®umtry too
much. He proved in many occasions that 'A friend in need isemft indeed'.

Prof. Irina Athanasiu from Politehnica University of Buchst is the profes-
sor that introduced me in compiler research and createdréreipes for me to
study in the Netherlands. She dedicated her whole life ferftiture and edu-
cation of her students. | also want to mention Prof. lonef@Gnas, Stan Rogoz
and Matei Stan, who transmitted to me their love for Mathérsaind Physics
and directed my steps towards Computer Science and Engindriconsider

myself privileged to have had such wonderful professorsickviguided me

with parental love.

| am grateful to my parents and my sister, Nadina for being st iriends
and unconditionally trusting and loving me. Their devotemand sacrifices
cannot be compensated by anything. | hope they will shareojnwhen this
thesis is completed. Last, but not least, | want to thank ngbhod and my
son for being more than understanding when | was workindgtiél hours and
frequently, bringing my work problems at home. Meeting aadihg so many
special persons around me makes me think that | am very lucttyt ahould
become much better.

E. Moscu Panainte Delft, The Netherlands, 2006

Contents

Abstract

Acknowledgments

1

Introduction

1.1 Problem Overview and Dissertation Scope . .

1.2 Motivation, Open Questions and Terminology

1.3 ThesisFramework.

Reconfigurable Architectures
2.1 FPGAOverview

2.2 Classification of Reconfigurable Architectures

2.3 Examples of Reconfigurable Architectures . .
2.4 The Molen Programming Paradigm
2.5 DelftWorkBench

2.6 Conclusion

The Molen Compiler

3.1 The Molen Compiler Framework

3.2 The Molen Polymorphic Processor
3.3 Molen PowerPC Compiler Backend
3.3.1 PowerPC Compiler Backend

......... 34

3.3.2 PowerPC Backend Extensions for the Molen Prototyp8: 3

34 M-JPEGCaseStudy, 41

3.5 Conclusions 45
Dynamic SET Instruction Scheduling 47
4.1 Background and RelatedWork 48
411 ControlFlowGraphs 48
412 DataFlowAnalyses 51
413 RelatedWork L. 54
42 Motivation 55
4.3 Problem Statement 56
4.4 Instruction Scheduling Algorithm 59
4.4.1 Step 1. The Anticipation Subgraph 59
4.4.2 Step 2: Minimums-tCut 63
4.4.3 Step 3: Selection of Software/Hardware Execution . 4 6
45 M-JPEGCaseStudy, 64
46 Conclusions 67
Interprocedural SET Scheduling 69
5.1 Motivational Example L. 70
5.2 Interprocedural SET Optimization 70
5.2.1 Step 1: Construction of the Call Graph 72
5.2.2 Step 2: Propagation of Hardware Configuration In-
struction L 73
5.2.3 Step 3: Placement of Hardware Configuration Instruc-
tions 75
5.3 A MultiMedia Based Evaluation 78
5.3.1 Scenario 1: MPEG 2 Profiling Results for Pure Soft-
ware Execution L. 79
5.3.2 Scenario 2: A Simple Hardware Reconfiguration
Scheduling 79
5.3.3 Scenario 3: Single Hardware Reconfiguration 82

5.3.4 Scenario 4: Interprocedural Optimization Results.. .83

Vi

5.4 Conclusions 85

6 Compiler-driven FPGA-area Allocation 87
6.1 RelatedWork 88
6.2 Problem Overview and Definition 89
6.2.1 Motivational Example 89
6.2.2 Problemstatement 91
6.3 FPGA-area Allocation Algorithms 92
6.3.1 FIX/RW Algorithm 93
6.3.2 FIX/RW/SW Algorithm 95
6.4 Results. e 97
6.5 Conclusions 102
7 Conclusions 105
7.1 Summary ... 105
7.2 Contributions 108
7.3 Future Research Directions 109
A Multimedia Design Space Exploration 111
Al The MPEG2andJPEGCase Study 112
Bibliography 123
List of Publications 133
Samenvatting 135
Curriculum Vitae 137

Vii

Chapter 1

Introduction

Reconfigurable Computing is a computing paradigm based aanfigurable

devices, which are hardware platforms whose functionalitgd interconnec-
tions can be metamorphosed under software control. As arglesmgproach,

the computing machines under this paradigm include a GERerpose Pro-
cessor (GPP) - which provides good performance for a langgeraf applica-

tions - extended with reconfigurable devices - usually ad-iglogrammable
Gate Array (FPGA) which achieves high performance for aggplon-specific

computations. Such hybrid system - denoted as Field-pnogyable Custom
Computing Machine (FCCM) - combines the advantages of tleecwmpo-

nents: the flexibility of the GPP and performance of the FP@4 provides

additional advantages. The hardware flexibility of the rdigurable devices
allow rapid modifications of existing platforms for the cimntously changing
standards and functional requirements; thus, the timeddket delay and the
prototyping costs are significantly decreased. Due to tfezteres, Reconfig-
urable Computing is considered a viable solution for thedasing complexity
of the current applications and hard requirements imposethé computation
machines.

Although a large number of approaches for Reconfigurable filmimg have
been proposed in the last decade, the success of this commaradigm is
conditioned and currently limited by the design tools thaildd transparently
exploit the underling reconfigurable machine from the Higlrel programming
application. More specifically, the current state-of-axils assume the devel-
opers have deep understanding of both hardware and softieaigns and it is
their responsibility to fully exploit the benefits of this@pach.

In this thesis, we focus on the Molen Compiler backend whitdir@sses a key

2 CHAPTER 1. INTRODUCTION

component of the design tools that should be adapted foatgettFCCM. The
presented compiler aims not only to generate code for tigetanachine, but
mainly to apply advanced optimizations that transparetatke into account
the specific features of the target FCCM.

In this chapter, we present the general problem overviewclatly define the
dissertation scope in Section 1.1. Next, we focus on the magen questions
that should be answered in the rest of the thesis and definestx termi-
nology. In Section 1.3, we present the organization of thesis and a brief
overview for each chapter.

1.1 Problem Overview and Dissertation Scope

In the last decade, the research in reconfigurable complgiverages the
development of new reconfigurable devices, architectu@sD tools, and
methodologies as well as compilation software, hardwafevare partition-
ing and programming paradigms, in an effort to support ther-gwcreasing
demands of a wide range of target applications. These magareh topics
are covered by two projects which are related to this thesimyely MOLEN
(for the first category related to hardware organizatiorg Belft WorkBench
(for the second category related to the software support).

In this thesis, we address the compilation software are&hwdims to gener-
ate high-quality binary code for the target reconfigurabieh#ecture. More
specifically, the requirements and initial constraintstaf proposed research
can be summarized as follows:

e Develop compiler extensions in the context of the Molen Rapgning
Paradigm (explained in the next section) for reconfigurabbhitectures
in general, and for the MOLEN Polymorphic processor in jgattr.

e Investigate which are the main advantages and drawbackseofat-
get reconfigurable architecture that can be exposed to asitivedy ex-
ploited by the compilation framework.

e Propose compiler optimizations and scheduling algorittimas address
the previously mentioned specific features of the targetrégurable
architectures

e Quantify the impact of the proposed algorithms on the oVgraitfor-
mance for applications in multimedia domain.

1.2. MOTIVATION, OPEN QUESTIONS AND TERMINOLOGY 3

In addition to the initial requirements, we restrict the pe®f this dissertation
as follows:

e We are concerned with software compilers, which generatenas
bly/binary code for the target reconfigurable architecduree do not
address hardware compilers which generate the synthésisatie that
should be performed on the reconfigurable device.

e The target applications for the compilation software aneitied to the
multimedia benchmarks, as it is proven (see next secti@i)ttte target
reconfigurable architecture is appropriate for this agpian domain.

e The target FCCM is the MOLEN Polymorphic processor (see segt
tion)

e The compiler should follow the Molen Programming Paradighich is
intended (currently) for single program execution. In cangence, we
do not address problems specifically for Real-Time Opegasiystems
(RTOS) such as multi-threading, multi process managen#dition-
ally, the parallel execution of tasks on the FPGA represargsparate
research direction in Delft WorkBench project and is not fibeus of
this thesis.

e We do not compare the RC paradigm to other approaches foimeult
dia applications boosting performance (such as MMX, 3DN®8E)
which use dedicated non FPGA related hardware. The focusgofte-
sis is the compiler support for the Molen Molen Polymorphiogessor
under the Molen Programming Paradigm.

1.2 Motivation, Open Questions and Terminology

As previously explained, the main idea of the reconfiguratdenputing
paradigm is the use of dynamically configured hardware f@i@menting new
functionalities on a per-application basis. At the Instiat Set Architecture
level, the common approach for supporting new functioiealits to add a new
instruction for each new functionality executed on the rdigurable hard-
ware. However, taking into account the common limitatiorthie number of
the unused opcodes and in the instruction encoding, thi®app imposes se-
vere restrictions on the type and number of newly added fomnalities, while
it also requires in-depth hardware modifications of the guoeessors (GPPSs),

4 CHAPTER 1. INTRODUCTION

at least in the decoding stage - a detailed discussion iadedl in the next
chapter.

A general approach which eliminates the above mentionedcgimings is of-
fered by the Molen Programming Paradigm and Motercoded processor
which require only a small number (see next chapter) of netvuistions for a
virtual infinite number of new functionalities. In the Molemachine organiza-
tion, the functionalities are emulated on the reconfigwdta@rdware using an
extended microcode - referred to as reconfigurable micrecdtus, a generic
instruction can cover a large number of functionalitieslomg as it addresses
their associated reconfigurable microcode.

In order to use the promising features of the RC paradigm tlwrapplication
level - which, due to the increasing complexity, are devetbpsing usually
high-level programming languages (such as C, C++), advhsc#ware tools
are required for guiding/supporting the design processluding hardware-
software partitioning, compilation and resource manageémamong the re-
quired software tools, the compiler is a key element, asitgravide informa-
tion and transformations which are useful for all involvedls. Using modern
compiler techniques, the compiler can extract detailed spwetific informa-
tion about the static/dynamic behavior of the target ajpgiibim. Additionally,

the compiler is the critical component where the hardwaaguies of the tar-
get architecture should be reflected in the generated cdugs, The compiler
addresses both software and hardware features of the tgpgétation and
architecture and it can/should have a major influence in thelevdesign pro-
cess. This observation is particularly suitable for the R€Lagdigm, where
the hardware features of the reconfigurable devices diftgrificantly from

those of GPP and offer interesting, new opportunities ferapplication and
improvement of standard compiler transformations.

Based on these considerations, we formulate four major gpestions which
are addressed in this thesis, as follows:

1. What are the minimal compiler modifications to transptyegenerate
code for RC under the Molen Programming Paradigm ?

We investigate the minimal compiler extensions and theicgcal in-

tegration in an existing compiler infrastructure to accoodate to the
minimal requirements of the Molen Programming ParadigniRfGr Ad-

ditionally, we implement a compiler backend specially atga for the
Molen Polymorphic processor. Once the basic compiler sapp@ro-

vided, specific transformations and optimizations for R€ mquired,
as posed by the following questions.

1.2. MOTIVATION, OPEN QUESTIONS AND TERMINOLOGY 5

2. What are the main advantages and drawbacks of RC that pmtamt
for the compiler?

To answer to this question, we analyze the dynamic behaviarset of
multimedia benchmarks in the context of RC and study the radges
and disadvantages offered by the usage of the reconfigunaintkvare.
As shown later on, we also estimate the impact of the idedtféatures
over the overall performance and determine the domainshiotdrget
reconfigurable architecture to outperform the GPP alone.

3. What compiler optimizations and instruction schedubitgprithms are
appropriate for RC?

Based on the features identified in the answer of the prewdqoestion,
we research for a set of advanced compiler optimizationisciiyaitalize
the advantages and eliminate/reduce the disadvantagbe tdrget re-
configurable architecture. We also estimate the impacteptioposed
transformation on the overall performance of the Molen Rayphic
processor.

4. Can the compiler efficiently guide/manage the allocatibthe FPGA
resources?

The resource management in general and of FPGA resourcestioup
lar can be handled by both compilers and RTOS. We investthateom-
piler's opportunities for guiding the FPGA resource allboa, based on
the characteristics of the target applications. Our apgr@aldresses the
development of efficient allocation algorithms and the gtoftheir im-
pact on the overall performance. As stated before, we do dadtess
operating systems in this respect.

Terminology: In computer engineering discipline, the termoafmputer ar-
chitecture(or simply architecture) refers to the conceptual desigt famda-
mental operational structure of a computer system. Bdgidalconsists of
the machine attributes - such as instruction set, operadthwind register file
- that are exposed to the machine-language programmer cipihefic com-
puter.

Reconfigurable hardwaris a hardware device that can be modified after fab-
rication time through user-defined programming both at fiemal level and at
the interconnection level. Accordingly, a reconfigurabiehétecture is a com-
puter architecture that incorporates reconfigurable hardw For this thesis,
we examine reconfigurable architectures that allow botligdaand dynamic
reconfigurations.

6 CHAPTER 1. INTRODUCTION

By partial reconfiguration we refer to the the ability to reconfigure only the
part of the device that implements a specific functionalitiile leaving un-
changed the rest of the devic®ynamic/run-time reconfiguratioaddresses
the capability to reconfigure at execution time a part of #mnfigurable de-
vice, while the rest of the device is fully operational. Thimsthis thesis, we
address reconfigurable architectures that are not usedanfhst prototyping,
although currently this is one of their main usage.

The complex operations extracted from one application dn@aimplemented
and executed on the reconfigurable hardware are addresskd iast of the
thesis as reconfigurable/hardware operations/kernels.

1.3 Thesis Framework

This section presents the organization of the remaindeiisf dissertation
which consists of the following chapters:

e In Chapter 2, we discuss the common approaches for recoafigur
architectures together with the compilation flows and paogming
paradigms. We proceed by indicating a number of shortcoroiritpe
existing approaches regarding the permitted ISA extessionthe new
functionalities performed on the reconfigurable hardwafdext, we
present in details the target Molen machine organizatiosh its1im-
plementation on the Virtex Il FPGA platform denoted as theldvio
Polymorphic processor. For programming such hybrid aechitre,
we present the Molen Programming Paradigm that, althoughpar-
ticularly suitable for the Molen machine organization, sta general
programming paradigm that can be used for a large range ahrec
figurable architectures. Finally, we emphasize the diffees that al-
low for the Molen machine organization and programming gy
to eliminate/reduce the above mentioned shortcomingshafraxisting
approaches.

¢ In Chapter 3, the Molen compiler backend we have implemeiutetihe
Molen Polymorphic processor is discussed in details. Aaldktly, a
complete experiment of a real multimedia application cdetpfor and
executed on the Molen Polymorphic processor is presentedpaeof
of concept and we will show that the expected performancedus
ments can be achieved but also that additional compilemipditions
are required to fully exploit the target reconfigurable aeatture.

1.3. THESISFRAMEWORK 7

e In Chapter 4, we introduce a compiler optimization that isdshon the
anticipation of the hardware configuration instructionghes intrapro-
cedural level. The optimization uses data-flow analyseseterthine
the anticipation space for each hardware configuratiomuogons and
a min s-t cut algorithm is applied in order to compute theroptiplace-
ment of the hardware configuration instructions. The imecperfor-
mance of this optimization is estimated for real multimeallications
and current FPGAs.

¢ In Chapter 5, we investigate the impact of the reconfigunaticerhead
on the overall performance and propose an interprocedaorapder op-
timization to reduce its negative influence. To this purpaise instruc-
tions for hardware reconfiguration are anticipated as s@passible
before the associated hardware execution instructionseghahdant re-
configurations are eliminated. The optimization also takés account
the limited reconfigurable hardware resources.

e In Chapter 6, we propose two efficient FPGA area allocatigorithms
which are based on profiling information regarding the rdicpmation
frequency. The allocation problems are translated in ILdblams with
two different objective functions: minimal reconfiguratioverhead and
maximal performance improvement, in the context of hw/swifi@ning
problem.

e In Chapter 7, we present the main conclusions of this thesgheasizing
on the main contributions of the presented research. yjna# propose
future work directions for the compiler research as welladlie Delft-
WorkBench project.

Chapter 2

Reconfigurable Architectures

Due to the increased demand of computation power and fleyjldReconfig-
urable Computing has been a major research domain in thddaatle. How-
ever, existing approaches have several important shomgsmand there is a
lack of dedicated tools to assist the design process irsatéiges. The Molen
machine organization and Programming Paradigm addressawel the con-
sidered problems while the tools involved in DelftWorkbemroject support
the designer targeting reconfigurable architectures uttdeMolen Program-
ing paradigm.

In this chapter, we briefly present the background infororatind related work
regarding reconfigurable architectures. After a shortuidison of the physical
implementation of the reconfigurable hardware, we proposet @f classifi-

cation criteria for reconfigurable architectures. In th#lokeing section, we
present a set of relevant reconfigurable architectures aligcassion on their
main problems. In Section 2.4, we describe the Molen maobiiganization

and Programming paradigm and emphasize the architeceatlres that ad-
dress the previous problems. In the next section, we intedle DelftWork-

Bench project that aims to provide a semi-automatic todfqlan for hw/sw

co-design and partitioning of applications executed ommégurable archi-
tectures under the Molen Programming Paradigm. Finale/ctiepter is con-
cluded with Section 2.6.

10 CHAPTER 2. RECONFIGURABLEARCHITECTURES

Imerconnectlon

s P 0 P U0 P P D QG

EEETT
LiliLalica

mil
mil
]
]
mil
mil
]
mil
mil
mil

PTPPPPPRPPRY

D000 0O0O0O0D0D0

Figure 2.1: Internal structure of an FPGA

2.1 FPGA Overview

The concept of reconfigurable hardware was proposed foraledecades, but
only the recent advances in technology made it a successfalinative to

dedicated hardware. As reflected by the name, its main diteagides in the
promising combination of the flexibility provided the redigurative feature of
the hardware and the performance of hardware executiorer8leapproaches
exists for such devices, varying from the first small PLDsofammable

Logic Devices) usefull to implement small boolean logic &ipns to the most
recent FPGAs needed for register-heavy and pipelined@gifans. In the rest
of this thesis, when reconfigurable hardware is addressedgomsider that
FPGA devices are referred to.

An FPGA consists of an array of uncommitted processing efgsnerhich
can be interconnected in a general way and this intercoiomedé$ user-
programmable. The typical structure of an FPGA is depicte&igure 2.1.
The main components are the two-dimensional array of lolgicks, the inter-
connections and the 1/O cells.

The logic blocks within an FPGA can be as small and simpleasi#icrocells
in a PLD (a so-called fine-grained architecture) or larged arore complex

2.2. QLASSIFICATION OF RECONFIGURABLE ARCHITECTURES 11

(coarse-grained). In most FPGAs, these programmable tagigponents also
include memory elements, which can vary from simple flip-$ltpmore com-

plete blocks of memories. A typical FPGA logic block corsief a 4-input

lookup table (LUT), and a flip-flop.

The interconnection resources contain the segments obivitiéferent lengths
together with the programmable switches that serve to airthe logic blocks
to the wires, or the wires themselves. A logic circuit is iemplented in the
FPGA by decomposing it in individual logic blocks and themigecting the
logic blocks via the switches as required in the initial desi

2.2 Classification of Reconfigurable Architectures

In many projects, FPGAs are used just for rapid prototypimgis is not the
focus of our research as real multimedia applications cafinentirely on
current FPGAs and a set of operations (e.g. /O operatiashat proper for
FPGA execution. Instead, we address the combination of &ARhd a GPP.
The main issue is to accelerate the computation intenssks tasing the FPGA
while preserving the I/O operations and control dominasestt$ on the GPP.

A large number of approaches have been also proposed fohgbeida recon-
figurable architectures (see [1] for a complete classificati We can classify
them through the following criteria:

e Configuration granularity: The granularity of the reconfigurable hard-
ware is defined as the size of the smallest functional uniB)Cthat is
addressed by the mapping tools.

— Fine-grainedarchitectures work at the bit manipulation level. Such
architectures offer the maximum level of flexibility at thest of
increased area, power and delay requirements due to gopear
tity of routing per computation. For such architectures ithcon-
figuration overhead has a major influence on performance.

— Coarse-grained architecturg®] [3] [4] [5] perform reconfigura-
tion at processing element level and they are suitable &ndstrd
data path applications.

e Host coupling Another important architectural issue is the type of con-
nection between the GPP and FPGAs [6] [7] [8] [9]. One apgidato
tightly integrate the FPGA as a functional unit of the GPP. In thigcas
the operations executed on the reconfigurable hardware aéiasted

12 CHAPTER 2. RECONFIGURABLEARCHITECTURES

number of input/output operands and they resemble simpk iG&ruc-
tions. The other approach islimoselyconnect the FPGA as a coproces-
sor of the GPP. For such architectures, complex computatiam be
performed on the FPGA which usually is allowed to access tham
memory. More performance improvements are expected ferséncond
category, but the reconfiguration overhead must be takeraictount.

e Explicit reconfiguration As previously mentioned, the reconfigura-
tion overhead is an important issue for the reconfigurabtitactures,
where even for modern FPGAS, a complete configuration tadesral
milliseconds. In order the reduce the reconfiguration lateseveral
architectures (see [10] [11] [12] [9] [13] [14]) provide aexpal instruc-
tions for hardware configuration (SET instruction). Howewmme ar-
chitectures (see [15] [16] [7] [17] [18]) do not provide sugh instruc-
tions, either because the reconfiguration overhead isgiblgior this
issue is not taken into account.

2.3 Examples of Reconfigurable Architectures

In the following, we shortly present a set of representatalated reconfig-
urable architectures emphasizing on the criteria we ptedein the previous
sections. First, the target architecture is describedpi@d by the program-
ming model and toolchain, and finally we focus on the compééated issues
regarding code generation and special optimizations ferrédtonfiguration
overhead.

Napa[19][20]
Sarnoff Corporation

One of the early compilers for configurable hardware is Napdl@ target
architecture NAPA1000 combines an embedded 32-bit RISCessor with a
configurable logic with a 64 x 96 Adaptive Logic array, whishpartially and
dynamically reconfigurable. Additionally, there are twol#%s x 2K on-chip
memory bank and eight 8 bits x 256 scratchpad memories.

For programming such hybrid architecture, the programmeravided with a
set of pragma directives where he/she can specify the tatétixternal mem-
ory, local memory or scratchpad) and the size of a variabdewall as the
execution engine of a subroutine or statement (RISC processonfigurable
logic). Additional pragmas for concurrency and I/O opeara$ are not yet im-
plemented in the NAPA compiler. It is suggested that the Ward/software

2.3. EXAMPLES OF RECONFIGURABLEARCHITECTURES 13

partitioning could be made by an automatic system; howdéermprogrammer
has to deeply understand the target architecture and afiphs in order to
perform an efficient mapping.

The NAPA C compiler is based on the SUIF compiler infrasuoet After

the identification of the segments of code selected for gi@ton the config-
urable logic, the remaining code is unparsed to C and preddsg the RISC
processor’s compiler. Thus, the quality of the code can ey decreased,
while the opportunity for applying specific optimizatiora the configurable
logic is mainly lost. Regarding the configuration latengyisinot clear from

the available documentation whether there is a specialictgn for such pur-
pose. Instead, most of the compiler optimizations addresssynthesis of
hardware pipelines from pipelineable loops.

Garp[21][22]
University of California, Berkeley

The Garp architecture integrates a single-issue MIPS pratewvith a recon-
figurable array connected as a coprocessor. The reconfigunabdware has
access to the same memories and caches as the MIPS prodéssanen-
tioned that the GARP chip does not exist as real siliconudisimulations are
used to estimate the clock speed, power consumption andrsiirea.

One main advantage of the GARP compiler is the fact that it aaé require
the programmer to insert any hints or directives in the sewade (standard
ANSI C). The compiler automatically identifies the kerndiattshould be ac-
celerated using profiling and execution time estimates. @am constraint
for the considered applications is the size of the recordiglerarray.

The GARP compiler is also based on the SUIF compiler infuastire. Similar

to the NAPA approach, the code for the core processor is alparsed back
to C, with the previously mentioned drawbacks. One impdréatvantage of
the GARP compiler is that it can extract whole loops to be etext on the
reconfigurable hardware. However, for the considered eafitins, the loops
are large and they do not fit entirely on the available recomdigle array. For
such cases, only the frequently executed paths of the laepgrauped in hy-
perblocks and executed on the reconfigurable hardware.réfagahe config-

uration overhead, there is a special instruction for logdimew configuration
and there is hardware support to avoid loading a configuratiben it is al-

ready available. However, the authors assume that recoaliguhardware is
"rapidly” reconfigurable in few cycles, in order to be effintdor short-running

loops. Additionally, configurations can be loaded only wttemreconfigurable
hardware is idle.

14 CHAPTER 2. RECONFIGURABLEARCHITECTURES

Chimaera[23][24]
Northwestern University

The Chimaera micro-architecture is a complementary ampré@a NAPA and
GARP for coupling the reconfigurable hardware to the coregseor. In this
approach, the reconfigurable hardware is integrated as aumestional unit
(Reconfigurable Functional Unit RFU) in the host procesSoich tightly cou-
pling allows faster communication with the host processoit & interfaced
only with a set of registers, but the RFU is limited in accegshe memory and
performing control flow operations. An important conseqeenf such archi-
tectural design is that the operations executed on the RE&llyseplace only
a set of several (up to 10) instructions on the host procesdile in NAPA
and GARP approaches whole loops could be executed on thefiguable
hardware.

The Chimaera compiler does not require the programmer thications about
the operations for reconfigurable hardware. Instead, tmepder automati-
cally combines sets of instructions of the host processatrttave maximum 9
inputs and only one output into a new instruction for the réigurable hard-
ware.

The Chimaera compiler is based on the GCC compiler versiér82.New

compiler optimizations have been added in order to autaaidtiidentify the

best patterns for the reconfigurable hardware executiohesd optimizations
- such as Control Localization, SWAR - aim to eliminate thartmh instruc-
tions and to increase the basic block boundaries in ordeettetexploit ILP

and medium-grain data parallelism. Regarding the recorstgn overhead,
the reported results are based on simulations using diffénming models.

Moreover, the execution stalls for the duration of configioraloading.

PipeRencH15][25]
Carnegie Mellon University

The Piperench architecture uses the reconfigurable haedimaa different
manner from the above mentioned approaches. The main idhéadbieis the
pipelined reconfigurations, when large pipelined compomatare executed on
a small piece of reconfigurable hardware by loading the cardigpn of each
stage of the pipeline in one or few cycles. This approachwalithe execution
of computations that do not fit entirely on the reconfiguraidedware. How-
ever, this virtualization of the configurations imposes soadditional con-
straints of the computations that can be executed on suehdipardware.
For example, the operations executed in one stage of théin@pean be de-
pendent only of the operations in the current or previougesta

2.3. EXAMPLES OF RECONFIGURABLEARCHITECTURES 15

The PipeRench compiler is focused on the generation of tttaaie configu-
rations for the considered isolated kernels. It autombyisgnthesizes, places,
and routes the design for each kernel, while hiding from treg@mmmer all
notions of hardware resources, timing and physical laydldvertheless, the
programmer is allowed - if wanted - to give additional hin®at bit width of
variables.

The source language of the considered kernels is DIL (Dagarirediate Lan-
guage), which is a single assignment language with C opsratbhe DIL
compiler applies a set of compiler optimizations - such &isiimg, loop un-
rolling, in order to determine the minimum data width and teanthe target
cycle time. These optimizations are parameterized withitacture-specific
information. Regarding the reconfiguration overhead, tiohitecture imposes
the reconfiguration at each cycles. In order to achieve tbdd, @ wide onchip
configuration buffer is connected to the physical fabric.

ADRES[26][27]
IMEC

The ADRES architecture is a coarse-grained reconfigurailatacture com-
posed by a regular array of functional units and registes fileach functional
unit contains more configurations and support predicateabipas.

The ADRES architecture and compiler are focused on exptpitbop level
parallelism. Their goal is to fully implement on the reconfigble array the
considered kernels, using a model of the ADRES architedtur@n XML-

based language which must be provided to the compiler.

The DRESC compiler is based on the IMPACT compiler frameviork/LIW
architectures. The main extension is the Modulo schedwdiggrithm which
performs a mapping of the program graph and architecturphgeaming to
achieve the optimal performance. The scheduling algoritkeembles the
placement and routing algorithms for FPGAs, but tightlyged in one frame-
work. Due to the coarse-grained feature, the reconfiguratieerhead is not a
problem for such architectures.

DLX+FPGA [28] [29]
Politecnico di Torino

The target architecture contains a 32 -bit RISC processof Bittended with
an FPGA as a functional unit. The FPGA is dynamically recamfigle and
each of its cells can store up to 4 configurations that can snily inter-
changed. New instructions are added for the operationsiee@on the FPGA,
with at most 4 inputs and 2 outputs, but maximum 4 registersns¢ructions.

16 CHAPTER 2. RECONFIGURABLEARCHITECTURES

This very restrictive limitation is due to the encoding limof the DLX ISA.

The kernels considered for execution on the reconfiguradniévtare are manu-
ally selected - the selection is guided by standard profilarsl delimited with
pragma annotations. A set of tools based on the gcc toolébgirovided for
automatic design space exploration, including the comksembler, simula-
tor and debugger. The new instructions for FPGA executiphace a relative
small number of DLX instructions, thus the gcc compiler caheslule them
without major modifications. Additionally, there is no ingttion for loading
the configurations on the FPGA and the reconfiguration oweatlienot signif-
icant.

Based on the presented examples, we can conclude that tieei@ua major
shortcomings of current approaches, namely:

1. Opcode space explosiara common approach (e.g. [19], [18], [28]) is
to introduce a new instruction for each part of applicatioapmed into
the FPGA. The consequence is the limitation of the numbepefations
implemented into the FPGA, due to the limitation of the opcegace.
More specifically stated, for a specific application domaitemnded to
be implemented in the FPGA, the designer and compiler ateatesl
by the unused opcode space.

2. Limitation of the number of parameters: In a number of approaches,
the operations mapped on an FPGA can only have a small nuniber o
input and output parameters ([28], [23]). For example, i &nchitec-
ture presented in [29], due to the encoding limits, the fragts mapped
into the FPGA have at most 4 inputs and 2 outputs; also, in @bien
[23], the maximum number of input registers is 9 and it has autgut
register.

3. No support forparallel execution on the FPGA of sequential opera-
tions: an important and powerful feature of FPGA's can bepheallel
execution of sequential operations when they have no dgandiency.
Many architectures [30] do not take into account this issoe teir
mechanism for FPGA integration cannot be extended to stipaoal-
lelism.

4. No modularity: each approach has a specific definition and imple-
mentation bounded for a specific reconfigurable technologlydesign.
Consequently, the applications cannot be (easily) podednew recon-
figurable platform. Further there are no mechanisms allgwatonfig-

2.4. THE MOLEN PROGRAMMING PARADIGM 17

urable implementation to be developed separately and gpptrd@spar-
ently. That is a reconfigurable implementation developea bigsigner
A can not be included without substantial effort by the cdempilevel-
oped for an FPGA implementation provided by a designer B.

A general approach that eliminates these shortcominggyjisresl. In the rest
of this chapter, we introduce the Molen machine organinatith the Molen
Programming Paradigm, and the DelftWorkBench toolchaithspecial em-
phasis on the Molen Compiler. We will mainly discuss how tapproach
addresses the above mentioned problems and eventualty theim.

2.4 The Molen Programming Paradigm

In this thesis, we target reconfigurable architectureo¥alhg the Molen ma-
chine organization, depicted in Figure 2.2. The two main jgonents in
the Molen machine organization are the Core Processor,hwkia general-
purpose processor, and the Reconfigurable Processor (R&j|lyuimple-
mented on an FPGA. Another key component is the Arbiter whietiorms
a partial decoding of the instructions received from therudion fetch unit
and issue them to the appropriate processor (GPP or RP).dbatketched
(stored) by the Data Fetch unit from(to) the main memory. Wieenory MUX
unit is responsible for distributing data betwen the reapnfible and the core
processor. The Exchange Registers (XREGSs) are used forcdatenunica-
tion between the Core Processor and Reconfigurable Procétsoever, the
Reconfigurable Processor can access the main memory thtbheagilemory
MUX.

The Reconfigurable Processor is further subdivided intgpjixeode unit and
the custom configured unit (CCU). Tim-code unit provides fixed and page-
able storage for the reconfiguration bitstreams and canthel CCU. The CCU
consists of reconfigurable hardware and it is intended tpe@and accelerate
additional and future functionalities that are not implereel/suitable for the
core processor. The Molen machine organization has bedeiingmted in the
Molen Polymorphic processor on Virtex Il Pro FPGA platformdadescribed
in [31].

The envisioned support of operations by the reconfiguralidegssor can be
initially divided into two distinct phasessetand execute In the set phase,
the CCU is configured to perform the supported operationfis&guently, in
the execute phase, the actual execution of the operatigmerfiesrmed. This

18 CHAPTER 2. RECONFIGURABLEARCHITECTURES

Main Memory

h

Y y
Instruction Data
Fetch Fetch

Y ¢

. Memory
Arbiter < MUX €
| A

XREGs
File

AA

Register O Core
File Processor

Figure 2.2: The Molen machine organization

decoupling allows the set phase to be scheduled well ahe#ueaéxecute
phase, thereby hiding the reconfiguration latency. As naaexecution is
performed in the set phase, it can even be scheduled upweosgsatie code
boundary in the code preceding the RP targeted code.

One main advantage of the Molen machine organization iscbasehe rein-
troduction of the microcode for the emulation of the compdgerations that
are performed on the reconfigurable hardware. The microaeleoded app.-
code) is a sequence of simpler and smaller basic operati@isontrol both
reconfiguration and execution of the CCU. The consequent®isa generic
instruction Getinstruction) can be used for any hardware configurationhas t
specific configuration is entirely controlled by the assteda-code. Addi-
tionally, only one generic instructiom{ecutenstruction) is provided for start-
ing the execution on the reconfigured hardware of any impidetehardware
operation, as its effect is completely depended of its aassmt microcode. By
the introduction of thepu-code, the Molen machine organization eliminates
the first shortcoming presented in the previous section aodige solid sup-
port for solving the remaining drawbacks.

The Molen Programming Paradigm [32] [33] is a sequential consistency
paradigm for programming CCMs possibly including a genprapose com-

2.4. THE MOLEN PROGRAMMING PARADIGM 19

putational engine(s). The paradigm allows for parallel andcurrent hard-
ware execution and it is intended (currently) for singlegrean execution. The
Molen Programming Paradigm requires only a one-time agchital exten-
sion of few instructions to provide a large user reconfigl@aperation space.
The complete list of the eight required instructions, dedads polymorphic
instruction set architecturer(SA), is as follows:

Six instructions are required for controlling the reconfigurable hardware:

e Two set instructions: these instructions initiate the auntations of the
CCU. When assuming partial reconfigurable hardware, weigeowo
instructions for such purpose, namely:

— the partial set (p-setaddress)) instruction performs those con-
figurations that cover common and frequently used functafran
application or set of applications. In this manner, a cogrsidle
number of reconfigurable blocks in the CCU can be preconfijure

— the complete set (c-sétddress)) instruction performs the config-
urations of the remaining blocks of the CCU (not covered gy th
p-set). This completes the CCU functionality by enablintg iper-
form the less frequently used functions. Due to the reducsalat
of blocks to configure, reconfiguration latencies can becedu

We must note that in case no partially reconfigurable harewar
present, the c-set instruction alone can be utilized tooperfall con-
figurations.

e execute(address): this instruction controls the execution of the opera-
tions implemented on the CCU. These implementations arégroad
onto the CCU by the set instructions.

e set prefetcHaddress): this instruction prefetches the needed microcode
for CCU reconfigurations into a local on-chip storage fagilithe pp-
code unit) in order to possibly diminish microcode loadimgés.

e execute prefetcliaddress): the same reasoning as for the set prefetch
instruction holds, but now relating to microcode respolesiior CCU
executions.

e break: this instruction is utilized to facilitate the paehlexecution of
both the reconfigurable processor and the core processore bre-
cisely, it is utilized as a synchronization mechanism to plate the par-

20 CHAPTER 2. RECONFIGURABLEARCHITECTURES

allel execution. Thus, the shortcoming regarding the sttdpoparallel
execution is eliminated.

Two moveinstructions for passing values between the register file and ex-
change registers (XREGS) since the reconfigurable procésswt allowed
direct access to the general-purpose register file:

e movix X REG, «— Rp: (move to XREG) used to move the content of
general-purpose register Rb to XREGa.

e movix R, — XREG,: (move from XREG) used to move the content
of exchange register XREGb to general-purpose register Ra.

The (address) field in the instructions introduced above denotes the iooat
of the reconfigurable microcode responsible for the confijon and execu-
tion processes, previously described. It must be notedalsingle address
space is provided with at lea8t—°P addressable functions, where n repre-
sents the instruction length and op the opcode lengtB”1f? is found to be
insufficient, indirect pointing or GPP-like status word rhanisms can extend
the addressing of the reconfigurable function space at @ille important ob-
servation is that the operands are not directly encodeckiimstruction format;
instead, the microcode for each operation is responsibéetess the associ-
ated XREGs. In consequence, the number of input and outpugs/és limited
only by the number of available XREGSs, which can be mappedhéniacal
memory of the reconfigurable hardware and thus, it is not diresiation and
resolve the second shortcoming regarding reconfigurallaitactures.

It should be noted that it is not imperative to include altinstions when im-
plementing the Molen organization. The programmer/imm@atar can opt for
different ISA extensions depending on the required peréoroe to be achieved
and the available technology. There are basically threedtiwve wISA possi-
bilities with respect to the Molen instructions introducetlier - the minimal,
the preferred and the completéSA extension. In more detail, they are:

e the minimal wISA: This is essentially the smallest set of Molen instruc-
tions needed to provide a working scenario. The four basiruations
needed araset(more precisely: c-setgxecute movtx and movfx. By
implementing the first two instructionsdfexecutg any suitable CCU
implementation can be loaded and executed in the RP. Fortrer re-
configuration latencies can be hidden by scheduling thensatuiction
considerably earlier than the execute instruction. Thetsnamd movfx

2.4. THE MOLEN PROGRAMMING PARADIGM 21

instructions are needed to provide the input/output iatafbetween the
RP targeted code and the remainder application codgbservation:
The minimalrISA extension is assumed in the rest of the thesis

e the preferred wISA: The minimal set provides the basic support, but it
may suffer from time-consuming reconfiguration latencieisich could
not be hidden, and that can become prohibitive for sometnea-appli-
cations. In order to address this issue, wed(p-set and c-set) instruc-
tions are utilized to distinguish among frequently and Ilgsguently
used CCU functions. In this manner, the c-set instructioly oanfig-
ures a smaller portion of the CCU and thereby requiring lessmfig-
uration time. As the reconfiguration latencies are substiyntidden
by the previously discussed mechanisms, the loading timmei@bcode
will play an increasingly important role. In these cases,ttho prefetch
instructions (set prefetch and execute prefetch) providewyato dimin-
ish the microcode loading times by scheduling them well drafathe
moment that the microcode is needed. Parallel executiamtiated by
a wISA sefexecutenstruction and ended by a general-purpose instruc-
tion.

e the completerISA: This scenario involves altISA instructions includ-
ing the break instruction. In some applications, it mightdemeficial
performance-wise to execute instructions on the core gsmeand the
reconfigurable processor in parallel. In order to facititdtis parallel ex-
ecution, the preferred ISA is further extended with the kiieatruction.
The break instruction provides a mechanism to synchrotigearallel
execution of instructions by halting the execution of instions follow-
ing the break instruction. The sequence of instructionsopeied in
parallel is initiated by arexecuteinstruction. The end of the parallel
execution is marked by the break instruction. Teinstructions are
executed in parallel according to the same rules.

The Exchange RegistersThe XREGs are used for passing operation param-
eters to the reconfigurable hardware and returning the ctedpealues after
the operation execution. Parameters are moved from theteedile to the
XREGs (movtx) and the results stored back from the XREGs énrégister

file (movfx).

During the execution phase, the defined microcode can atltegmrameters
of its associated operation from specific XRs and return @sailt(s). A se-
guentialexecutenstruction does not pose any specific challenge because the

22 CHAPTER 2. RECONFIGURABLEARCHITECTURES

whole set of exchange registers is available. However, véxeauting mul-
tiple executanstructions in parallel, additional conventions areadticed in
order to avoid the overlapping of the used XREGs. A more ttaliscussion
is presented in the next chapter.

The Molen paradigm facilitatemodular system desigifror instance, hardware
implementations described in an HDL (VHDL, Verilog or Syst€) language
are mappable to any FPGA technology, e.g., Xilinx or Altémaa straightfor-
ward manner. The only requirement is to satisfy the Mddeiiexecutein-
terface. In addition, a wide set of functionally similar CQldsigns (from
different providers), e.g. sum of absolute differences@$Acan be collected
in a database allowing easy design space explorations., Teufourth short-
coming regarding reconfigurable architecture is elimidate

Interrupts and miscellaneous considerationsThe Molen approach is based
on the GPP co-processor paradigm. Consequently, all knowgracessor in-
terrupt techniques are applicable. In order to support tiie processor inter-
rupts properly, the following parts are essential for anyléhamplementation:

1. Hardware to detect interrupts and terminate the exetutiefore the
state of the machine is changed, is assumed to be implemienibedh
core processor and reconfigurable processor.

2. Interrupts are handled by the core processor. Consdguleatdware to
communicate interrupts to the core processor is implengdeint€CU.

3. Initialization (via the core processor) of the approfrieoutines for in-
terrupt handling.

It is assumed that the implementor of a reconfigurable hamelfalows a co-
processor type of configuration. With respect to the GPPdigina, the FPGA
co-processor facility can be viewed as an extension of the pmcessor ar-
chitecture. This is identical with the way co-processoushsas floating point,
vector facilities, etc., have been viewed in the convemti@nchitectures.

Regarding the shortcomings presented in the previousosedtie Molen Pro-
gramming Paradigm and the architectural extensions sb&/afbrementioned
problems as follows:

e There is only a one time architectural extension of few nestrictions
to include an arbitrary number of configuration.

2.5. DELFTWORKBENCH

H311408d

d371dWOD
319v1394v.i3d

II III II‘

~~~~~~~

SETK(.
SET h(

EXEC f(.

[EXEC h(

VHDL
GENERATOR

- Manual
P Code
LIBRARY

Performance

VHDL
entity CCU_F

hyd

PP

VHDL
entity CCUiH‘

Statistics

Figure 2.3: The Delft Workbench Design Flow

db

JYNLOILIHOYY NITOW

23

e The programming paradigm allows for an arbitrary (only heace real
estate design restricted) number of I1/O parameter valude tpassed
to/from the reconfigurable hardware. It is only restrictsdtibe imple-
mented hardware as any given technology can (and will) atialy a

limited hardware.

e Parallelism is allowed as long as the sequential memoryistensy

model can be guaranteed.

e Assuming that the interfaces are observed, modularity ésapieed be-

cause the paradigm allows freedom of operation implemientat

2.5 DelftWorkBench

DelftWorkBench project aims to provide a semi-automata toatform for in-

tegrated hardware-software co-design targeting hetesmes computing sys-
tems containing reconfigurable components which provigeréguired sup-
port for the Molen Programming Paradigm. Delft Workbencliradses the
entire design cycle rather than isolated parts. The designifl presented in

Figure 2.3.



24 CHAPTER 2. RECONFIGURABLEARCHITECTURES

Profiler: As shown in Figure 2.3, the first step is the identificationghef
application parts that can provide the required benefit wirgslemented and
executed on the reconfigurable hardware. The target obgecdin vary signifi-
cantly, from increased performance to reduced power copamor a smaller
footprint. The profiler can collect and analyze executi@eés of the program
and use this information in combination with human diress$ito propose a
number of candidate code segments.

In order to quantify the potential benefit of a certain table, profiler relies on
the estimation cost model [34] of the target reconfiguralalelivare that will
provide preliminary estimation about configuration dejai®a usage, power
consumption, etc. Such a cost model will allow to filter awlayse candidates
that will not likely result in the anticipated improvemenmt the view of the
target objective. The input for the profiler is ANSI C code dahd output is
annotated C code with pragma directives to indicate thestasksidered for
execution on the reconfigurable hardware.

In the C2C step, the kernels proposed by the profiler are further aedlyand
transformed in order to better fit on the reconfigurable hamw One main
transformation is graph restructuring [35] [36] that airosdietermine which
clusters of basic operations are optimal for hardware ed@tutaking into
account their execution frequency and potential benefithiaAced loop opti-
mization can further be applied to fully exploit the loop déyparallelism and
to remove the data dependency by using the reconfigurabtbvhes. After
the C2C step, the set of tasks for hardware execution is aeipldefined.

Retargetable Compiler: Once the kernels have been identified, the compiler
generates the appropriate link code for the execution orrghenfigurable
Processor, while the rest of the application is compilectiier GPP. The link
code mainly contains the following:

e code for passing parameters to the Reconfigurable ProcesX®EGs
e instructions for hardware configuration
e instructions for starting the execution on the Reconfiglerdyocessor

e code for returning the computed results from XREGs

One main goal of the compiler is to generate high quality dadlered to the
specific features of the target architecture. In this cgsecific optimizations
have to be included in the compiler in order to address theéndischarac-
teristics of the reconfigurable hardware such us the recardipn overhead,



2.6. CONCLUSION 25

parallel execution, sw/hw final partitioning, reconfiguslhardware alloca-
tion. The compiler is the main focus of this thesis and it istfer denoted as
the Molen compiler.

VHDL Generation: For the tasks executed on the reconfigurable hardware,
the VHDL design can be obtained using three approaches. hefie is the
manual VHDL generation and it is appropriate for criticaumcommon tasks.
However, this approach is a time-consuming and error prasie fThe second
approach is to use IP cores which are already available foenrgétasks such
us DCT, IDCT. The third approach [37] is the automatic codeegation from
the associated C code. As previously discussed, this agplisaconsidered
in many research projects (see [38] [21] [39]), but the dualf the generated
code is far bellow the expectation and there is a large setmifations on the
C code which can be automatically translated to VHDL. In BEtrkBench
project, the automatic VHDL generation will address thésethtions and the
research will focus on optimizations and scheduling tegtes for loops and
memory accesses.

2.6 Conclusion

In this chapter, we presented the background for this tresisan overview
of reconfigurable architectures. We identify the main peotd of current ap-
proaches and present how the targeted Molen machine oagimmzand pro-
gramming paradigm eliminates them. The main advantagdsedftolen ap-
proaches can be summarized as follows:

Compact and transparent ISA extensionFor a given ISA, only a one time
architectural extension of up to 8 instructions is requiredrder to sup-
port a virtually unlimited number of reconfigurable opeoas. This
achievement is mainly based on the introduction of ghecode which
is the emulation code that allows to define generic instonstiwithout
concern about their exact implementation on the reconfidaraard-
ware. Additionally, the proposed ISA extension is applamaindepen-
dent and provides ISA compability and portability.

Technology independent and modular desigrHDL designs can be devel-
oped independently of the target reconfigurable hardwatetlz@y can
be easily integrated in the Molen organization (using vesdools for
synthesis) as long as the described interfaces are preserve



26 CHAPTER 2. RECONFIGURABLEARCHITECTURES

Parallel processing The user can select from different levels of parallelism
supported by the Molen Programming Paradigm. When paisatieis
not the main concern, than minimalSA extension can be used, while
the completerISA allows for parallel execution on the reconfigurable
hardware and GPP.

In the next chapter, we present the basic Molen compilerdratkhat targets
reconfigurable architectures under the Molen Programmargdiigm. In the
following chapters, specific compiler optimizations antlestuling algorithms
are proposed to take advantage of the distinctive featdre weconfigurable
architectures.



Chapter 3

The Molen Compiler

When most alternative reconfigurable architectures relgiomlations and es-
timations for validation purposes, we disposed of a physimalementation

of the Molen machine organization. The Molen Polymorphiacgissor ([40])
was implemented on a Virtex Il Pro FPGA platform which cotssisf one

PowerPC General Purpose Processor immersed into the gaaifie hard-
ware.

In this chapter, we present the Molen compiler framework &echdeveloped
for the Molen Polymorphic processor, with emphasize on ttiereled Pow-
erPC backend. We first present in Section 3.1 the Molen cempdmework
and general extensions required for the Molen Programmamgdigm. We
shortly describe the specific features of the Molen Polyriarprocessor in
Section 3.2 and next we discuss in details the PowerPC cenipkckend we
have implemented in the Molen compiler. In section 3.4, vesent as a proof
of concept an experiment with the M-JPEG multimedia appboarunning
on the Molen Polymorphic processor with a 2.5 speedup ovePibwerPC
processor alone. Finally, the chapter is concluded withi@e8.5.

3.1 The Molen Compiler Framework

The Molen compiler [41] currently relies on the Stanf@t)IF2 (Stanford
University Intermediate Format)[42] for the front-end atté HarvardMa-
chine SUIH43] backend framework, as presented in Figure 3.1. $biéF2
compiler infrastructure was designed for research and ldpxeent of new
compilation techniques that maximize code reuse by progidieneral ab-

27



28 CHAPTER 3. THE MOLEN COMPILER

#pragma call_fpga op|
int f(int a, int b){

Source C
Code

MOLEN extensions

pragma recognition }

interprocedural SUIF
optimization

FPGA PowerPC_FPGA
Description backend

File profiling Machine

SUIF

intraprocedural
optimization

FPGA area
allocation

.asm

gcc assembler
linker

elf
Figure 3.1: The Molen Compiler Structure

stractions and frameworks. Thus, new optimizations anmistcamations can
easily be added and the flexible IR can be extended to expeesfeatures of
the application or target architecture. It provides adeahanalyses for loop
parallelism such as affine program transformations andprteedural pro-
gram analysis and a C converter.

Machine SUIFis a flexible and extensible infrastructure for construgiom-
piler backends. Although it is based on the SUIF system pitsrozations and
analyses are not SUIF specific as they can be reused in othagrileo en-



3.1. THE MOLEN COMPILER FRAMEWORK 29

vironments as long as the Optimization Programming Interf@OPI) is sup-
ported. It provides support for building control-flow grapltontrol flow anal-
yses and bit vector dataflow analyses, as well as a set of igptions such
as common subexpression elimination, dead code elimmapieephole opti-
mizations. Additionally, a set of backends are alreadylaké (e.g. Com-
pag Alpha, Intel x86, suifvm - SUIF virtual machine), togethvith a graph-
coloring register allocation and support for code finaliat assembly and C
printing. Finally, it also supports code instrumentatitwattallows develop-
ment of profile-driven optimizations that require accuratel specific profile
informations.

The Molen compiler’s input is C99 [44], with user’s pragmhbattindicate the
kernel functions implemented on the reconfigurable hardw&egarding the
C preprocessing step, the user has to indicate the appi®gsiatem headers,
taking into account that the compilation is usually a crossgilation (e.g.
running on a Linux machine while compiling to Xilinx FPGA plarm). A
basic compilation flow of the Molen compiler typically comts the following
steps:

e Frontend Processing:

— ¢2s - C to SUIF converter
— call_fpga - pragma recognition
— do_lower - SUIF to Low SUIF converter

e Backend Processing:

— do_s2m - SUIF to Machine SUIF converter

— do_gen - code generation for a target architecture given asaapar
eter

— do.il2cfg - converter from instruction list to control flow grap
— do_raga - register allocation

— do_cfg2il - converter from control flow graph to instructiontlis
— do-fin - code finalization

— do.il2cfg

— do_raga - register allocation again for the virtual registen@nf
code finalization

— do_cfgzil



CHAPTER 3. THE MOLEN COMPILER

— do.m2a - ascii/fasm printer

e Assembler/Linker processing:

The GNU assembler and linker have been madified for the tagpdi-
tecture.

Additional optimizations and analyses can be easily iretlioh the compila-
tion flow as independent steps. Such optimizations can betémelard opti-
mizations provided by SUIF/MachineSUIF infrastructuretioe Molen opti-
mizations we have developed for reconfigurable architestur

The Molen Compiler Extensions

In order to generate code according to the Molen Programfaargdigm, the
following target-independent Molen extensions have begiémented

e Code identificationfor the identification of the code mapped on the re-
configurable hardware, we added a special pass (denoteallapga)

in the SUIF front-end. This identification is based on codeaaation
with special pragma directives (similar to [19]). More sifieally, the
definitions of the functions executed on the reconfigurablel\ware are
preceded by a pragma annotaticeall_fpgaand the name of the associ-
ated hardware operation, as included in the FPGA desanigtie. In
this pass, all the calls of the recognized functions are ethf&r further
modifications.

MIR extension the MIR suifvmhas been extended with SET/ EXE-
CUTE and MOVTX/MOVFX instructions at MIR (Medium Interme-
diate Representation) level.

Register file extensiorthe Register File Set has been extended with the
XRs.

MIR Code generationcode generation for the reconfigurable hardware
is performed when translating SUIF to Machine SUIFd&fvm and
affects the function calls marked in the front-end.

An example of the code generated by the extended compilénédviolen Pro-
gramming Paradigm is presented in Figure 3.2. In the firgt fize C program
is given. The function implemented in reconfigurable hangwia annotated
with a pragma directive nhamechll_fpga It has incorporated the operation
name,opl as specified in the FPGA description file. In the central pért o



3.1. THE MOLEN COMPILER FRAMEWORK 31

#pragma call_fpga opl main: mrk 2,14
int f(int a, int b){ mrk 2,13 mov  $vr2.s32 <- main.z
int ci; ldc  $vr0.s32 <-5 movtx $vrl.s32(XR) <- $vr2.s3
c=0; mov main.z <- $vr0.s32 ldc  $vrd.s32<-7
for(i=0; i<b; i++) movtx $vr3.s32(XR) <- $vrd.s3
C=C+a<<i+i: mrk 2, 14 dd s

¢ = coob: ldc $vr2.532 <= 7 set  address_opl_SET
return c; cal $vrL.s32 <~ f(main.z, $vr2.532) 4 $U16.532(XR) <- 0
} mov main.x <- $vrl.s32 movtx $vr7.532(XR) <- vr6.532
void main(){ mrk 2. 15
int x,z: o Svi3.s32 <- 0 exec address_opl EXEC
z=5, ret  $vr3.s32 movfx $vr8.s32 <- $vr5.s32(XF
x=1(z, 7); text_end main mov  main.x <- $vr8.s32

C code Original MIR code MIR code extended with

instructions for FPGA

Figure 3.2: Code Generation at MIR level

the picture, the code generated by the original compilettierC program is
depicted. The pragma annotation is ignored and a standaatida call is in-
cluded. The last part of the picture presents the code gexuEgy the compiler
extended for the Molen Programming Paradigm; the functalhis replaced
with the appropriate instructions for sending parameterthé reconfigurable
hardware in XRs, hardware reconfiguration, execution ofdperation and
the transfer of the result back to the GPP. The presentedisateMIR level
(beforedo_genpass) and the register allocation pass has not been applied.

The inter/intraprocedural optimizations and the FPGA afacation algo-
rithms from Figure 3.1 are general Molen optimizations aignio reduce the
reconfiguration overhead. These optimizations use ddtpiigfile information
regarding the kernels executed on the reconfigurable haedv&oftware and
hardware features of the considered kernels are includiairRPGA Descrip-
tion File; the hardware features are provided by the hardwasigners, while
the software features address the execution on the GPP, aluhare measured
in the profiling phase. The PowerBRPGA backend is a specific backend we
have implemented for the Molen Polymorphic processor (sstidh 3.2) and

it is presented in details in Section 3.3.



32 CHAPTER 3. THE MOLEN COMPILER

3.2 The Molen Polymorphic Processor

In this section, we discuss the implementation of a mictuigecture support-
ing the minimal MolentISA on the Virtex Il Pro with the embedded PowerPC
405 serving as the core processor. The Virtex Il Pro familgtams platform
FPGAs for designs that are based on IP cores and customizédleso The
family incorporates up to four IBM PowerPC RISC 405 processocks, with
the following main features:

e embedded 300+ MHz Harvard Architecture Block
e low power consumption: 0.9 mW/MHz

e five-stage data path pipeline

e hardware multiply/divide unit

e thirty-two 32-bit General Purpose Registers

e 16 KB two-way set-associative instruction cache
e 16 KB two-way set-associative data cache

e memory management unit (MMU)
— Variable page sizes (1 KB to 16 MB)

e dedicated on-chip memory (OCM) interface
e supports IBM CoreConnect” bus architecture
e debug and trace support

e timer facilities

Virtex-Il Pro devices incorporate large amounts of 18Kbdk&electRAM+

memory. The available memory resources for Virtex Il Pro X@20 is

around 300 Kb while for XC2VP50 is around to 700 Kb. OCM coltrs pro-

vide dedicated interfaces between Block SelectRAM+ meraary processor
block instruction and data paths for high-speed accessmprgsources.

These features make the The Virtex 1l Pro platform suitabletfie imple-
mentation of the Molen machine organization. The first imptatation was
performed on the Virtex || Pro XC2VP20 FPGA platform and éolled by the
implementation on the larger Virtex Il Pro XC2VP30 FPGA fdatn. In both
implementations, there is only one core processor, nanBdy/PowerPC 405.



3.2. THE MOLEN POLYMORPHIC PROCESSOR 33

A key element is the implementation of the arbiter which isafibed in de-
tail in [45] [46] [47]. The arbiter controls the proper copessing of the core
processor and the reconfigurable processor (see Fig. 2 @ydxting instruc-
tions to either of these processors. It also arbitrates #tta themory access
of the reconfigurable and core processors and it distribzgegol signals and
the starting microcode address to the—code unit. The arbiter operation is
based on the partial decoding of the incoming instructiamd either directs
instructions to the core processor or generates an ingrusequence to con-
trol the state of the core processor. The latter instructiequence is referred
to as arbiter emulation instructions and it is used upon diecpof either aset
or anexecutanstruction, as explained below.

Software considerationsFor performance reasons, PowerPC special operat-
ing modes instructions were not used - exiting special djpgranodes is usu-
ally performed by an interrupt. Instead, the arbiter eneda wait state by
using the branch to link registebl¢) instruction and the exit from the wait
state by using branch to link register and liriltr() instruction. The difference
between these instructions is théti modifies the link register (LR), whilblr
does not. The next instruction address is the effectiveesddof the branch
target, stored in the link register. Wheéirl is executed, the new value loaded
into the link register is the address of the instructiondwling the branch in-
struction. Thus, the arbiter emulation instructions, @euced to only one in-
struction for wait and one for wake-up emulation. The Povzdechitecture
allows out-of-order execution of memory and I/O transfevbjch has to be
taken into account in the implementation. To guaranteedhtst dependency
conflicts do not occur during reconfigurable operation, tbe/&PC synchro-
nization instructiongyng can be utilized before setor executénstruction. In
other out-of-order execution architectures, data deparydeonflicts should be
resolved by specific dedicated features of the target actites. In in-order
architecture implementations, this problem does not exist

Instruction encoding In this implementation, thenovtxand movfxinstruc-
tions are mapped to the existing PowerPC instructioibdcr andmfdcr. This
solution is imposed by the fact that the Virtex || Pro Poweid@ has a dedi-
cated interface to the so-called Device Control Registe@GR) [48] [49] [50]
and two instructions that support DCR transfers (nanmatgicrandmfdcr). It
should be noted that this is a PowerPC specific implementatia not appli-
cable in the general case. This leaves onlystandexecuténstructions to be
encoded. We follow the PowerPC I-form and choose unuseddgscior both
instructions. The manner to distinguisisetinstruction, arexecutanstruction
(using the same opcode), and resident/pageable (R/P)cuiecaddresses is



34 CHAPTER 3. THE MOLEN COMPILER

via instruction modifiers.

3.3 Molen PowerPC Compiler Backend

The first step for compiling for the Molen Polymorphic prosesis to have
a backend compiler that generates the appropriate bin@ries executed on
the PowerPC processor integrated on the Virtex Il Pro bo&drrent Ma-

chineSUIF backends excluded the backend for PowerPC acthie. In this

section, we present the Molen PowerPC backend we develapadi$ pur-

pose and we focus on the PowerPC instruction generationef®@®vregister
allocation, PowerPC EABI stack frame allocation and soféaféoating-point

emulation. We also describe the specific PowerPC backeragrns for the
Molen Polymorphic processor.

3.3.1 PowerPC Compiler Backend

In order for one application to utilize external and/or urtgiag software or
hardware, a binary interface - called Application Binarielfiace (ABI) has to
be defined. For example, many applications have to include afdibraries
(e.g. math) that are compiled using a number of platform déest conven-
tions. One such set of conventions proposed for PowerPCs408 Embedded
Application Binary Interface (EABI) with the goal of reduig memory usage
and optimizing execution speed, as these are prime regeirenof embedded
system software. The EABI describes conventions for registage, parame-
ter passing, stack organization, small data areas, objecafid executable file
formats. A description of the key issues for the PowerPC dmmpackend
we have implemented is presented in the rest of this section.

Register Usage
In user mode, The PowerPC 405 processor provides the faltpvégisters:

e General Purpose Registers (GPRS): 32 registers, eachs3&itdé, num-
bered r0 through r31,;

e Condition Register (CR): a 32-bit register that reflectsrgmult of cer-
tain instructions and provides a mechanism for testing amdlitional
branching; for example a branch based on the condition1 62! can be
implemented as follows:

CR has 8 fields of 4 bits each



3.3. MoLEN POwWERPC CoMPILER BACKEND 35

cnplwi 3, r3, 64 ; CR3 field contain
; the result of the conparison
blt 3, LABEL_1 ; branch based on CR3

e Fixed-Point Exception Register (XER): a 32-bit registattteflects the
result of arithmetic operations that have resulted in amftoxe or carry;

e Link Register (LR): a 32-bit register that is used by brana$triuctions,
generally for the purpose of subroutine linkage;

e Count Register (CTR): a 32-bit register that can be used bgdbr in-
structions to hold a loop count or the branch-target address

e User-SPR General-Purpose Register (USPRGO0): a 32-biteeghat
can be used by application software for any purpose;

e SPR General-Purpose Registers (SPRG4- SPRG7): 32-steegthat
can be used by system software for any purpose and availathleead-
only access

e Time-Base Registers: a 64-bit incrementing counter implaied as two
32-bit registers (TBU and TBL) with read-only access

\ Register | Type | Usage \
RO Volatile Language specific
R1 Dedicated Stack Painter (SP)
R2 Dedicated | Read-only small data area anchpr
R3-R4 \olatile Parameter Passing/ return values
R5 - R10 \olatile Parameter Passing
R11-R12 Volatile
R13 Dedicated | Read-write small data area anchor
R14 - R31 Nonvolatile
Fields CR2 - CR4 Nonvolatile Condition Register
Other CR fields | Volatile Condition Register
Other registers Volatile

Table 3.1: PowerPC EABI Register Usage

The PowerPC EABI register usage conventions are depictéalile 3.1. Non-
volatile registers must have their original values presdntherefore, functions



36 CHAPTER 3. THE MOLEN COMPILER

FuncX:
nflr %0 ; Get Link register
stwu % 1, -88(% 1) ; Save Back chain and nove SP
stw 9% 0, +92( % 1) ; Save Link register
stmw % 28, +72( % 1) ; Save 4 non-volatiles r28-r31
lwz % 0, +92( % 1) ; Get saved Link register
nmlr %0 ; Restore Link register
I mwv % 28, +72( % 1) ; Restore non-volatiles
addi % 1,% 1, 88 ; Remove frame from stack
bl r ; Return to calling function

Figure 3.3: Function’s Prologue and Epilogue

modifying nonvolatile registers must restore the origivalues before return-
ing to the calling function.

The Stack Frame

In addition to the registers, each function may have a stakd on the run-
time stack. The PowerPC architecture does not have a pyslgtruction
for implementing a stack. The EABI conventions of stack feacneation and
usage for parameter passing, nonvolatile register prasery local variables,
and code debugging are presented in Fig. 3.4. The followdggliirements
apply to the stack frame:

e The address of the previous frame is stored in Back Chain \Woedeby
forming a linked-list of stack frames and it is always locbét the lowest
address of the stack frame.

e The return address to the calling function is stored in theSake Word.

e In order to maintain 8-byte alignment of the stack frame, dditay Area
may be introduced to guarantee such alignment.

e In the Function Parameters Area, additional function arguois are
stored when they do not fit into the designated registers R3-R

e When the number of local variables is higher than can be goedain
the available volatile registers, they are stored in Loaaiables Area.



3.3. MoLEN POwWERPC CoMPILER BACKEND 37

High address

LR Save Word

,,,,,, - Bach Chain Word

GPR Save Area
(optional, size varies)

CR Save Word
(optional)

Local Variables Area
(optional, size varies)

Function Parameters Area
(optional, size varies)

Padding for 8 byte stack alignment
(optional, size varies 1-7 bytes)

LR Save Word Frame

sp i Header
N S Bach Chain Word

Figure 3.4: PowerPC EABI Stack Frame Organization

e When the nonvolatile CR fields are modified, its content ndedse
saved in the CR Save Word.

e GPR Save Area may be introduced to save nonvolatile GPR. \&ten
ing any GPR, all the GPRs from the lowest through R31, inefyshust
be saved.

The stack frame is created by a function’s prologue code astralyed in its
epilogue code. In Fig. 3.3 is presented an example of funistiprologue and
epilogue.

Floating-Point Emulation

The PowerPC 405 is an integer processor and does not suppaxecution of
floating-point instructions in hardware. System softwaaa provide floating-
point emulation support by supplying a call interface torsutines within a
floating-point run-time library. The individual subroudis emulate the opera-
tion of floating-point instructions as presented in [51].isSTmethod requires
the recompilation of floating-point software in order to atié call interface



38

CHAPTER 3. THE MOLEN COMPILER

and link in the library routines.

Op Type

unsigned

signed

rlwinm r1,0,0xff — r4

mulhwu r2’, r1’ — r3’
addc r3”, r10— r3™
adde r3”, r10— r3”
addze r3'— r3’

addc r3”, r12— r3”
adde r3”, r13— r3”
addze r3'— r3’

char rlwinm r2,0,0xff — r5
mullw r4, r5—r3
rlwinm r1,0,0xffff — r4 | extshrl— r4

short rlwinm r2,0,0xffff — r5 | extsh r2— r5
mullw r4, r5—r3 mullw r4, r5—r3

int mulhwu rl, r2— r3’ mulhw rl, r2— r3’
mullw rl, r2 — r3” mullw rl, r2 — r3”
mullw r2”, r1” — r3™ mullw r2”, r1” — r3™
mulhwu r2”, r1” — r3” | mulhw r2”, r1” — r3”
mullw r2”, r1’ — r10 mullw r2”, r1’ — r10
mulhwu r2”, r1’ — r3” mulhw r2”, r1’ — r3”
mullw r2’, r1” — r12 mullw r2’, r1” — r12
mulhwu r2’, r1” — r11 | mulhwr2’, r1” —ril
long long | mullw r2’,r1’ —r13 mullw r2’, r1’ — r13

mulhw r2’, r1’ — r3’
addc r3™, r10— r3”
adde r3", r10— r3”
addze r3'— r3’
addc r3™, r12— r3”
adde r3”, r13— r3”
addze r3'— r3’

Table 3.2: LIR translation of MIR instructiomul r1, r2 — r3

The compiler has to manage floating point arithmetic, comspas, loads, and
stores by generating software floating point emulationgsfode, rather than
using PowerPC floating point instructions - currently it & fully supported
in the Molen compiler. In sfpe code:

e Floating point single precision scalars shall be treatddrasint scalars.

e Floating point double precision scalars shall be treatedbag long
scalars.

e Whenever a function has a variable argument list, it shatlsed con-
dition register bit 6 to 1 (as usual for PowerPC architegtusace no
arguments are passed in the floating-point registers (as #ie no FPR
included in PowerPC 405).

Code Selection



3.3. MoLEN POwWERPC CoMPILER BACKEND 39

Code selection is typically the first backend phase and maashime inde-
pendent IR statements and operations into machine spemfiegsor instruc-
tions. This phase is performed in Machine SUIF where eachidRement is
translated into equivalent assembly instructions. Forrgte, for the MIR in-
structionmul rl, r2 — r3, the generated LIR set of instructions depends on the
operands type as presented in Table 3.2. In the case whepatinds are of
type unsigned short (2 bytes), then a mask for each operaridkg the lower

16 bits) is required and the result of the single multiplimatcan be placed in

a 32-bit register. For integer operands, two multiplicati@are required when

a 8 byte result is expected.

For RISC targets with homogeneous register files, the ta#iosl of each MIR
instruction separately provides satisfactory results;esthere are hardly com-
plex instructions and late improvement of the selected ¢®déll possible by
means of peephole optimization.

3.3.2 PowerPC Backend Extensions for the Molen Prototype:

The pure PowerPC backend we have previously presented agkinded to
generate the appropriate code for the Molen Polymorphicgssor as follows:

e SET/EXECUTE instructions are included in the MIR (Mediuavl
Intermediate Representation) and LIR (Low-level Interiatdl Repre-
sentation) of the Molen compiler. In order not to modify thewerPC
assembler and linker, the compiler generates the insbngtin binary
form. For example, for the instructioexec 0x80000CGhe generated
code is.long 1A00003where the encoding format (presented in [52])
is recognized by the arbiter.

e MOVTX/MOVFX: The equivalent PowerPC instructions amat-
dct/mfdcr Moreover, the XRs (exchange registers) are not physical re
isters but they are mapped at fixed memory addresses.

e The XRs are allocated in contiguous locations as specifi¢akiMolen
Programming Paradigm in order to allow a simple manipufatib the
parameters.

In Figure 3.5, we present the code generated by the Molen itemipr the
DCT* function call executed on the reconfigurable hardwaneorder to cor-
rectly generate the instructions for hardware configuratiad execution, the
compiler needs information about the DCT* hardware impletagon. This



40 CHAPTER 3. THE MOLEN COMPILER

la 3, 12016(1) #load the address of the first param

la 12, 12016(1) #load the address of the second param
mtdcr 0x00000056,3  #send the address of the first parameter
mtdcr 0x00000057,12 #send the address of the second paramet

sync #

nop #synchronization

nop #

nop #

bl main_label0 #instr. required by the arbiter impl.
main_labelO:

.long 0x1A000031 #exec 0x8000C

nop #synchronization

Figure 3.5: Code generated by the Molen compiler for the mégarable
DCT* execution

1: NO_XRS =512 # number of available XRs

2: STARTXR = 0x56 # the address of the first XR

3: OP.NAME =dct # info about the DCT* operation
4: SETADDR = 0x39A100 # the address of SET

5: EXECADDR = 0x80000C # the address of EXEC

k: END_OP # end of the info about the DCT*

................................. # info about other mi®Ns

Figure 3.6: Example of an FPGA Description File

information is described in an FPGA Description File, whadntains for the
DCT* operation the fields presented in Figure 3.6. Line 2 aefithe start
memory address from where the XRs are mapped. In line 3, thmpiber is
informed that there is a hardware implementation for the B@Jeration with
the microcode addresses for SET/EXECUTE instructions ddfin lines 4-5.
The syncinstruction from Figure 3.5 is a PowerPC instruction thasiees
that all instructions precedingyncin program order complete beforgy/nc
completes. The sequencessyincand nop instruction are used to flush the
processor pipeline. The SET instruction is not includechim above example
because it is not supported (yet) by the Molen Polymorphicgssor.



3.4. M-JPEG @sSE StubDYy 41

3.4 M-JPEG Case Study

In this case study we report the performance improvementiseoMolen im-
plementation on the Virtex Il Pro for the multimedia videarre M-JPEG
encoder.

The Design Flow

The design flow used in our experiments is depicted in Figufel8 the target
application written in C, the software developer introduiggagma annota-
tions for the functions implemented on the reconfigurablelvare. In these
annotations, the designer indicates the name of the assd¢iardware imple-
mentation as it is specified in the FPGA Description File. §,ihe designer
has the opportunity to select from a set of such implementatiwhich is par-
ticularly usefull for design space exploration [53]. Thestected functions
are translated to Matlab and processed by the COMPAAN[ZMJRA[55]
toolchain to automatically generate the VHDL code. The camuial tools
can then be used to synthesize and map the VHDL code on thet ERGA.
The application is compiled with the Molen compiler and txecutable is
loaded and executed on the target Molen FCCM.

M-JPEG, Software and Hardware Implementations

The application domain of these experiments is the videa dampressing.
We consider a real-life application namely Motion JPEG (REE) encoder
which compresses sequences of video frames applying JPE@ression for
each frame. The M-JPEG implementation is based on the pdbfitain im-

plementation described in "PVRG-JPEG CODEC 1.1", Portahteeo Re-

search Group, Stanford University. The input video-framassd in these ex-
periments are presented in Table 3.3. The resolution ofripatiimages is
relatively small, due to the memory limitations of the tariyeolen Polymor-

phic processor.

The most demanding function in M-JPEG application is 2D DGthreshift

and bound transforms (named DCT*). In consequence, DCTHgditst func-
tion candidate for hardware implementation. The only modifon of the
M-JPEG application that indicates the reconfigurable DCXéoeation is the
introduction of the pragma annotation as presented in Ei@ur. The hard-
ware implementation for execution of the DCT* function oe tieconfigurable
hardware is described in [56]. The VHDL code is automatjceMtracted from
the DCT* application code using COMPAAN[54]/LAURA[55] tt The Xil-

inx IP core for DCT and the ISE Foundation[57] are used tolsssize and
map the VHDL code on the FPGA. After the whole applicationdampiled



42 CHAPTER 3. THE MOLEN COMPILER

M-JPEG
encoder P -
C application ===

DCT.c

#pragma call_fpga dct|
void_dct(TBlock *in,
Thblock *out ) {

Sw ImplemerV

MOLEN COMPILER

Assembler [17]

W Implemention

Linker
[ VHDL Sy nthesizer]
PowerPC | yioLEN FPGA
405 FCCM

VIRTEX Il Pro Platform FPGA

Figure 3.7: The design flow

Name | # frames| Resolution| Format| Color/BW
[pixels]

tennis 8 48x48 | YUV color

barbara 1 48x48 | YUV color

artemis 1 48x48 | YUV color

Table 3.3: M-JPEG video sequences

with the Molen compiler described in the previous sectidre final step is
performed by the GNU assembler and linker with the C libsaiiecluded in
the Embedded Development Kit (EDK) [58] from Xilinx to geatr the ap-
plication binary files. As previously mentioned, the tarfg&CM is the Molen
Polymorphic processor with the IBM PowerPC 405 processanénsed into
the FPGA fabiric.

Performance Measurements:The current Molen implementation is a proto-



3.4. M-JPEG @sSE StubDYy 43

type version, which imposes the following constraints:

e the memory size fotext and data sections are limited to maximum
64K. In order for the M-JPEG executable to fulfill these liatibns, we
rewrote the original application preserving only the esisdrieatures
for compressing sequences of video frames. Moreover, tmgations
also restrict the size of the input video frames to 48x48lpikEable 3.3,
column 3).

e dynamic reconfiguration is not supported (yet) on the Molestgiype.
In consequence, we could not measure the impact on perfeenain
repetitive hardware configurations.

In addition, the performance measurements have been pertbgiven the
following additional conditions:

e the input/output operations are extremely expensive fer ¢hrrent
Molen prototype, due to the standard serial connectionempited by
UART at 38400 bps between the Molen Polymorphic processoitiaa
external environment; this limitation can be removed byithyglementa-
tion of faster I/O system. We therefore did not include tl@ dperation
impact in our measurements as they are not relevant for Raijgan

e the DCT* hardware implementation requires a different fatrfor the
input data than the software implementation. Consequeatiyaddi-
tional data format conversion is performed in software befand after
the DCT* execution on reconfigurable hardware.

e taking into account that the target PowerPC processor dieclun the
Virtex-Il Pro platform does not provide hardware floatingit support
and that the required floating-point software emulationxisegnely ex-
pensive, the integer DCT is used for both software and hanelimaple-
mentation to allow a fair comparison.

The execution cycles for M-JPEG encoder and comparisonprasented in
Table 3.4, Table 3.5 and Table 3.6. As we considered a seguiEr® video
frames fortennisinput sequence, we present only the minimal and maximal
values for each measurement in order to avoid redundanniafion.

Pure Software Execution: In Table 3.4, we present the results of our mea-
surements performed on the the Virtex Il Pro platform, whiea M-JPEG



44 CHAPTER 3. THE MOLEN COMPILER

tennis [0-7] barbara artemis
MIN | MAX
M-JPEG | 33,671,821| 33,779,813| 34,014,157 34,107,893
DCT* 1,242,017| 1,242,017, 1,242,017 1,242,017
DCT* 22,356,306| 22,356,306| 22,356,306| 22,356,306
cumulated
Maximal 66.18% 66.39% 65.73% 65.55%
improvement

Table 3.4: M-JPEG execution cycles on the PowerPC processor

application is entirely executed on the PowerPC processoow 1, the num-
ber of cycles used for executing the whole M-JPEG applicaisogiven. In

row 2, the cycles consumed by one execution of the DCT* fonctire given
and the next row contains the total number of cycles spent@iD From

these numbers, we can conclude that 66% of the total exectie is spent
in the DCT* function, given the input set. This 66% represehe maximum
(theoretical) improvement that can be obtained by hardweceleration of the
DCT* function. The corresponding theoretical speedup rgisimdahl’'s law
[59] - is presented in Table 3.6.

Execution on the Molen Polymorphic processor:In Table 3.5, we present
the number of cycles for the M-JPEG execution on the MoleryriRotphic
processor. From row 1 we can conclude that an overall speeti2 (Table
3.6, row 1) is achieved. The DCT* execution on the reconfiglerdardware
takes 4125 cycles (row 2) which is around 300 times less tharsoftware
based execution on the PowerPC processor (Table 3.4, rolW®yever, due
to the data format conversion required by the DCT* hardwamglémentation,
the overall number of cycles for one DCT* execution becon@z 389 (Table
3.5, row 3), resulting in a 10 fold speedup for DCT* and a 2 &sxjup globally.

The performance efficiency (defined as the ratio betweendhieeed speedup
and the maximum speedup) is about 84% as presented in T&)la& col-
umn. It is noted that this efficiency is achieved even though:

e the hardware implementation has been automatically butopsimally
obtained (using COMPAAN[54])/LAURA[55] tools)

e additional software data conversion diminished the DCTéegfup in
hardware.



3.5. CONCLUSIONS 45

tennis [0-7] barbara artemis
MIN | MAX
M-JPEG | 13,443,269| 13,512,981| 13,764,509| 13,839,757
DCT* HW 4,125 4,125 4,125 4,125
DCT* HW + 102,589 102,589 102,589 102,589
Format conv.

Table 3.5: M-JPEG execution cycles on the Molen Polymorphicessor

tennis [0-7] barbara| artemis
MIN | MAX
Practical 2.50 2.51 2.47 2.46
speedup
Theoretical 2.96 2.98 2.92 2.90
speedup
Efficiency | 84.17%| 84.65% | 84.70% | 84.91%

Table 3.6: Comparison of M-JPEG execution cycles for SW/Htation

From these measurements, we can conclude that even nonizgatiimple-
mentation can be used to achieve considerable performammevements. In
addition, taking into account that only one function (DC&executed on the
reconfigurable hardware, we consider that an overall M-JB#&dup of 2.5x
from the theoretical speedup of 2.96 x confirm the viabilifythee presented
approach.

In these experiments, the DCT hardware implementationdgkbaded on the
reconfigurable hardware and it is not changed during theicgjun execu-
tion. However, for an extensive usage of the reconfigurabidvaare, multiple
kernels with overlapping reconfigurable areas should bsidered.

3.5 Conclusions

In this chapter, we presented the Molen compiler framewoitk wmphasis
on the Molen PowerPC compiler backend we have developedéMolen
Polymorphic processor. The compiler allows the automagindlation of the
application source C code using the extensions followiregMiolen Program-



46 CHAPTER 3. THE MOLEN COMPILER

ming Paradigm. We also presented a complete experimenevhaiated the
effectively realized speedup of reconfigurable hardwaezetion of the DCT*
function of the M-JPEG application. The generated code waswged on the
Molen Polymorphic processor and showed a 2.5 speedup. peedsp con-
sumed 84% of the total achievable speedup which amount8tdaking into
account that hardly any optimization was performed and onkyfunction ran
on the reconfigurable fabric, a significant performance oapment was nev-
ertheless observed. We emphasize that we do not compar&tpafddigm to
other approaches for multimedia applications boostindoperance (such as
MMX, 3DNow!, SSE) which use dedicated hardware accelesat®he focus
of this chapter was rather on the compiler support for theeidtCCM under
the RC paradigm.

In the following chapters, we will investigate the speciafures of the target
reconfigurable architectures and propose advanced caropilienizations and
analyses to efficiently exploit the advantages of the ugaeylreconfigurable
hardware.



Chapter 4

Dynamic SET Instruction Scheduling

The latest commercial FPGA platforms now offer support fartial and dy-
namic hardware configurations. Nevertheless, one of thainmrawback re-
mains the huge reconfiguration latency. In order to hidelgtency, compiler
support is fundamental to automatically schedule and aptirthe compiled
application code for efficient reconfigurable hardware esag

When dealing with reconfigurable hardware, the compileughbe aware of
the competition for the reconfigurable hardware resour€&¥GA area) be-
tween multiple hardware operations during the applicaégacution time. A
new type of conflict - called in this thesis "FPGA area placetreonflict” -
emerges between the hardware configurations that canneisttegether on
the target FPGA due to a predefined spatial mapping.

In this chapter, we propose a general instruction scheglaligorithm that au-
tomatically minimizes the number of required hardware gpntions taking
into account both the "FPGA area placement conflicts” andctieracteris-
tics of the compiled software application. More specifigathe algorithm

anticipates the hardware configurations in less frequenthcuted application
points avoiding the "FPGA area placement conflicts”.

The chapter is organized as follows. In the following settiwe present back-
ground information and related work. In section 4.2, we dbsdhe goals and
the motivation of the proposed algorithm. A formal deséaptof our schedul-
ing problem is included in Section 4.3. Section 4.4 intragluthe instruction
scheduling algorithm. The M-JPEG case study is discuss8edtion 4.5 and
finally, we present conclusions and future work.

47



48 CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING

int fib( int n){
int fO =0, f1 =1, fn, i;
if(n <= 1){
fn =n;
}
el se {
for(i = 2; i <=n; i++){
fn=f0+ f1;
fo = f1;
fl1="fn;
}
}
return fn;
}

Figure 4.1: C code for the computation of Fibonacci numbers

4.1 Background and Related Work

In this section, we present the basic compiler optimizatiackground includ-
ing data flow analysis and control flow graph representati@t is used by
the proposed instruction scheduling algorithm descrilveddtail in Section
4.4. Additionally, we present related approaches for ttoppsed scheduling
algorithm in the context of reconfigurable hardware usage.

4.1.1 Control Flow Graphs

A common representation of the input application used fongiter optimiza-
tions and analyses is tlwontrol flow graph(CFG), which is a graph that por-
trays all paths that might be traversed during the appboatixecution. Each
node in the graph is basic block i.e. a maximal sequence of consecutive
instructions, which may be entered only at the beginningexigd only after
the execution of the last instruction of the sequence. Theessor/predecessor
relation between the nodes of the graph reflects the conowl df the appli-
cation.

As an example, we present in Figure 4.1 the C code for compiibonacci
numbers with the associated intermediate code as genénatezlMolen com-



4.1. BACKGROUND AND RELATED WORK 49

piler depicted in Table 4.1. The control flow graph for the Ggram is shown
in Figure 4.2. As shown in Table 4.1, the instructions areugeal in basic
blocks which are the nodes of the final CFG from Figure 4.2.example, the
for loop from Figure 4.1 consists of B3, B4 and B5 basic block$\ei¢ and
B5 included in the cycle of the CFG from Figure 4.2.

The algorithm for partitioning a list of instructions in bablocks starts with
the identification of théeaderinstructions, which are the first instructions of
the basic blocks. As presented in [60] and [61], a leaderungbn can be:

e the entry point of a procedure
e an instruction which is a target of a branch instruction

e an instruction which immediately follows a branch or retumstruction

Theleaderinstructions are deliminators of the basic blocks; eacliciasck
start with a leader instruction and includes all conseeuitstructions till the
nextleaderinstruction (see Figure 4.1).

After the identification of the basic blocks, the control flgsaph is con-
structed by first adding two special basic blocksitry andexit These two
nodes are added for the simplicity of the algorithms fortartoptimizations
and transformations. Thentry node is connected to the initial basic block
(with no predecessor) and te&it node is connected to the final node (with no
successors). The edges of the graph are added to represemintnol flow of
the application. An edge (Bi, Bj) is included in the CFG if:

e there is a branch from Bi to Bj, or

e Biand Bj are consecutive basic blocks and the final instonctif Bi is
not an unconditional branch

Throughout this thesis, we denode a control flow graph astdidegraph

G =< N,E >, with N the set of nodesentry € N, exit € N, and

E C N x N. An edge from a node n to a node m is denoted as (n,m). Further,
we define the set of successors and predecessors as follows:

Succ(n) ={m € N | 3(n,m) € E}

Pred(n) ={m € N | 3(m,n) € E}



CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING

BO | entry

mrk 2, 1

Idc $vr0.s32— 0

mov fib.fO «— $vr0.s32

Bl | Idc $vr1.s32— 1

mov fib.f1 « $vr1.s32

Idc $vr2.s32— 1

bgt fib.n,$vr2.s32,fibFibonacciTmp7
mrk 2, 5

B2 | mov fib.fn— fib.n

jmp fib._FibonacciTmp8
fib._FibonacciTmp7:

mrk 2, 8

B3 | Idc $vr3.s32— 2

mov fib.i <+ $vr3.s32

B4 | fib._FibonacciTmpb5:

bgt fib.i,fib.n,fib_FibonacciTmp4
mrk 2, 9

add $vrd.s32— fib.f0,fib.f1

mov fib.fn « $vr4.s32

mrk 2, 10

mov fib.fO «— fib.f1

mrk 2, 11

B5 | mov fib.f1 « fib.fn

mrk 2, 8

mov fib_FibonacciTmp6— fib.i
Idc $vr6.s32— 1

add $vr5.s32— fib._FibonacciTmp6,$vr6.s32
mov fib.i — $vr5.s32
jmp fib._FibonacciTmp5
fib. _FibonacciTmp4:
B6 | fib._FibonacciTmp8:
mrk 2, 14

ret fib.fn

B7 | exit

Table 4.1: MIR intermediate code for the C code from Figufe 4.



4.1. BACKGROUND AND RELATED WORK 51

B0

BO
Bl
B3
B6
7

] [

=

87

Figure 4.2: Control flow graph for the C code from Figure 4.1

4.1.2 Data Flow Analyses

A large number of compiler optimizations require the exaation of the entire
program. For example, when an assignment of a variable gwitside effects)
is not used further in the application, it can be safely reegbvin order to
determine if the variable is used later, the whole applicathust be analyzed.

A typical example for data flow analysis is the well-knownaleiag definition
problem. A definitiond of a variablev reaches a poirpt in the application if:

e there is a path frond to p

e variablev is not redefined on the path frodto p (also expressed akis
not killed).

The first step of computing the reaching definitions is to figthe definitions
of the target application and to associate them to a unicgmtifier. In Figure
4.3, we present a simplified version of the control flow gragmf Figure 4.2
and Table 4.1, with the nine definitions representedds...dy.



52 CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING
GEN KILL
BO - 000000000 - 000000000
B1 | dideds  111000000| drdg 000000110
B2 dy 000100000 dg 000001000
B3 ds 000010000 dy 000000001
B4 - 000000000 - 000000000
B5 | dgd7dgdg 000001111| dodsdsds 011110000
B6 - 000000000 - 000000000
B7 - 000000000 - 000000000

Table 4.2: GEN and KILL sets for the CFG from Figure 4.3

In the next step, the local information associated with dsdic block is com-
puted. More specifically, for the considered problem, wesdeine two sets
of elements, namely GEN and KILL. The GEN set (generated itiefis) for

basic block B contains all the definitions included B whichale the end of
the basic block. The KILL set (killed definitions) of a basiodk B includes
all the definitions outside B that redefine identifiers alyedédfined in B.

For an efficient computation of these sets and of additioatd low informa-
tion, the sets of definitions (or application objects, fog tieneral case) are
represented as bit vectors. In many dataflow analyses, gi¢sentation (0/1)
is a powerfull mechanism that efficiently represents thelireg informations.
In the considered example, we assume that the definitigmassociated with
bit ¢ from a bit vectorb;bs...b,,. The GEN and KILL sets for the CFG from
Figure 4.3 are presented in Table 4.2.

The next step is the propagation of the local informatiorh €FG using the
following data flow equations for each basic block i:

RDout(i) = GEN (i) U (RDin(i) — KILL(i)) (4.1)

RDin(i)= | J RDout(j) (4.2)
j€Pred(i)

RDin(entry) =0 (4.3)

The above equations are used for the computations of twoofetlements
RDout and RDin which reflect the reaching definition for thérerprocedure.
Thus, a definition is reaching the output of a basic blocksé&g Equation 4.1):



4.1. BACKGROUND AND RELATED WORK 53

BO | entry

Bl

di| receive n

d2| f0=0

d3| f1=1

bgt n,1,tmp7

T

tmp7:
d5| i=2

B2

d4| fn=n
jmp tmp8

; B4

tmp5:
bgt i,n, tmp4

BS

de| fn=f0+fl
d7| fo=f1
B6 dg| f1=1fn

tmp4, tmp8: do| i=i+l
ret fn jmp tmp5

[
B7 | exit

Figure 4.3: Schematic CFG for the C code from Figure 4.1

e itis generated by the basic block i, or

e it is reaching the input of basic block i and it is not killedtime basic
block i.

From Equation 4.2, a definition is reaching the input of adasick i if it is
reaching the output of one of the predecessors of i. In thilization phase
(see Equation 4.3), we assume that there is no definitiond¢hahes the entry
node.

For solving the above equations, the most frequently usethadés the it-
erative computation, where the input and output sets (RbahRDout) are
iteratively computed till they converge to a fixed set of eduwhich will not



54 CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING
Iteration 1 Iteration 2
IN ouT IN ouT
BO | 000000000 00000000 000000000 000000000
B1 | 000000000 111000000000000000 111000000
B2 | 111000000 111100000111000000 111100000
B3 | 111000000 111010000111000000 111010000
B4 | 111010000 111010000111011111 111011111
B5 | 111010000 100001111111011111 100001111
B6 | 111110000 111110000111111111 111111111
B7 | 111110000 111110000111111111 111111111

Table 4.3: RDin and RDout sets for the CFG from Figure 4.3

change in the following iterations. For the reaching definioroblem, the re-

sults of each iteration are presented in Table 4.3. For theidered example,
only two iterations are required to reach the fixed set ofesliBased on these
results, we can conclude that all definitions can reach tla iode B7.

4.1.3 Related Work

As presented in the previous chapter, the code generatelgebylolen com-
piler for a hardware operation (an operation performed @nrétonfigurable
hardware) includes i) parameter passing, ii) the SET iefitvg, iii) the EX-
ECUTE instruction and iv) returning the computed resulthisTsequence of
instructions where the SET instruction is immediatelydaled by the associ-
ated EXECUTE instruction is referred to in the rest of thisdis as "simple
scheduling”.

In [62], it has been reported that this simple schedulingdpoes signifi-

cant performance decrease due to the huge reconfiguratemciaof current

FPGA. Many approaches for reducing the reconfiguratiomatare hardware
approaches, such as coarse grain reconfigurations or roatéext FPGAs (see
[27]) and hardware configuration prefetching (see [63] [6Bowever, the re-
configurable hardware market is still mainly dominated byGARB and there
are few approaches that address the reconfiguration owkissase at compiler
level. In order to deal with this drawback, an instructioheguling algorithm

has been proposed in [65] for a particular case when therdysome hardware
operation in the whole application. The main idea is to mteeSET instruc-

tions outside loops in order to eliminate redundant haréveanfigurations.



4.2. MOTIVATION 55

In order to achieve significant performance improvementdalt applications,
more than one operation is usually implemented in hardwasehe available
area of the reconfigurable platforms is limited, the coexise of all hard-
ware configurations on the FPGA for all application exeautiime may be
restricted. Moreover, hardware implementations of thgserations can be
developed by different IP providers that can impose a preddfFPGA area
allocated for each operation, resulting "FPGA-area plaa@nsonflicts”. Two
hardware operations have an "FPGA-area placement conf{mtgust con-
flict in the rest of the thesis) if i) their combined reconfighle hardware area
is larger than the total available FPGA area or ii) the irgeti®n of their hard-
ware areas is not empty. In Figure 4.4(a) we sketch a posEiB@A area
allocation for three operations performed on the FPGA. Weeoke that opl
and op2 cannot fit together on the FPGA (thus opl conflicts ap®) while
op2 and op3 have a common overlapping area (thus op2 confiitttop3).

In [66], a run-time heuristic scheduling algorithm is prepd for applications
with deterministic behaviour. Such scheduling requiresitkd information
for all tasks (including all software tasks) of the applioatand imposes lim-
itations due to the deterministic behaviour of the targgtliaption. A com-
piler approach that considers the restricted case of twgemirtive and non-
conflicting hardware operations is presented in [67]. |8 #proach, the hard-
ware execution of the first operation is scheduled in pdraditn the hardware
configuration of the second operation. Our approach is mene@l as it per-
forms scheduling for any number of hardware operations atguural level
and not only for two consecutive hardware operations. Thitopaance gain
produced by our scheduling algorithm results from redudimg number of
performed hardware configurations. The proposed algorithgimilar to the
standard compiler optimization for partial expressionurdiancy elimination
presented in [68], with emphasis on the "FPGA-area placemanflicts” be-
tween the hardware operations, as described in Section 4.4.

4.2 Motivation

Figure 4.4(b) shows the control-flow graph of a procedureembpl, op2
and op3 operations are performed on the reconfigurable lzmedand they are
placed on the FPGA as presented in Figure 4.4(a). The nunalssxiated
with each edge of the graph represent the execution fregueithe edge.
One first observation is the redundant repetitive execuWdf@®ET opl instruc-
tion from B5 in the loop B4-B5-B6. Additionally, it should beoticed that



56 CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING

moving this SET op1l instruction on (B1, B2) edge will also makdundant
the SET op1l instruction from B13. In the initial simple schkag, the FPGA
is configured for opl 100 times in B5 and 10 times in B13. As altex
our scheduling algorithm, the hardware configuration fat afll be executed
only 20 times. The hardware configuration for op2 from B10nz#rbe moved
further then B7, as it will change the hardware configurafmrop3 that must
be performed in B7. There are no redundant configuration®f8; thus the
hardware execution of op3 has to be preceded each time bytbe/are con-
figuration. When the hardware configuration consumes allpgréormance
gain produced by the hardware execution of op3, the schedateswitch to
its software execution on the GPP (General-Purpose Pragess

In this chapter, we propose a general approach for intrggha@l instruction
scheduling of the hardware configuration instructionsrgkinto account the
"FPGA-area placement conflicts”. It is based on the statarb€ompiler op-
timization for partial expression redundancy eliminatfmesented in [68]. In
order to incorporate the "FPGA-area placement conflictsiveen the hard-
ware operations, we introduce a new data-flow analysis asibed in Section
4.4. Additionally, it can switch for one operation from hesare execution to
its software execution when the hardware operation previtdeperformance
improvement even after the scheduling phase.

4.3 Problem Statement

We represent the control flow graph of a procedure as a diegtaph G

< N, E,w > where the nodes N represent the basic blocks, the edges E rep-
resent the control flow dependencies and the weight funatiorE — R™
represents the execution frequency of each edge. The @peranplemented

in hardware are included in HW set. We defiRé’ I, the set of basic blocks

n € N that contain an instructioBET ogmmediately followed by XEC opin-
struction - the input graph G contains the SET and EXECUTEuintions for

an operation in consecutive order according to the simgieduling. A node

ne DEF,, is called a definition node for op. In our example from Figur, 4

B5 and B13 are definition nodes for op1.

An "FPGA-area placement conflict” between two operations apd op2 is
represented as opd op2. The information about these conflicts is provided
by a symmetric function f: HW x HW— {0,1}, where f(op1, op2) = 1 if
opl « op2, and 0 otherwise. We define the set of conflicting nodesrffior



4.3. PROBLEM STATEMENT 57

FPGA AREA ALLOCATION

INITIAL: e 0 FINAL:

#SETopl : 100+ 10 = 110 B1l rend c #SETopl : 20

#SET op2 : 200 + 10 = 210 #SET op2 : 10+10= 20

#SETop3 : 10+10= 20 |20 #SET op3 : 10+10= 20
~SET|opL |

B13

B14

OP1

OPZW

a) b)

Figure 4.4: Motivational example for instruction schedgliof hardware con-
figurations (b) with FPGA-area placement constraints (a)



58 CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING

operation op as follows:
Conflicty, = {n € N|Jop; € HW,n € DEF,,, Nop < op;}.  (4.4)

Anode ne Con flict,, is called a conflict node for op. In Figure 4.4, B10 and
B14 are conflict nodes for both opl and op3.

In order to simplify this discussion, we make the followingsamptions. We
assume that there is a singlatry node with no predecessor (pred(entryfj,=
where pred(n)¥m € N | (m,n) € E}) and a singlexit node with no successor
(succ(n) =0, where succ(n)fm € N | (n,m) € E}). Also, we assume that
a node cannot be simultaneous/¥ F;,, andCon flict,,. In consequence,
when more conflicting operations are included in the samé baxde, this
node must be split into a set of nodes, one for each operafibe. final as-
sumption is that only the SET/EXECUTE instructions incldde the CFG
affect the reconfigurable hardware.

For each operation op, we consider a set of insertion edges. E. The
merit of 6, is measured by the functiois = 3_..; w(e). Loosely stated,
the objective of our algorithm is to move upwards the SETruwdtons from
DFEF,, on less frequently executed edges, in order to reduce takrtoiber
of performed SET instructions. A formal description of tiigoblem is as
follows:

PROBLEM Given a directed, weighted graph & N, E,w > and a set of
hardware operations HW, each defined/iF,, C N and with conflicts in
Conflict,, C N, find a set of insertion edgésC E for each opc HW which
minimizesi¥s under the following constraints:

e ¥V n e DEF,,, for all paths fromentry to n, there is an insertion edge
(u,v) €9,

e Bke Conflict,, such that k is included in any subpath from v to n

The minimization ofi¥y guarantees that a smaller or equal number of SET in-
structions will be performed in the final CFG graph than initiput graph. The
first constraint reflects the requirement that hardware gardition (the SET
instruction) must precede the hardware execution (the EXiS€uction) on

all paths. The second constraint assures that no conflicatipe will change
the hardware configuration before the operation execution.



4.4, INSTRUCTION SCHEDULING ALGORITHM 59

4.4 Instruction Scheduling Algorithm

The problem of removing redundant hardware configuratisrsmilar to the
well-known problem of removing redundant expressions. Asltvare con-
figurations do not cause any exception, we can use an aggregmculative
scheduling for the hardware configurations in order to @pdite them on less
frequently executed paths and thus, to make redundant tievage configu-
rations from frequently executed paths. We introduce thedualing algorithm
that solves the problem defined in the previous section ieetisteps. In the
first step, the subgraphs where the hardware configuratiem$e anticipated
are constructed. Next, a minimum s-t cut algorithm is agpteefind the op-
timal insertion edges,,, for each hardware operation. Finally, a switch from
hardware to software execution is introduced for the cads=nwhe expense
of hardware configurations in the newly inserted nodes atitperforms the
performance gain of hardware execution.

4.4.1 Step 1: The Anticipation Subgraph

Constructing the anticipation graph is a key step in our riigm. The main
goal is to eliminate from the initial graph the edges thatncdmpropagate up-
wards the SET instructions due to hardware conflicts. Tkip sbntains two
uni-directional data-flow analyses and one pass for coctiigi the anticipa-
tion subgraph by removal of non-essential edges.

Partial Anticipability

A hardware configuration for operation op is partially aiptated in a point m
if there is at least one path from m to the exit node that castai definition
node for op and none of the paths from m to the first such defimitiode
contains a conflict node for op.

A confluence conflict node n is a node with two successors ssasdch that
opl is partially anticipated at the entry point of s1, op2astially anticipated
at the entry point of s2 and opt op2. Due to hardware conflicts, opl and
op2 cannot be both anticipated in the confluence conflict mod&e consider
a restricted partial anticipability analysis where the fagence conflict nodes
limit the partial anticipability for both opl and op2. Thsa backward data-
flow problem, where the data-flow equations for a basic blamleidefined as
follows:



60

Conflicts:
opl /= op2
op2 </= op3

B3

NT={op1, op3

PANT={op1, op3}
B1l| readc

PANT={op1, op3}

PANT={op1, op3}

CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING

PANT=({op1, op3}B 4 PANT={op1}
PANT={op1, op3} SET opl
PANT={op3 PANT={op1, 0p3) EXECF:)pl B13
SET opl AVAL={op1}
B7 B ExEC op1 Tt oy | PANTOP2
=0pl, op
AVAL={op3 AVAL={opl - PANT={op2
PANT-{op2) PANT=(ob1. 053} Ly TRl AUAL=(op1}
AVAL={op3} PANT={op2} AVAL={op1} SET op2
B8[j=0 PANT={op1, op3} EXEC op2 Bl4
AVAL={op3} AVAL={op2}
_ PANT={op3}
BO[j< {op2} PANT={op3}
PANT={op2} AVAL={op2}
EXEC op2 B15
PANT={op2
B1 AVAL0p2) i i
PANT={op2} B11 AVAL={op3}
AVAL={op2}
PANT={op2}

Figure 4.5: Set of PANT and AVAL values for the input graphrfréigure 4.4

exit



4.4, INSTRUCTION SCHEDULING ALGORITHM 61

PANTin(i) = Gen(i) U (PANT out (i) — Kill(7)) (4.5)

PANTout(i)= |4 PANTin(j) (4.6)
jESuce(i)

PANTout(exit) = () 4.7)

In the first equation, Gen(i) is the set of hardware operatigenerated in the
basic block i. A hardware operation opl is generated in achalsick i if i
€ DEF,, . The set Kill(i) includes all hardware operations that areanflict
with the operations generated in the basic block i.

According to Equation 4.5, a hardware operationcopPANTIn(i) is partially
anticipated at thentryof a basic block i if it is generated in i or if it is partially
anticipated at the exit of i and it is not killed in i.

The second equation differs from standard data-flow egugfiovolved in it-
erative data-flow analysis where the join operatdrjier (). The operatoi
is a conditional reunion that excludes the conflicting hanoperations and
defined as follows:

AWB={ze AUB| Bye AUB,z «» y}

This operator is used to stop the partial anticipability lé bperations with
hardware conflicts at confluence points. According to 4.6ara\vare opera-
tion op € PANTout(i) is partially anticipated at the exit of a basiodk i if it
is partially anticipated at the entry of any successor ofd ais not a conflict
confluence node for op. In Figure 4.5, we present the valugBANT for the
input graph presented in Figure 4.4. Based on these valiesawdetermine
that the SET instructions for op1l and op3 can be safely satied till B1. For
the basic blocks where these values are missing, there ity assumed
asi.

Availability

A hardware configuration for operation op is available at app if every
path from the entry node to p contains a definition node for rog a&ter this
node, there is no conflict node prior to reaching p. We usetdredard forward
data-flow analysis for availability described by the foling set of data-flow
equations:



62 CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING

AV ALout(i) = Gen(i) U (AVALin(i) — Kill(i)) (4.8)

AVALin(i)= ()| AVALout(j) (4.9)
j€Pred(i)

AV ALin(entry) =0 (4.10)

The Gen and Kill sets are the same as in the previous data-flokgm for
partial anticipability. As the availability problem is egkd to the paths from
the entry node, it is expressed afoavard data-flow analysis. According to
Equation 4.8, an operation is available at the exit of a bbkick i if it is
generated in the basic block i or it is available at the inpud & is not killed
in the basic block i. Subsequently, an operation is avalablthe input of a
basic block i if it is available at the exit of all predecessof basic block i, as
expressed in equation 4.9.

This analysis is used to eliminate the hardware configuratishen they are
already available. The values for AVAL for our example grapk presented
in Figure 4.5. For example, we notice that in B14, opl is alsd at the input
but not at the exit of B14, as it is killed by the hardware camfegion of the
conflicting operation op2.

Constructing the Anticipation Graph

Based on the previously presented data-flow analysis sedolt each oper-
ation ope HW we eliminate from the initial graph the nodes which are not
essential as follows. We call an edge (u,v) an essential fedgmp if

Ess(u,v) = {(u,v) € Elop ¢ AV ALout(u)Nop € PANTin(v)}. (4.11)

The reduced grapt¥,; contains the nodes
Nyq={n € N|3m € N, Ess(n,m) V Ess(m,n)}
and the edges

E,q={(u,v) € E|Ess(u,v)}.

By construction, the reduced graph may contain a set of disected sub-
graphs. In order to connect them, we introduce a new pseutlty pade
(called s) and a pseudo exit node (called t) and the edges= {(s,n)|n



4.4, INSTRUCTION SCHEDULING ALGORITHM 63

a) b)

Figure 4.6: The anticipation graph for op1 (a), op2 (b) an8@ @) from Figure
4.4

has no predecessor M,,} | J{(n,t)|n has no successor iN,.4} with infinite
execution frequency, in order to guaranty that the newlsoohiced edges will
not be included in the final set of insertion edges. For oungta from Figure
4.4, the anticipation graphs are presented in Figure 4.6.

4.4.2 Step 2: Minimums-t Cut

In this step, the set of insertion edges from our problem d&finis deter-
mined by applying a minimum s-t cut algorithm. The purposé¢hefmin cut
algorithm is to select the less frequently executed edges the anticipation
graph on all paths to the definition nodes. In consequeneemih cut algo-
rithms assures the minimization requirement and the firssraint from our
problem definition, while the construction of the anticipatgraph secures the
second constraint.

One of the important advantages of using a min cut algorithto avoid mov-
ing upwards SET instructions on edges inside loops. In otimapation, we
used Edmonds-Karp minimum s-t cut algorithm[69] from Ma=dad0]. For
the three hardware operations from Figure 4.4, their mimmuuts are pre-



64 CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING

sented in Figure 4.6. We notice that for op3 (depicted in FEgu6 (c)), the
SET instruction from B7 can propagate further then B2 (onee(®il, B2)).
The minimum cut algorithm chooses the edge (B2, B3) as itsigian fre-
quency is smaller (10 versus 20 for (B1,B2)).

4.4.3 Step 3: Selection of Software/Hardware Execution

In the cases when, even after our scheduling, the hardwarfeggacation and
execution is more expensive than the pure software exexgutie scheduling
algorithm can switch for this operation from hardware exiruto software
execution. In this case, all the SET instructions for thigration are elim-
inated and its EXECUTE instructions are replaced by stahdatls to the
associated software function. In our example from Figude dp3 may be in
this case if one hardware configuration and one hardwareuérecis more
expensive than one software execution.

In order to determine which operations are switched to smfwexecution,
the compiler reads the needed information about softwaréyare features
of each operation from a special file, named FPGA descripfien The
relevant information include the reconfiguration overheBBGA area, soft-
ware/hardware latency, execution frequency, etc.

4.5 M-JPEG Case Study

The presented instruction scheduling algorithm has begieimented as a
MachSUIF pass [43] within the Molen compiler which genesatede for the
Molen Polymorphic processor implemented on the Virtex kb FPGA plat-
form. The overall time-complexity of the scheduling alglonh is mainly de-
termined by the two data-flow analyses and the min s-t cutriéthgo. For the
data-flow analyses, the time complexity in the worst-cage(jsv| « (b + 2)),
where b is the maximum number of back edges on any acyclidpétie graph
G. The time complexity of the Edmonds-Karp algorithnOig N | « | E|?), thus
the proposed scheduling algorithm has an overall polynbtiniee complexity.
The compilation time spent in the scheduling phase for thesidered appli-
cations is negligible (around 1 s) compared to the overafigitation time.

The target C application of this case study is the multimégiachmark Mo-
tion JPEG (M-JPEG) encoder and the input sequence contaiosi@r frames
from "tennis” in YUV format with a resolution of 256x256 pile The op-
erations performed on the FPGA dCT (2-D Discrete Cosine Transform),



4.5. M-JPEG @sE STuDY 65

HW Execution SW Execution
Op EXEC | Area SET || Onecall| %Total
Name | [cycle] | [slice] | [cycle] [cycle] | M-JPEG
DCT 416 848 | 431771 44396 80 %
Quant 73 397 | 202073 1494 3%
VLC 272 193 | 98237 6921 125%

Table 4.4: HW/SW features for the operations that candiflatédhardware
implementation

QuantizationandVLC (Variable Length Coding). The Xilinx IP cores for DCT
[71], Quantization [72] and VLC [73] are used for the estiioas of the hard-
ware implementations. The GPP included in the Molen proitig the IBM
PowerPC 405 processor at 250 MHz.

We present in Table 4.4 the characteristics of DCT, Quatitizeand VLC
hardware and software executions. Based on the charaicterisf the
XC2VP20 chip, for which a complete configuration of 9280editakes about
20 ms, we estimated the configuration time for each operdfiahle 4.4, col-
umn 4) in terms of PowerPC processor cycles.

The profiling results for the software execution from Tablé dre based on
simulations using the PowerPC simulator from Simics [74pntparing the
values from Table 4.4 (column 4 and 5), we notice that theward configu-
ration alone is about 10 times more expensive than the caenpddtware exe-
cution. Using Amdahl’s law[59], we determine that the sismptheduling (as
described in Section 4.1) for DCT will slowdown the M-JPEGtlemark up
to 10x. For this reason, we compare the performance of owdidimg algo-
rithm to the pure software approach rather thanittefficientsimple schedul-
ing.

The estimated performance for the M-JPEG application fieidint possible
conflicts between the three hardware operations are pexbémtFigure 4.7.
The standard unit of this comparison is the pure softwareuwi@ (SW) when
the M-JPEG benchmark is completely performed on the GPRealdhe per-
formance of our instruction scheduling algorithm for thalr¥ilinx hardware
implementations is denoted as REAL. As recently some haelapproaches
[75] have been proposed for reducing the hardware configuréine, we also
analyze the impact of our scheduling algorithm when theward configura-
tion is accelerated by a factor of 20xompared to the current values from

1 The factor has been chosen arbitrarily. Mutatis mutandiisila observations will then



66 CHAPTER 4. DYNAMIC SET INSTRUCTION SCHEDULING

E SW B Real [0 Fast B Ideal

100% _

75% 4.

50% | .

25% .

0% |

No conflict DCT-Quant Quant-VLC DCT-VLC DCT-Quant-

conflict conflict conflict VLC conflict

Figure 4.7: Comparison of estimated performance for oueduating algo-
rithm for M-JPEG benchmark

Table 4.4, column 4. The performance of our instruction dakieg algorithm

combined with this faster hardware configuration is preseitim Figure 4.7 as
FAST. For completeness, we also present the IDEAL case wieehardware
configuration is performed in zero cycles.

We notice that for the "no conflict” case, the performance riowvpment is
about 94 % (equivalent to a 16x speedup) for both REAL and FASiedul-
ing and very close to the IDEAL performance. In this case,ittstruction

scheduling algorithm moves the hardware configurationsafothree opera-
tions at the procedure entry point. In consequence, thamlysone hardware
configuration for each hardware operation, thus the diffeecbetween REAL
and FAST is negligible.

For the rest of the "conflict” cases, the scheduler for REAIl suwitch from
hardware execution to software execution for the conflictiperations. For
example, when there is a DCT - Quantization conflict, the dolee will move

hold.



4.6. CONCLUSIONS 67

both DCT and Quantization operation in software, while thigltnon conflict-
ing operation VLC remains in hardware; its hardware confiion needs to
be performed only once, at the procedure entry point.

For the FAST scheduling, even when one operation has a dpiitflinay re-

main in hardware, thanks to the 20x faster hardware confiigura For the
case with DCT - Quantization - VLC conflicts, both DCT and VLf& per-

formed in hardware and produce a performance improveme#a8 @b as the
fast hardware configuration does not consume all perforenga of the hard-
ware execution. The scheduler selects the software execiati Quantization,
in order to prevent a performance decrease produced by iitsviage config-
uration and execution (16 % for Quantization). Therefohe performance
improvement for simple scheduling (all operations exetuip the reconfig-
urable hardware) and 20x faster reconfigurations is 27 %enthil scheduling
algorithm contributes to a performance improvement betw&®% and 94 %
compared to SW.

In consequence, we notice that for the non-conflict casealgarithm capi-
talizes the maximum performance gain that can be obtaindshlgware ex-
ecution of the considered operations. Finally, the requiésented in Figure
4.7 emphasize the important performance impact of our sdimepalgorithm
even for the future faster FPGAs.

4.6 Conclusions

In this chapter, we have introduced a general schedulingrighgn for hard-

ware configuration instructions. This algorithm takes iatcount specific fea-
tures of the reconfigurable hardware such as the "FPGA aseplent con-
flicts” and the reconfiguration latencies of each hardwareratpons. Based
on the characteristics of the compiled application, theedaling reduces the
number of performed hardware configurations preservingath@ication se-
mantics. It combines advanced compiler techniques (sudatasflow analy-

ses) with powerful graph theory algorithms (min s-t cut).

The results of our case study show that the performance matieally im-
proved by using our scheduling algorithm, and this improgatiwill hold for
future faster FPGA platforms. In the next chapter, we prepas extension
of the presented scheduling algorithm where the anticpadf the hardware
configuration instructions is applied at the interprocedilavel.






Chapter 5

Interprocedural SET Scheduling

As presented in the previous chapter, the potential speefiilne kernel hard-

ware executions can be completely wasted by inappropregetitive hard-

ware reconfigurations. In this chapter, we thoroughly itigage the impact
on the overall performance of hardware reconfiguration lowad and present
an interprocedural optimization that extend the antiegrabf the hardware
configuration instructions at the interprocedural levelor® specifically, we

study and compare four cases: a) the pure software approaeh the whole

application is executed only on the GPP; b) the simple sdhmegdaf hardware

configurations when each hardware execution is precedelebgdrrespond-
ing hardware configuration; c) the execution of only one fiorcon the re-

configurable hardware when only a single hardware configuras needed

and d) the proposed optimization that anticipates the harelweconfiguration

instructions.

The chapter is organized as follows: in the next section, r@egnt a motiva-
tional example to illustrate the proposed optimization #@sdesults for a real
application. The interprocedural optimization algoritisrdescribed in details
in Section 5.2. Consequently, we present a profiling expaminand analyze
the impact on performance of the hardware reconfiguratiortifie MPEG 2

benchmark for the considered study cases. Finally, we adeclvith Section

5.4.

69



70 CHAPTERS5. INTERPROCEDURALSET SHEDULING

5.1 Motivational Example

In order to illustrate the goals and the main features of tbpgsed interproce-
dural optimization, we present in Figure 5.1 a motivatiomal example. The
presented subgraph is included in the call graph of the MP&@2der multi-
media benchmark where an edgep;, p; > represents a call from procedure
p; to procedurep;. We consider that the procedures SAD, DCT and IDCT are
executed on the reconfigurable hardware and that initin#yhiardware config-
uration (a SET instruction) is performed before each hardvexecution (an
EXEC instruction), according to the simple scheduling présd in Section
4.2.

One first observation is that the configuration for the SADrapen can be
safely anticipated in thenotion_estimation procedure. This anticipation will
significantly reduce the number of performed hardware condigions as it will
not be performed for each macroblock but only for each fraftb@input se-
quence. This observation also holds for the DCT configunaiticransform
and the IDCT configuration iitransform. Moreover, the SAD configuration
from motion_estimation can be moved upwards in tipaitseqprocedure, im-
mediately preceding the call site ofotion_estimation in putseq Addition-
ally, it can be noticed that the propagation of the SAD coméitjan fromput-
seqto themain procedure depends on the FPGA area allocation for SAD, DCT
and IDCT. When the SAD operation does not have BREBA-area placement
conflict (see Section 4.2) with the other two hardware operations BGT
IDCT, its configuration can be safely performed only onceahatentry point
in themain procedure.

The optimization proposed in this chapter allows to ansitgpthe hardware
configurations at interprocedural level, while prior worlasviimited to opti-

mizations at procedural level (intraprocedural). Secgnalthough the inter-
procedural optimizations are considered to provide litgmefit and signifi-
cantly increase the compiler complexity, we show that odinoigation signif-

icantly reduces the number of hardware configurations (sondxpwback of
the current FPGASs), while the complexity is not significgrticreased.

5.2 Interprocedural SET Optimization

The main goal of the proposed interprocedural optimizapisesented in this
section is to appropriately schedule the SET instructiaking into account
the hardware conflicts between the available hardware tipasa As such



5.2. INTERPROCEDURALSET OPTIMIZATION 71

main

|/ for each frame

/lfor each macroblock ___motion_estimation

I

field ME frame_ME
|
field_estimate frame_estimate
\ /
full_search
distl
sad Kernels executed on FPGA

() (o) (D

Figure 5.1: Motivational example for MPEG2 encoder



72 CHAPTERS5. INTERPROCEDURALSET SHEDULING

Interprocedural Optimization Algorithm

INPUT: Call graphG =< N, S,r >, hardware conflicty : HWxHW — > {0, 1}
OUTPUT: Insertion edges L
1. /IVerify assumptions for G

check if G is DAG

2. /IRMOD computation
traverse G in reverse topological order
compute for each procedure p
RMOD(p) = LRMOD(p) |J RMOD(s)

se€Suce(p)

/ICompute CF
for each procedure p
CF(p) ={op1 € RMOD(p)|3op2 € RMOD(p), op1 < op2}
3. /ICompute the insertion edges
L=0
for each edge< pi, p; >
for eachop € [RMOD(p;) — CF(p;)] N CF(p:)
L =LU< p;,pj,op>
for eachop € [RMOD(r) — CF(r)]
L=Lu<r,rop>

Table 5.1: The interprocedural optimization algorithm Fardware configu-
ration instructions

hardware configuration does not cause an exception, a speeudlgorithm

is used for scheduling the hardware configuration instomsti As shown in
Table 5.1, the interprocedural optimization consists oééfsteps. In the first
step, the application’s call graph is constructed basedrnomterprocedural
control-flow analysis. Next, the set of live hardware configions for each
procedure is determined using an interprocedural data-dloatysis. Finally,

the hardware configuration instructions are anticipatetthéncall graph taking
into account the available conflicting operations.

5.2.1 Step 1: Construction of the Call Graph

Starting point of the proposed optimization is the congtounc of the ap-
plication’s call graph. Given an applicatidd consisting of a set of pro-
cedures< pi,po,...,pn >, the application’s call graph of P is the graph
G =< N,S,r > with the node setV = {p1,p2,....,pn} , the setE C N

X N, where< p;,p; >€ E denotes a call site ip; from which p; is called,



5.2. INTERPROCEDURALSET OPTIMIZATION 73

and the distinguished entry node= N representing the main entry procedure
of the application. An example of a real call (sub)graph &sspnted in Figure
5.1.

The construction of the call graph for a application writterC is straightfor-

ward as there are no higher-order procedures in the C pragmagilanguage.
For this purpose, we used tlbrowsercg library included in thesuifbrowser

package available in the SUIF environment. We also Uisgdsuif pass al-

ready available in SUIF2 in order to link all SUIF files of thtial application

in one large SUIF file, which is used for the construction &f ¢lall graph. The
constructed call graph is the input of the optimization alfpon as presented
in Table 5.1. As explained in the next subsection, the cootd graph is
required to be a DAG (Directed Acyclic Graph) (see Table 5tép 1).

5.2.2 Step 2: Propagation of Hardware Configuration Instrugion

The goal of the interprocedural data-flow analysis is to mieitee what hard-
ware operation can modify the FPGA configuration as a sidecefif a pro-
cedure call. We define LRMOD(p) (Local Reconfigurable hamwadODi-
fication) as the set of hardware operations associated witto@durep. In
order to simplify this discussion, we assume that there i@t one hard-
ware operation that can be associated with a procedure. Beeifically,
op1 € LRMOD(p) if there is a pragma annotation that indicates that proce-
durep is executed on the reconfigurable hardware and its assddiatelware
operation is namedp,. RMOD(p), Reconfigurable hardware MODification,
represents the set of all hardware operations that may beuted by an in-
vocation of procedure and it can be computed using the following data-flow
equation:

RMOD(p) = LRMOD(p) | ] RMOD(s) (5.1)
seSuce(p)

An hardware operationp may be performed by calling procedupsf op is
associated with proceduge(i.e. op € LRMOD(p)) or if it can be performed
by a procedure that is called from procedyreFor an efficient computation,
the RMOD values should be computed in reverse topologicddrofi.e. re-
verse invocation order) when the call graph does not cortyites (see step
2 from Table 5.1). The RMOD values for the example presenteHigure
5.1 are shown in Figure 5.2. For the basic blocks where LRM@Deas are
missing, they are implicitly assumed @As We notice that by callingutseq



74 CHAPTERS5. INTERPROCEDURALSET SHEDULING

. RMOD = {sad, dct, idct}
main

RMOD = {sad, dct, idct}

Il for each frame -~ -------------------- putseq

RMOD = {sad}

) RMOD RMOD = {idct}
Iffor each macroblock __mation_estimation

RMOD ={sad} ~ RMOD = {sad} RMOD £ {idct}
field_ ME frame_ME
\ = {idet)
RMOD = {sad) ~ RMOD isad} _
field_estimate frame_estimate
\ ,{z{wd}
full_search
RMOD = {sad}
distl
RMOD = {sad}
sad

LRMOD = {sad}

Figure 5.2: Interprocedural data-flow analysis for MPEGRaater

procedures, all three hardware operatieng, dct andidct may be performed
on the reconfigurable hardware.

Due to the increasing complexity of the interprocedurabeiw analysis, this
step is performed only when the call graph G satisfies theviatig criteria.
We assume that there are malirect procedure callfusing pointer to func-
tions). These limitations can be eliminated by considedhgandidate set of
functions that have the same prototype. Another limitatoncerns the data-
flow equations for procedures with recursive procedurescailhen the call



5.2. INTERPROCEDURALSET OPTIMIZATION 75

graph contains cycles). In this case, the strongly condemenponents (scc)
should be computed and the data-flow equation should bepseltafor each
scc into a single equation. The proposed optimization isiegppnly when the
call graph is a DAG.

5.2.3 Step 3: Placement of Hardware Configuration Instructons

In this step, the hardware configuration instructions ateigated in the call
graph taking into account the possible hardware conflicssaliered in the
previous step. In the first phase, the set of conflicting deraCF(p) is
computed for each procedure included in the call graph beseéde RM O D
values as follows:

CF(p) ={op1 € RMOD(p)|3ops € RMOD(p),op; < op2} (5.2)

Next, for each edge of the call graghp;, p; >, if there is an hardware opera-
tion op which does not have conflicts j#y (op ¢ C'F(p;)) but it has conflicts
in the calling functiorp; (op € CF(p;)), then a SET op instruction is inserted
at all call sites ofp; from p;. Finally, for all non-conflicting operations of the
entry node of the call graph G (.M OD(r) — CF(r)), the corresponding
SET instructions are inserted at the beginning of th@ocedure (see step 3
from Table 5.1).

The CF values for the example presented in Figure 5.1 arershoRigure 5.3,
for the case where all considered hardware operations cowilh each other.
For the basic blocks where CF values are missing they ardditiyphssumed
as(. It can be noticed that the hardware configuration instomsticannot
simultaneously propagate upwardspaftseq procedure due to the considered
hardware conflicts.

In Figure 5.4, we present an example similar to the exampi® frigure 5.3,
but with a different set of conflicting hardware operatioi§e notice that in
this case, the hardware configurations $aid andidct cannot be anticipated
further due to their FPGA area conflict, while the SET instiat for thedct
hardware operation can be safely moved to the applicatitny point.



76 CHAPTERS5. INTERPROCEDURALSET SHEDULING

sad -/~ dct
sad -/~ idct
det </~ idct CF = {sad, dct, idct}
. RMOD = {sad, dct, idct}
main

CF = {sad, dct, idct}
RMOD = {sad, dct, idct}

Il for each frame-----------------—---—--_- putseq

) RMOD = {sad} C _ RMOD= {idct}
/lfor each macroblock ___motion_estimation_ ) /__transformh N\ ___ /. __ itransfc m

RMOD ={sad}  RMOD = {sad} RMOD = {idct}

field_ME frame_ME

LRMOD = {idct}

RMOD={sadj  RMOD >fsad) \ _
field_estimate frame_estimate

\/{z{sm}

full_search

RMOD = {sad}
distl

RMOD = {sad}

sad

LRMOD = {sad}

Figure 5.3: Interprocedural optimization for MPEG2 enaode



5.2. INTERPROCEDURALSET OPTIMIZATION 77

sad <4~ idct

CF ={sad, idct}
. RMOD = {sad, dct, idct}
main

€F = {sad, idct}
RMOD = {sad, dct, idct}

Il for each frame------------------- - P QA

) BMO[_) = {sad} QR ; RMOD = {idct}
[lfor each macroblock ___motion_estimation _________\ ___/_transform___/__ itransfor m

RMOD ={sad} ~ RMOD = {sad} RMOD £ {idct}
field_ME frame_ME

LRMOD = {dct}

RMOD = {sad} RMOD =/{sad} ‘ .
field_estimate frame_estimate

\/{M

full_search

RMOD = {sad}
distl

RMOD = {sad}

sad

LRMOD = {sad}

Figure 5.4: Interprocedural optimization for MPEG2 enaode



78 CHAPTERS5. INTERPROCEDURALSET SHEDULING

| Name [ #frames]| Resolution|

carphone 96 176x144
claire 168 360x288
container 300 352x288
football 125 352x240
foreman 300 352x288
garden 115 352x240
mobile 140 352x240
tennis 112 352x240

Table 5.2: MPEG test sequences

5.3 A MultiMedia Based Evaluation

In order to evaluate the impact on performance of the dyndmraidware con-
figurations and the proposed optimization, we consider tfRER2 encoder
multimedia benchmarks and the test sequences presentetlls3.2. Build-

ing on previous work [41][32], we look at the following timersuming func-
tions that are implemented in reconfigurable hardware: SAn(of absolute-
difference), 2D DCT (2 dimensional discrete cosine tramsjocand IDCT (in-

verse DCT). We consider a Molen machine organization [7@hw&n x86 as
the GPP. More specifically, the compiler generates codehfox86 architec-
ture while the measurements are performed on an AMD Athlon 80+ at

1600 MHz.

We basically performed four experiments to assess the itngfalbardware

reconfiguration and proposed optimization. Firstly, welarethe pure soft-
ware approach and determine the theoretical (maximalppeence improve-
ment that can be achieved by hardware acceleration of theidened func-
tions. Secondly, we investigate the impact on performarfaeal reconfig-

urable hardware implementations for the considered fanstiwhen a simple
scheduling is used for the hardware configurations. Nextdetermine the
performance improvement achieved by hardware executiogach function

when only one initial hardware configuration is requiredndfly, we present
the results of the proposed optimization when all considiéradware opera-
tions are executed on the reconfigurable hardware.



5.3. A MULTIMEDIA BASED EVALUATION 79

Video SAD (16x16) DCT (8x8) IDCT (8x8)
sequence| # Cycles| % Time | # Cycles| % Time | # Cycles| % Time
carphone| 997 31.69 37796 28.19 2612 1.95

claire 1092 36.46 37796 26.44 2177 1.53
container| 1008 34.44 37590 27.04 2208 1.59
football 1484 42.74 37537 22.93 2827 1.73

foreman 1298 39.93 | 37572 | 24.35 2193 1.42
garden 1311 40.21 37594 24.70 2463 1.62
mobile 1092 35.95 | 37536 | 26.30 2519 1.77
tennis 1344 41.23 | 37531 | 24.39 2221 1.44

Average | 1203 | 37.83 | 37593 | 25,54 | 2402 | 1.63 |

Table 5.3: Profiling results for MPEG2 encoder

5.3.1 Scenario 1: MPEG 2 Profiling Results for Pure Software k-
ecution

We first compute the number of cycles each function consumrethé input
sequences given in Table 5.2 when executed on the target @GR&utvre-
configurable hardware acceleration. These profiling redioit the MPEG2
encoder benchmark are presented in Table 5.3. The cumulatedspent by
SAD, DCT and IDCT functions (Table 5.3, column 3,5 and 7) ia plure soft-
ware approach represents about 65 % of the total MPEG2 ésadirhe. In
consequence, the hardware acceleration of these fung¢asrmoposed in the
Molen approach) can produce a significant speedup of the NP&@oder
up to 3x. The results from Table 5.3, column 3 suggest thaShp func-
tion is the best candidate for hardware implementation asuiit provide up
to around 40 % performance improvement. Whereas for thedéngghase,
IDCT cannot yield substantial performance improvementjénoding phase,
this function is heavily used and can then produce a signifiparformance
increase.

5.3.2 Scenario 2: A Simple Hardware Reconfiguration Schedurg

We first present the target reconfigurable hardware platfanch the features
of the hardware implementations for the considered funstidNext, we intro-
duce the formula we used for computing the performance ditbien FCCM.
Finally, we present the MPEG2 performance results for tlmomégurable



80 CHAPTERS5. INTERPROCEDURALSET SHEDULING

Op Area| EXEC | HW Speedup
[slices] | [cycles]

SAD 831 133 9 x

DCT 4314 1184 31X

IDCT 5436 1200 2 X

Table 5.4: FPGA area and hardware execution parameterbdardnsidered
kernels

Op SET SET_MAX SET/SETMAX
[ms] [cycles] | Mean | st.dev

SAD 2| 3200000{ 1070| 167 2991

DCT 10 | 16000000| 36409 80 439

IDCT 12| 19200000{ 1202| 225 15973

Table 5.5: Hardware configuration parameters for the censitikernels

hardware execution of the considered functions when a sisgteduling for
hardware configurations is assumed.

Reconfigurable Hardware Platform Before discussing the performance im-
provement that can be achieved by using the reconfigurabidwaae, we
present the target FPGA platform included in our experimehiYe target the
Xilinx Virtex Il Pro, XC2VP20 chip and the 2D DCT and 2D IDCT i&s
available as IPs in the Xilinx Core Generator Tool ([71], ]i7d&s well as the
SAD implementation presented in [32]. The area requireddmhdunction is
given in Table 5.4, column 2. We present the estimated harle®ecution
time of each function in terms of the target Athlon processares, given in
Table 5.4, column 3. Based on the characteristics of the X2Z0/chip, for
which a complete configuration of 9280 slices takes about 20wm estimate
the reconfiguration time for the considered functions asqméed in Table 5.5,
column 2.

Performance Estimation for Molen FCCM Execution As the presented
Molen FCCM does not (currently) support dynamic hardwarefigairation,
we determine the performance of the Molen FCCM based on tresuned
profiling results for the GPP included in the MOLEN FCCM adduais:

NMolen = NX86 — Nf + Neqir - cost (53)



5.3. A MULTIMEDIA BASED EVALUATION 81

cost = TSET + YEXEC (5.4)

where

e n0en: the total number of GPP cycles spent in the consideredaggpli
tion by the Molen processor;

e nygg. the total number of GPP cycles when the considered apiglicat
is performed only on the GPP;

e ny: the total number of GPP cycles spent in functipmhen f is exe-
cuted exclusively on the GPP;

e 1., the number of calls to functioffi in the considered application;
e cost: the number of cycles for one execution of functipion FPGA;

e zspr: the number of GPP cycles required for one configuration ef th
FPGA for functionf;

e yuxpc. the number of GPP cycles required for one execution on the
FPGA of functionf; for the considered hardware implementation, the
execution time is not dependent on the input data.

In our experiments, we have measured the valuesifas, ny andn.y; in-

cluded in Formula 5.3. To this purpose, we usedHiladt library[78] available
in Machine SUIF. This library is an instrumentation packaiget allows the
compiler to change the code of the application being cordpiierder to col-
lect information about the application’s own behavior (@-time). In order
to minimize the impact of external factors on the measuréseme run the
applications in single mode and with the highest priority.inux.

MPEG 2 Performance Results for A Simple Hardware Reconfiguréon
SchedulingOn the basis of the hardware execution times from Table 534 an
the average software execution time given in Table 5.3 cnl@m,6, we de-
termine that the hardware acceleration of the consideredele (Table 5.4,
column 4) is up to 31x. However, a simple scheduling wherectireespond-
ing SET and EXECUTE instructions for hardware configuratma hardware
execution are consecutively executed for each operatiorcampletely waste
the hardware speedup. Due to the huge reconfiguration latemt repetitive
hardware configurations, the use of reconfigurable hardwélieesult in a
slowdown of the MPEG2 benchmark (computednag,;../nxss using For-
mula 5.3) by 2-3 orders of magnitude (Table 5.6, row 2) whemgared to
pure software execution on the GPP alone.



82 CHAPTERS5. INTERPROCEDURALSET SHEDULING

Based on the profiling result (Table 5.3), the reconfigurhblelware execution
times (Table 5.4) and Formula 5.3, we determine the uppendeny for a
SET instruction latency that ensures that the Molen FCCMotssfower than
the pure software approach ;... >~ nxsg). We refer to this boundary as
SET.MAX and is described by:

SET_MAX ~ nnf — YEXEC (55)
call

The mean SETMAX values and standard deviations are presented in Table
5.5, (columns 4-5). We notice that the complete hardwaréigamtion of the
currently available FPGA platforms (SET) accounts for 3rdens of magni-
tude (see Table 5.4, last column) more reconfiguration tima@ ISETMAX

and produces for the MPEG 2 benchmark a performance decgeasR-3 or-

der of magnitude (Table 5.6, row 2). In consequence, witlouappropriate
scheduling of the SET instructions, the overall perforneaiscdecreased due
to the huge reconfiguration latency in spite of the fastedare execution
time. In Appendix A, we present in more details the desigrcepploration

for multimedia applications, with an extended set of aetttiiral parameters.

5.3.3 Scenario 3: Single Hardware Reconfiguration

In order to avoid the above presented limitation and to ektile performance
improvement achieved by the hardware execution of the dersid functions,
we analyze the case when only one function is executed oretuafigurable
hardware while the other functions are switched to the sftvexecution (on
GPP). In this case, only one hardware configuration is reduior each func-
tion. We estimate the effect of this transformation on penfance using the
ceteris paribus approach meaning that the performanceoiraprent of each
function is individually estimated while assuming that aaf the other func-
tions are implemented in reconfigurable hardware.

The MPEG2 performance results for this scenario are predentTable 5.6,
row 3. It can be observed that, by removing the repetitive $ESIruc-
tions for each function, a significant performance improgat(computed as
R TRealZVBXEC_ZSET) can be observed. The performance efficiency (the rap-
port between estimated performance improvement for tHédegdware imple-
mentations and the theoretical performace improvememesented in Table
5.6, row 4 and it emphasizes that the individual improvenoémach function

is close to the maximum possible improvement.




5.3. A MULTIMEDIA BASED EVALUATION

83

SAD DCT IDCT
Simple Scheduling | 1012x | 108 x | 131x
Slowdown
Single Hardware 33.61 % | 24.68 %| 0.75 %
Reconfiguration Perf
Theor. Maximal 37.83%| 25.54 %| 1.63 %
Performance Impr
Performance 89 % 97 % 46 %
Efficiency

Table 5.6: MPEG 2 encoder performance results with and withaticipated
hardware configuration

5.3.4 Scenario 4: Interprocedural Optimization Results

After having assessed the performance contribution of &auttion, we inves-
tigate the impact of the proposed interprocedural optitiopawhich allows
the reconfigurable hardware execution for all consideretttions. The de-
scribed optimization algorithm has been implemented inMioéen compiler,
more specifically in the SUIF compiler frontend. The optiatian is applied
on the call graph for MPEG2 encoder with 111 nodes (i.e. th@iegtions
contains 111 procedures).

The aim of the proposed optimization is to significantly reelthe number of
the executed SET instructions for each hardware operaliothe results pre-
sented in the rest of this section, we compare the numbereafuted hardware
configurations with and without our optimization (denotedSETOPT and

respectively NOQSET_OP cases).

The number of hardware configurations for the consideredtfons in the
MPEG2 encoder benchmark is presented in Table 5.7. Whenumegthe
effects of the proposed optimization (Table 5.7, columi®,4ve consider dif-
ferent possible conflicts between SAD, DCT, and IDCT; in thstlzase there
is no conflict (column 4), while in the worst case all hardwaperations are in
conflict with each other (column 8). One important obseorais the 3-5 order
of magnitude decrease in the number of hardware configmsapooduced by
our optimization algorithm. The main cause of this decraagbe particular
feature of the MPEG2 algorithm where the SAD, DCT and IDCTdheare
configurations can be anticipated at the frame level rath@n tmacroblock
level (see Figure 5.3). In consequence, due to our optimizatigorithm, the



84 CHAPTERS5. INTERPROCEDURALSET SHEDULING

Initial With interprocedural SET optimization
Sequencel HW op [# SETs] No SAD SAD DCT | All
conflict | DCT cf | IDCT cf | IDCT cf cf
SAD 7932972 1 96 96 1| 96
carphone| DCT 63360 1 96 1 96 | 96
IDCT 63360 1 1 96 96 | 96
SAD 54779496 1 168 168 1| 168
claire DCT 399168 1 168 1 168 | 168
IDCT 399168 1 1 168 168 | 168
SAD 98044520 1 300 300 1| 300
container| DCT 712800 1 300 1 300 | 300
IDCT 712800 1 1 300 300 | 300
SAD 36219280 1 125 125 1| 125
football DCT 264000 1 125 1 125 | 125
IDCT 264000 1 1 125 125 | 125
SAD 98044520 1 300 300 1| 300
foreman | DCT 712800 1 300 1 300 | 300
IDCT 712800 1 1 300 300 | 300
SAD 32997680 1 115 115 1| 115
garden DCT 242880 1 115 1 115 | 115
IDCT 242880 1 1 115 115 | 115
SAD 40435160 1 140 140 1| 140
mobile DCT 295680 1 140 1 140 | 140
IDCT 295680 1 1 140 140 | 140
SAD 32494000 1 112 112 1| 112
tennis DCT 236544 1 112 1 112 | 112
IDCT 236544 1 1 112 112 | 112

Table 5.7: The impact of the interprocedural optimizationtbe number of
required hardware configurations in MPEG2 encoder

hardware configuration is transformed from a major botténm a negligi-
ble factor on performance. A second observation is thatfHfemo conflict
case, our optimization algorithm eliminates all hardwapefigurations and
introduces at the application entry point only one hardwamefiguration for
each hardware operation; thus, all the hardware configuraitbut one from
the initial application (Table 5.7, column 2) are redundant

In order to conclude this section, four points should beasatiregarding the
presented results and optimization. Firstly, the reductié the number of
hardware configurations depends on the characteristicheofarget applica-
tions. As previously presented, the impact of our optinitaat for MPEG2
encoder is substantial, while for other applications (&gJPEG) it depends
on the possible hardware conflicts between operations. ndledoshould be



5.4. CONCLUSIONS 85

mentioned that this optimization can also increase the rurob hardware

configurations, e.g. when the considered procedure aseddiathe hardware
operations have multiple call sites and conflicting opereti Flow-sensitive
data-flow analysis and profile information can be used togrethis situa-

tion. Nevertheless, taking into account that the hardwardiguration can be
performed in parallel with the execution of other instroas on the GPP, the
reconfiguration latency may be (partially) hidden. The fimlagervation is that
a significant reduction of the number of executed hardwardigorations is

directly reflected in a significant reduction in power congtion, as the FPGA
reconfigurations is a main source of power consumption (88p. [

5.4 Conclusions

In this chapter, we extended the Molen compiler developedugport the
Molen Programming Paradigm to study the conditions undéchvubstantial
performance improvements can be obtained with hardwareleration using
FCCMs. Based on profiling results, we showed that potengiaédups can
be completely outweighed by inappropriate scheduling efrétonfiguration
instruction. When theoretically a performance improvethudrup to 65 % is
achievable, the slowdown caused by improper schedulingoeas large as a
factor 1000 (e.g. for SAD). We also showed that given a sldétabheduling
up to 97 % of the maximal performance improvement can be o&thi The
optimization presented in this chapter reduces the numbexeruted hard-
ware configurations by a factor of 3-5 order of magnitude wbempared to
the simple scheduling.

In the previous and current chapters, we assume a predefir@&d\ farea al-
location for the operations executed on the reconfigurablelviaare. In the
next chapter, we will address the FPGA area allocation probinh order to
minimize the conflicting operations and the reconfiguratearhead.






Chapter 6

Compiler-driven FPGA-area
Allocation

Although the new generations of FPGAs provide support fotigdaand dy-
namic configuration, the huge reconfiguration latency i6 atmajor short-
coming of the current FCCMs (see [80]). In this chapter, weppse two
FPGA-area allocation algorithms for the tasks executechemréconfigurable
hardware. The goal is to minimize the FPGA-area which is mégared at
runtime and improve the overall performance, taking intccamt the applica-
tion runtime features. More specifically, we use the recaméition frequency
for the target application to guide the allocation algarith Two scenarios are
discussed: the first one corresponds to the case when alWaerdperations
must be placed/executed on the target FPGA while in the skesoenario, a
hardware operation can be switched to its pure softwareutixgcon the core
processor in order to reduce the pressure/competitiorhBoFPGA area. Both
FPGA-area allocation problems are formulated as 0-1 imtigear program-
ming (LP) problems and efficient LP solvers are used for figdhe optimal
solutions.

The chapter is organized in six sections. The backgroundelated work is
presented in the following section. Next, we discuss somtivatmnal exam-
ples and define the FPGA-area allocation problem addresstdsi chapter.
The proposed allocation algorithms are detailed in seddié Finally, we
provide the evaluation of the proposed algorithms and ptesanclusions and
future work.

87



88 CHAPTER 6. COMPILER-DRIVEN FPGA-AREA ALLOCATION

6.1 Related Work

Previous approaches for FPGA-area allocation are mairdyded on cases
where the whole application is decomposed in tasks whicleatieely exe-
cuted on the FPGA. In [81], the authors propose an optimalutegglacement
based on packing classes. A solution based on backtrackitngbaunding
heuristics is presented in [82]. In [83], the authors adsltes allocation and
space-time instruction scheduling based on maps of priitiebihat are used
to represent the allocations of hardware resources anihtlesstots. The prob-
abilities reflect the confidence of the allocation and can djested by the
tools involved in the scheduling. Other approaches [63] [88] addresses
the HW/SW patrtitioning problem and the reconfiguration riaie minimiza-
tion problem in the context of configuration prefetching /mdnulti-context
devices. The proposed solutions require detailed infaonatsuch as data
flow graphs, dependency graphs of tasks) about the applitafieatures and
regular application behavior.

A similar approach targeting the Xputer architecture [&6piesented in [87],
where the optimization of overall execution time does niytoa ILP solvers -
as in our approach, but it is based on a simulated annealjjogitdm [88]. An-
other approach (see [89] [90] [91] [64] [92]) is the task aHtion at run-time
in an operating system for reconfigurable computing. Thisegal approach
is not suitable for the single application execution casas assumed in the
Molen Programming Paradigm, due to the increased overhesatiuced by
the operating system. Additionally, information aboutdfie application be-
havior is not used by the operating systems in order to guigeallocation,
thus optimization opportunities can be lost.

The work presented in [93] [94] addresses compiler optitionafor reducing
the number of redundant FPGA configurations based on a pnedefiPGA-
area allocation. In consequence, the compiler optiminatidl benefit from
an efficient FPGA-area allocation that minimizes the FPG@aaverlaps for
a target application. In this chapter, we propose two FP@&allocation
algorithms that reduce furthermore the number of FPGA conditions by
minimizing the total reconfigured area for a given trace afexion.



6.2. PROBLEM OVERVIEW AND DEFINITION 89

6.2 Problem Overview and Definition

6.2.1 Motivational Example

In order to intuitively introduce the FPGA-area allocatiproblem, we use a
motivational example ( Figure 6.1(a)) which sketches an AB8vice and the
area requirements for three operations implemented onRIGA- In this chap-

ter, we assume FPGAs with column-based reconfiguratiorrétunfiguration

may only be performed for a full column of CLBs of the chip) bus the well-

known Xilinx Virtex devices. For one application that ushe three hardware
operations, a simple FPGA area allocation (presented if)}.flaces all op-

erations starting with the first column. Due to the FPGA arearlaps, such
allocation requires the FPGA reconfiguration before eaéltetion of the con-
sidered operations. As shown in [80], FPGA reconfigurat®slow and thus,
repetitive FPGA reconfigurations can produce a significarfgomance de-
crease. In consequence, a better FPGA-area allocatioguged in order to

reduce the reconfiguration overhead. An allocation styategossible only

when the placement of the hardware operations is not prextefin

Two important observations can be made regarding the exafmph Figure
6.1. The first observation is that the three considered tipesacannot fit
together on the FPGA as the sum of the area of their hardwanementations
exceeds the total available FPGA-area. The second obserencerns the
simple allocation strategy, where there is unused FPGA-aigile parts of
the FPGA have to be reconfigured before each execution. Eardhsidered
example, even when the Rop2 and Rop3 do not have overlappiGi\Farea,
the placement of Rop1 will introduce FPGA-area overlap$f wite of the two
operations.

In order to determine an efficient FPGA-area allocation, \wappse an ap-
proach that divides the hardware operations in two categofIX and RW.
An operation is called FIX if it has no overlapping area wittyather hard-
ware operations in the considered application. Such a Fetaipn requires
only one initial FPGA configuration (which can be preloaded aan be ne-
glected). An operation is called RW (reconfigurable) if iteaoverlaps with
other operations and it has to be configured before each gsrcu

Loosely stated, the main idea of our approach is to mininheeréconfigured
FPGA-area based on the reconfiguration frequency of eadtatipe Using

profiling information, we determine the execution order fioe hardware op-
erations (called trace) and compute the reconfiguratiogquieacy in the trace.



90 CHAPTER 6. COMPILER-DRIVEN FPGA-AREA ALLOCATION

a)
1 23 456 78 9 101112
FPGA | ||

1 2 3 1 2 3 4 1 23 45 6 738

ROP1 ROP2 . | ROP3
A=3 A=4! | AS8
b)

1 2 3 45 6 78 9 101112

' rROP2l ROP3

ROPR1 ‘ ‘
c)

Trace: Ropl Rop2 Ropl Rop3 Ropl Rop2 Ropl
Initial (Trace): Final:
#SET Ropl =4 #SET Ropl = 0 (FIX)
#SET Rop2 =2 #SET Rop2 = 2 (RW)
#SET Rop3 =1 #SET Rop3 =1 (RW)
1 23 45 6 78 9 101112
ROP1| ROP2 | ROP3

Ass | iaza) | Ass

Fix Reloaded

Figure 6.1: Example: a) Total FPGA-area and three Rops; mhple FPGA-
area allocation c) optimal allocation based on the exeautaxce

The goal is to allocate the larger and frequently reconfigagerations as FIX
operations. The example shown in Figure 6.1(c) presentsyitimal FPGA-
area allocation for a given execution trace. We can obséelimination of
hardware configurations for the operations allocated asdftations (Ropl
in this example). The selection of the FIX operations is ase 0-1 linear
programming and is explained in Section 6.3. The used terogy and a
formal description of the allocation problem is presentedhie rest of this
section.



6.2. PROBLEM OVERVIEW AND DEFINITION 91

6.2.2 Problem statement

We represent a set afreconfigurable hardware operations (RopsRasP =
{Rop1, Ropa, ..., Rop;, ..., Rop, }, where each operatioRop; occupies for its
hardware implementation an FPGA-arda The total available area of the
target FPGA device i§. Although in this chapter we address the case when
the reconfiguration is column-based (the area is expresseldeanumber of
columns), the extension to the 2D or 3D cases is straigh#faw

An execution trace is a sequence of Rops that are executed &mt of
representative input data for the target application anid itepresented as
T : Rop;, Ropy, ..., Ropy,, .... A trace is normalized if it does not contain two
identical consecutive Rops. This normalization represémé fact that con-
secutive hardware reconfigurations for the same Rop arendzaht and can be
eliminated by compiler optimization (see [80]) or hardwarefetching. For
eachRop;, € ROP and a normalized trace T, the reconfiguration frequency
n(T"); represents the number of occurrencesiop; in the trace T.

As previously explained, the idea of our approach is to diviidte ROP set in
two subsets FIX and RW, where

ROP = FIX|JRW andFIX RW = 0.

The Rops in the FIX set will have a dedicated area allocateti®irPGA that
is not used by other Rops (they do not have area overlaps whgr ®Rops).
The advantage is that the FIX Rops will not require an FPGAméguration
before their executions. The total area occupied by the FosRs

Apix = Y. A

Ropj;eFIX
The Rops in RW set are the operations that have area overl@ps. re-
configuration overhead is proportional to the FPGA-areactlis reconfig-
ured at runtime. The aim is to minimize the total reconfiguaeeaAry =

Z n(T'); * A; which is the sum of the area of the Rops from RW multi-

Rop;€c RW
plied by their reconfiguration frequency. The minimizatiwrrresponds to the

minimization of the reconfiguration overhead and impligitio the improve-
ment of the overall performance gain. A formal descriptidnhis problem is
as follows:

Problem Given a setROP = {Ropi, Ropa, ..., Rop;, ..., Rop, }, a total
available FPGA-area S, a normalized execution trace T, &agh having an
FPGA-aread; and the reconfiguration frequeney7');, find RW C ROP



92 CHAPTER 6. COMPILER-DRIVEN FPGA-AREA ALLOCATION

that minimizes the reconfigured areaz n(T); = A;, under the following

Rop;€ERW
constraint;

o VRop, € RW,Ay+ > Aj<S,whereFIX = ROP — RW.
Rop;eFIX

The constraint represents the requirement that any RW R Inawe enough
available area to coexists on the FPGA at the execution tirtle al FIX
Rops. Implicitly, as the FPGA-area is a positive number, dbestraint ex-
presses also the requirement that all FIX Rops should fithegen the target
FPGA. Once the RW set has been determined for the above medtjmrob-
lem, an effective FPGA-area allocation is straightforwafgsuming that4;
represents the number of required columns, an FPGA-areaatilbn asso-
ciates with each Rops, the number of the first column whérés placed.
In the first step, the FIX Rops are consecutively allocatedtien FPGA:
for each Rop; € FIX,C; = Cprx andCprx = C; + A; with the initial
CrpIX = 1. C; represents the column number of the first column allocated
for Rop;. In the second step, the RW Rops are all allocated at the et of
FPGA-area allocated for the FIX RopsRop,, € RW,Cy. = Crrx.

6.3 FPGA-area Allocation Algorithms

For the problem defined in the previous section, we propas@imulation
as an integer linear pseudo-Boolean (0-1) programming l@nokand con-
sequently, the solutions can be determined using efficielness (see [95]).
More specifically, we propose two scenarios. The first casso@ated with
the FIX/RW Algorithm) corresponds to the above mentioneasbpgm, where
the Rops are placed in the FIX or in the RW part on the FPGA. énsttcond
case (corresponding to the FIX/RW/SW Algorithm), we asstina& an Rop
can have three options for execution: on the FIX or RW partdafiteonally,
it can be switched to its software execution (on GPP). Thedpons can be
preferred for those Rops where the huge reconfiguratioeadgtconsumes the
gain produced by the fast execution on the FPGA. In the rettisfsection,
we introduce in detail the two FPGA-area allocation aldons.



6.3. FPGAAREA ALLOCATION ALGORITHMS 93

6.3.1 FIX/RW Algorithm

As previously presented, we translate the FPGA-area ditotaroblem in a
0-1 linear programming problem to produce an optimal sotutising efficient
solvers.

0-1 Selectionin the considered case, any Rop can be executed on the FIX or
RW part of the FPGA. In consequence, we associate withfany a variable
x; such that
o { 0 if Rop;e FIX

"1 1 if Rop; € RW
Finding the optimal partition of ROP in FIX and RW is reducedihding the
optimal 0-1 values for alt;.

Objective function In the problem definition in Section 6.2, the minimization
of the reconfigured area

Z n(T); * A; can be expressed as the following objective function
Rop;€c RW

> n(T)i = A; * z;. If Rop; is a FIX Rop, thenz; = 0 and it does not

Rop; e ROP
increase the reconfigured area as it does not need any catiggurin conse-

guence, only the contribution of the RW Rops is included artinimization
objective function.

Linear Pseudo-Boolean InequalitiesThe system of linear pseudo-Boolean
inequalities of the linear programming problem formulaticorresponds to
the constraints included the initial problem. The constrdiat

V Ropy € RW, Ay + > A;<S
Rop; e FIX

can be expressed as follows:



94 CHAPTER 6. COMPILER-DRIVEN FPGA-AREA ALLOCATION

min:  +2*39*x1 + 3*13*x2 + 3*16*x3;

C1: + 1322 +16*23 <58-39
C2: +39%71 +16*23 <58-13
C3: +39%71 +13*22 <58-16

Figure 6.2: LP problem for the MPEG2 example in Section 6d BIX/RW
Algorithm

(
Al x a1 + Z Ajxx; <8
Rop;eROP
Ag % 19 + Z Ajxx; <8
Rop;eROP
A; xx; + Z Aj*fjés
Rop;cROP
Ay xx, + Z Ajxz; <8
\ Rop;eROP
This system of inequalities should be interpreted as fatow

(1) The term Z A; xZ; represents the permanently configured FPGA-
Rop;eROP
area occupied by FIX Rops:

Z Aj * fj = Z Aj * fj.
Rop;eROP Rop; e FIX
(2)The second observation regards the first term in the médos, namely
A; x x;. Forthe cases wheRop; € FIX — x; = 0, the termA, * x; can be
eliminated. Theth inequality is transformed in

Z A; +7; < S which represents the constraint that the total area allo-
Rop;eROP
cated for FIX Rops should be smaller or equal than the toilate FPGA-
area S. Similarly, for the cases wh&ap; € RW = z; = 1, the inequality
is transformed in

Aixxzi+ Y AjxT; < S which represents the constraint that an RW
Rop;eROP



6.3. FPGAAREA ALLOCATION ALGORITHMS 95

Rop has to fit on the FPGA together with all FIX Rops.

In our model implementation, eacth inequality should not contain botty
andz;; thus it can be reduced as follows:

n
Ajkzi+ Y AT <8 =

j=1
1—1 n

Ajsmi+ AixTi+ Y AjxTj+ Y AjxT; <8 =
j=1 j=i+l

i—1 n

j=1 j=i+1
i—1 n

ZA]'*EJ‘—{— ZA]*EJES_AZ
j=1 j=i+1

Example A real example (discussed in details in Section 6.4) is pitesk
in Figure 6.2, for three Rops witll; = 39, Ay = 13, A3 = 16,n(7); =
2,n(T)2 = 3,n(T)s = 3 andS = 58. The solution to this problem i§r; =
0,29 = 1;z3 = 1}, which corresponds t&'/X = {Rop;} and RW =
{Rop2, Rop3}.

6.3.2 FIX/RW/SW Algorithm

The FIX/RW algorithm previously presented has two impdrtamitations: i)
it cannot find a viable FPGA allocation if there is &wop; with A; > S be-
cause the constraint set is unsatisfiable; and ii) althohgH-PGA execution
is (usually) faster than the software execution for any Rbp, reconfigura-
tion overhead can significantly increase the overall exeauime. In order
to eliminate these limitations, we propose the FIX/RW/S\¢poathm where
the Rops can additionally be switched to software execufidre FPGA-area
allocation problem can again be formulated as 0-1 LP probietuding the
following components.

0-1 Selectionin this case, a Rop has three options for execution: on the FIX
or RW part on the FPGA or additionally in software (SW). Thioedtion
problem involves the division of ROP in three subsets FIX, BW SW, such
that

ROP =FIX|JRW|JSW

and



96 CHAPTER 6. COMPILER-DRIVEN FPGA-AREA ALLOCATION

FIX(\RW =0, FIX SW = 0, RW (| SW = 0.

These options can be expressed using three boolean varfableachRop;,
namelyx fiz;, zrw; andxsw;, wherex fix; = { L it Rop; € FIX and

v ! v ! 0 if Rop; ¢ FIX
similar for zrw; andzsw;.

Moreover, a Rop must be included in only one subset; thistcains can be
expressed as:

xfix; + xrw; + xsw; = 1.

Finding the optimal partition of ROP in FIX, RW and SW is redddo finding
the optimal 0-1 values for alt fixz;, zrw; andzsw;.

Objective function In the problem definition of the previous FIX/RW Algo-
rithm, the goal of the objective function is the minimizatiof the total recon-
figured area. This objective function cannot be used in tmeentiscenario as
all Rops can be switched to their software execution. In theRW/SW al-
gorithm, the goal is the performance gain and the new obgétinction is the
minimization of the execution time for the considered Ropg & expressed
as

n n n

Z cost_fix; x xfix; + Z cost_rw; * xrw; + Z cost_sw; * Tsw;,

=1 =1 =1

where cost_fix;/cost_rw;/cost_sw; represent the total execution time for
Rop; in FIXIRW/SW respectively and their values can be deterchinsing
profiling information and estimations.

Linear Pseudo-Boolean InequalitiesThe system of linear pseudo-Boolean
inequalities of the linear programming problem formulatis similar to the
previous FIX/RW system:

( n
Ay * xrw; +ZA]- xxfir; < S
j=1
n
Az*xrw2+ZAj*xfixj <S
j=1
..................... e
Ai*xrwi—i—zzﬁlj*xfixj <S8
j=1
....................... o
An*xrwn+ZAj*xfixj )
j=1




6.4. RESULTS 97

min:  +cost_fixy x xfixy +cost_fixg x xfixg +cost_fixg * xfixg +
+cost_rwy * rrw;y +cost_rwsy * xrws +cost_rws x xrws+
+cost_swy * rswq +cost_swy * xSWo +cost_sws * rSsws

Cl: zfixy Hxzrw; +xsw; =1
C2: zfirze +xrwy Hxzswy, =1
C3: zxfirs Hxrws “xswg =1
C4: 39 xrw; +39xfix; +13xfize +16 xfizs <58
C5: 13axrwy +39xfir; +13xfize +16 xfizg <58
C4: 16 xrws +39xfix; +13xfize +16 xfizs <58

Figure 6.3: The linear problem description for the MPEG2regbe presented
in Section 6.4 and FIX/RW/SW Algorithm

The main idea is the same as in the previous algorithm: eacrRRg/must
have allocated enough FPGA-area to fit with all FIX Rops orRR&A.

Example One linear model for the three Rops presented in Sectionrid4 a
FIX/IRW/SW Algorithm is presented in Figure 6.3. For the estted costs,
the solution to this linear problem i8c fix; = 1,z fize = 1,z5w3 = 1},
while the other boolean variables are zero.

As a final observation for both algorithms, we notice thatgbeerated FPGA-
area allocations will preserve the application semantieravhen the input
execution trace T is not a representative trace. In suctscasme performance
gain may be lost, but the application has the correct behavio

Additionally, we notice that in the translation to the ling@ogramming prob-
lem we do not take into account the Rops order in the norndhlice. The
reason is that the order information transforms our problera non-linear
problem. Our future work will address the searching of théroal solutions
as the naive backtracking solution is expensive for a sicanifi number of
Rops and large traces.

6.4 Results

In this section, we present the compiler extensions of theeNoompiler (see
Section 3) regarding the two FPGA-area allocation algorgldiscussed above
and the evaluation of the performance achieved by the pegpalgorithms in
the MPEG2 and MJPEG case study.



98 CHAPTER 6. COMPILER-DRIVEN FPGA-AREA ALLOCATION

Compiler Extension for FPGA-area Allocation The presented FPGA-area
allocation algorithms are integrated in the Molen compésrtwo Machine-
SUIF (see [78]) passes and the user is allowed to chooseltwat#n to be
used. The compiler extensions involve the following:

e extraction ofprofile information for guiding the FPGA-area allocation
algorithm: we use code instrumentation techniques in otdeateter-
mine: theexecution tracerl, the costs (measured in processor cycles)
for the software executionsst_sw and theexecution frequencyf the
considered Rops.

e linear programming solver integration: we use an efficientP solver
implementation based on Davis-Putman enumeration mefiredented
in [95] and publically available as a software package.

¢ elimination of FPGA reconfiguration instructions for FIX Ro ps: the
SET instructions for the FIX Rops are all eliminated from tqapli-
cation code and one SET instruction is added for each FIX Rdlpea
application entry point.

e SW switching for SW Rops in FIX/RW/SW Algorithm: all SET in-
structions of SW Rops are eliminated from the applicatiotecand the
EXEC instructions associated to the SW Rops are transfoimethn-
dard function calls.

Target Applications, Rops and FPGA The target C applications consid-
ered in this section are the well-known multimedia benctkadPEG2 and
MJPEG encoders. The input sequence for the MPEG2 is the Betefframes
that comes with the benchmark, while for MJPEG we use 30 ¢alares from
"tennis” in YUV format with a resolution of 256x256 pixels.

The Rops candidate for execution on the FPGA are

e for MPEG2- SAD (sum of absolute-differenceD DCT (2 dimen-
sional discrete cosine transform) aliRICT (2D inverse DCT) with the
real FPGA implementations presented in [31], and

e for MJPEG- DCT, Quantization andVLC (Variable Length Coding)
with the the real FPGA implementations for Quantization ®he pre-
sented in [96].



6.4. RESULTS 99

HE F’XRop [ ] SWRop |

MPEG2 MJPEG
xczveso | HH HH HR I B
xceve4o | HH HH [ I B
xcovezo | IR [ [ I B
xcevexzo | | R N B
xcevezo | [ R N Il
XC2VP7 N ] O]
XC2VP4 ] 1 ] N ]

2
>
w)
v}
(@]
-
o
(@]
p

DCT Ouant VLC

Figure 6.4: FPGA allocation for the FIX/RW/SW algorithm

The target reconfigurable platforms are Xilinx Virtex 11 Ritevices (see [50])
with CLB array sizes varying from 40 x 22 for XC2VP4 up to 88 x ft0
XC2VP50 and also including one PowerPC processor. The nedjliPGA-
area (expressed in slices) and FPGA execution time (caw/éntPowerPC at
300 MHz cycles) for the considered Rops are presented ireTlil columns
2-3. We estimate the FPGA reconfiguration time per CLB basethe to-
tal configuration time: 47.55 ms for the whole XC2VP50 chifp.BCarray of
88x70) using SelectMAP at 50MHz (as presented in [49]); il recon-
figuration overhead (converted in PowerPC cycles) is 231%esyper CLB.
The basic configuration time for the considered Rops is ptesein Table
6.1, columns 4. For the software execution, the profilingiitsfor computing
cost_sw for each Rop are based on simulations using the PowerP Cationul
from Simics [74]. The time spent for the software executiontfie considered
Rops reported to the total software execution time is piteseim Table 6.1,
last column.

FPGA-area Allocation Algorithms Evaluation A comparison between the
estimated performance for the MPEG2 / MJPEG encoder apiplisaand the
two FPGA-area allocation algorithms is presented in Figube The reference
unit of this comparison (SW) is the pure software executitremall Rops are
executed on the GPP. We also include in this comparison ttierpeance esti-
mated for the naive FPGA-area allocation presented in @e6t2 and denoted
as NAlloc for MPEG2. The performance for the proposed atbars are rep-



100 (HAPTER6. COMPILER-DRIVEN FPGA-AREA ALLOCATION

Rop Name| Area[Slices]| EXEC[cycles]| SET[Kcycles] || SW [%)]
MPEG?2

SAD 13613 49 7880 62 %

DCT 4314 306 2498 15%

IDCT 5436 315 3146 1%
MJPEG

DCT 4314 306 2498 80%

Quant 1179 104 683 3%

VLC 6422 110 3718 12.5%

Table 6.1: HW/SW features for the Rops that candidate for AB&cution

resented as FIX/RW Alg and FIX/RW/SW Alg. The correspondsafutions
for the FIX/RW/SW algorithm are graphically representedrigure 6.4.

In all cases, we considered that only one FPGA reconfigurasigperformed
before a sequence of consecutive Rop executions. Otheiiwitte case when
an FPGA configuration is performed before each Rop executios over-
all performance is decreased by several orders of magniseke [80]). For
both algorithms, we use an efficient LP solver implementaltiased on Davis-
Putman enumeration methods presented in [95] and pulyliesfiilable as a
software package.

From Figure 6.5, we notice that the FIX/RW algorithm doesg@iterate solu-
tions for the FPGAs with relatively small CLB arrays (as eiped in Section
6.3.2), while FIX/IRW/SW algorithm guarantees that a betterequal, in the
worst case) solution compared to SW is selected. Howeverthfo FPGA
devices with large CLB arrays both algorithms select the behition - all
Rops allocated as FIX Rops - which corresponds to an oveeafbpnance
improvement of 61 % for MPEG2 and 94 % for MJPEG. In an exampée s
nario using the FIX/RW algorithm for the MPEG2 applicatiamdaxC2VP40
device where the partial and dynamic hardware configurasioreeded, it can
be observed that the reconfiguration overhead is reduced’ 5.4 For the
MJPEG application, the reconfiguration overhead is reducedl cases by at
least 36 %.

In Figure 6.4, we notice that FIX/RW/SW algorithm does nd¢seRW Rops,
but SW or FIX Rops are preferred. This observation is exgldihy the huge
reconfiguration latency of the considered devices. Addily, we present in
Figure 6.6, the influence of the reconfiguration overheachersblutions gen-



6.4. RESULTS 101

MPEG2
Relative MJPEG EMPEG2 FIX/RW Alg OMPEG2 FIX/RW/SW Alg
Performance B MJPEG FIXIRW Alg MJPEG FIXIRW/SW Alg

NAlloc

120 100 100

4

100 2y SW

86,1 85,9 859
— <~

80

60

40

20

6 6

7B

XC2VP4 XC2vP7 XC2VP20 XC2VPX20 XC2VP30 XC2VP40 XC2VP50
[“0x22] [0x34]  [B6x46] (56 x 46 [80x46] 8358 ] 88x70]

Figure 6.5: Performance comparison for the FPGA-areaatiloc algorithms

erated by FIX/RW/SW algorithm for the MPEG2 application a0d2VP30
device. An important observation is that the RW Rops are wsdyg when
the reconfiguration latency is at least 10 times smaller thancurrent val-
ues. In consequence, the FPGA reconfiguration must be atdeasorder of
magnitude faster for an efficient dynamic FPGA usage.

The proposed allocation algorithms can be easily intedrafiéh the schedul-
ing algorithms presented in Chapter 4 and Chapter 5. Afeeetimination of
the hardware reconfiguration for the reconfigurable opemnatallocated in the
FIX set by the two allocation algorithms, the schedulingoattyms will ad-

dress only the SET instructions for the reconfigurable dpmra allocated in
the RW set. As a final conclusion, we note that the schedulogyighms will

cooperate with the allocation algorithms to further desesthe reconfiguration



102 (HAPTER6. COMPILER-DRIVEN FPGA-AREA ALLOCATION

Relative —FIXRWAlg  —FIX/RW/SWalg |

Performance

70

65 -

/

60

55 A

SAD RwW
50 fpcT RW
IDCT Rw /
45
/SAD RW SAD FIX
DCT RwW DCT sw

IDCT sw IDCT sw

40 -

35
| 1l L]

30

20 240 RW cycles/CLB

Figure 6.6: The influence of the RW overhead over the FIX/RWgorithm
for MPEG2 and XC2VP30 device

overhead.

6.5 Conclusions

In this chapter, we have presented two FPGA-area allocatigorithms for
minimizing the huge reconfiguration overhead of the curFePGAs. Two sce-
narios have been proposed: the traditional placement gmolthen all Rops
are executed on the FPGA and the goal is the minimization eftakal re-
configured area and additionally, the case when any Rop cawiltehed to
its software execution and the objective function is to maze the overall
performance gain.

The algorithms incorporate advanced 0-1 LP solvers and tefdimpg infor-
mation such as the reconfiguration frequency and softwageution time as
well as hardware information such as configuration time aard\ware execu-
tion time for finding the optimal Rops allocations. The prese results show
that a performance gain of up to 61 % for MPEG2 and 94 % for MIJFPEG
to be expected when the proposed allocation algorithms sed. uAddition-



6.5. CONCLUSIONS 103

ally, the proposed allocation algorithms can be integratid the scheduling
algorithms proposed in the previous chapters.






Chapter 7

Conclusions

In this thesis, we addressed the design and implementatiie d1olen com-
piler for reconfigurable architectures under the Molen Paogming Paradigm.
More specifically, we first presented the basic compilerrsitans required for
code generation for reconfigurable architectures. Adadiitily, we have imple-
mented a PowerPC compiler backend and presented as a proohcépt a
real experiment with a multimedia benchmark compiled fod arecuted on
the Molen Polymorphic Media Processor. Given these basitgpder exten-
sions, we subsequently proposed a set of advanced compiisrizations that
address one main shortcoming of the current FPGAs, hamelsettonfigura-
tion overhead. Assuming a predefined FPGA area allocatiergraposed two
compiler optimizations - at intra and interprocedural letleat aim to antici-
pate the hardware reconfiguration instructions and to redue total number
of required reconfigurations. Finally, we proposed two éfit FPGA area
allocation algorithms based on profiling results and adedrid® solvers that
further reduce the reconfiguration overhead.

In this chapter we present the conclusions of this thesishvhre organized
as follows. Section 7.1 presents a summary of the thesis.t, Mexpresent
the major contributions of this thesis and in Section 7.3,pr@pose future
research directions.

7.1 Summary

In this dissertation we investigated compiler optimizasidor reconfigurable
architectures that specifically address the reconfiguratierhead. The work

105



106 CHAPTER 7. CONCLUSIONS

presented in this thesis can be summarized as follows.

In Chapter 2, we presented background information for régarable archi-
tectures, with a classification and a set of representatiaenples for different
approaches of reconfigurable architectures. Consequemiyidentified the
major shortcomings of these approaches, which can be suredas:

e limited number of new instructions for the reconfigurabledveare and
constraints over the instruction operands, due to thetiogtm encoding
formats.

e technology dependent hardware implementation for theatipeis exe-
cuted on the reconfigurable hardware

e lack of support for parallel execution of the reconfiguratyesrations.

In order to address these shortcomings, we presented thenMwdichine orga-
nization and Programming Paradigm that provide a compacek@ension for
a virtually infinite number of new reconfigurable operationsodularity and
parallel execution on the reconfigurable hardware. Finally described the
DelftWorkBench project that aims to provide the semi-autimtools that aid
the designer in mapping and execution of the input apptioatin the target
reconfigurable architecture under the Molen Programmingdigm.

In Chapter 3, we presented the Molen compiler for reconfiglerarchitectures
under the Molen Programming Paradigm. The compiler is a kegponent
of the DelftworkBench design tool chain as it produces cailered for the
software and hardware features of the target applicati@haachitecture. We
first presented the compiler framework based on the SUIF/MINESUIF in-

frastructure and the general extensions for the Molen Rragring Paradigm
which involves ISA extension, Register file extensions adl \we hard-

ware/software co-design information. Next, we discus$edspecific exten-
sions which have been implemented for the Molen Polymorjtéadia Proces-
sor which includes a PowerPC backend. Finally, we descréveexperiment
with a multimedia application compiled by the Molen compiéad executed
on the Molen Polymorphic Processor with an average speefdiip oompared
to the pure software execution.

In Chapter 4 we first presented a formal problem statemer&Edr instruction
scheduling where the goal is the minimization of the recaméiion overhead
based on the reduction of the number of total executed haedveonfig-
urations. Next, we presented an intraprocedural compiginozation that
solves the presented problem using advanced data-flow sasabnd graph



7.1. SUIMMARY 107

algorithms. More specifically, we introduced a modified eiédav analysis
for partial anticipability that reflects the spatial comgtits of the reconfig-
urable hardware. Additionally, we used the data flow analfai availability
to determine the redundant hardware configurations, wherFfPGA is al-
ready configured for a specific operation by a previous SEffunson and a
new SET instruction is not longer required. In order to miizienthe number
of executed reconfigurations, we used the minimum s-t cutritkgn on a re-
duced control flow graph and identify the less frequentlyceted edges where
the SET instructions can be conservatively moved, presgrthie application
semantics. Using profile information and software/har@vestimation, the
proposed optimization selected the software/hardwareutixan for the can-
didate operations for execution on the reconfigurable hardvbased on the
performance improvement criterion. Finally, we estimatieat the proposed
optimization have a significant impact on performance fer¢hrrent FPGAs
and additionally, the proposed SET scheduling is usefhder future faster
FPGAs.

In Chapter 5 we investigated the impact of the reconfigunatiwerhead of
the current FPGAs on the overall performance and deterniiagthe basic
code generation without specific optimizations regardimg reconfiguration
overhead can significantlyecreasehe overall performance compared to pure
software execution. Additionally, we estimated that th&RRexecution of the
considered hardware operations can provida@elerationof several order of
magnitudes compared to their execution on the GPP. Thusdar to exploit
the faster reconfigurable hardware execution and to redueeaeconfigura-
tion overhead, we proposed a compiler optimization thahisxension of the
compiler optimization proposed in Chapter 4 and it antitgpathe hardware
reconfiguration instructions at the interprocedural leirethe application call
graph. The interprocedural SET scheduling is based on alifiedpinterpro-
cedural dataflow analysis and it takes into account theamathstraints of the
target reconfigurable hardware.

In Chapter 6 we proposed two compiler-driven FPGA-areacation algo-
rithms that aim to minimize the overall reconfiguration dwemd and to maxi-
mize the overall performance improvement compared to the poftware ex-
ecution. In both algorithms, the FPGA allocation problensv@mulated as
a 0-1 LP problem and efficient LP solvers were used to find efftcsolutions.
The main idea was to divide the FPGA area in two parts: one fiwdtch

is not modified at execution time and one reconfigurable, Wwigaeconfig-
ured at execution time. Next, the “promising” operationgenalocated in the
fixed part based on profile information and software/hardwestimations. In



108 CHAPTER 7. CONCLUSIONS

the first algorithm, the objective function involved in thelQ_P problem is

the minimization of the total reconfigured area, which isgaional to the

overall reconfiguration overhead. However, for some hardvegerations the
reconfiguration overhead cannot be hidden and it will sigaiitly reduce the
overall performance. In order to address such situatidressécond algorithm
introduced the switching to software execution of such afiens and the ob-
jective function was to maximize the overall performanceiavement. For
the considered multimedia benchmarks, the proposed #tbocalgorithms

can provide significant performance improvements for medgize FPGAs.
Additionally, we determined that the dynamic hardware rdiguration is ef-

ficiently used when the reconfiguration latency is at leagiri®s smaller than
the reconfiguration latency of the current FPGAs.

7.2 Contributions

The main contributions of this thesis can be summarize byathawving:

e We have implemented in the Molen compiler the general eidaador
code generation for reconfigurable architectures undeMblen Pro-
gramming Paradigm and specific extensions for the MolenrRalphic
Media Processor. The presented experiment shows that eagave.5 x
overall speedup is achieved with only one hardware operati@cuted
on the FPGA.

e We have performed a design space exploration for reconfidgigrchi-
tectures under the Molen Programming Paradigm and idetitiy the
reconfiguration overhead can have a major negative impatiieover-
all performance, when dynamic reconfiguration is required.

e We have proposed a modified dataflow analysis for partiatguatibility
that reflects the characteristics of the SET instructionsoréVspecifi-
cally, we proposed the conditional reunion operator totlithé antici-
pation of the SET instructions for conflicting hardware @tems.

e We have proposed an intraprocedural compiler optimizatiorhiding
and reducing the reconfiguration overhead, that combinesfidav anal-
ysis for partial anticipability and availability, a graplyarithm for mini-
mum s-t cut and hardware/software selection. The algoridbniributes
to 94 % overall performance improvement for the consideredch-
marks.



7.3. FUTURE RESEARCHDIRECTIONS 109

e We have presented an interprocedural compiler optiminatiat per-
forms the anticipation of the hardware reconfigurationrindfons at
interprocedural level, based on a simplified interprocatidiata flow
analysis.

e We have proposed an FPGA-area allocation algorithm foraieduthe
total reconfiguration overhead. The allocation problenrasglated in
a 0-1 LP problem and the operations are placed as fixed haedvper-
ations or reconfigurable operations. The algorithm coutéb to up to
61.3 % performance improvement for MPEG2 encoder benchmaaak
94 % for MJPEG benchmarks.

e We have proposed an FPGA area allocation algorithm for tharmiaa-
tion of the overall performance improvement, where eachaijmn can
be allocated as fixed, reconfigurable or switched to its poftsvare ex-
ecution.

7.3 Future Research Directions

For the research presented in this thesis, we suggest tlogviing directions
for future improvements:

e Hardware/software selection, SET instruction schedulihgorithms
and FPGA-area allocation algorithms should be tightly ¢edp Such
integration is similar to the well known problem of couplingde gen-
eration, register allocation and instruction schedulingd &s complexity
should be analyzed.

e New heuristics should be investigated for the extensionhef ¢on-
ditional reunion operator used by the intraprocedural SEStruction
scheduling, in order to allow the anticipation of “promiginSET in-
structions above the conflict points.

e The interprocedural SET instruction scheduling algoritsimuld be ex-
tended to take into account profile informations such as Xee\dion
frequency for the basic blocks where the SET instructiorsulshbe
placed. Such extension can prevent the increasing of thdauaf ex-
ecuted SET instructions.

e FPGA-area allocation algorithms should be extended toidensly-
namic placement of the hardware operations on the targeA-RGhe



110

CHAPTER 7. CONCLUSIONS

thesis, we considered that a hardware operation is syatebgor an
unique placement for the entire applications.

FPGA-area allocation algorithms should be extended to iatkeac-
count also the order of the hardware reconfigurations, niyt e re-
configuration frequency. However, this extension will sBomm the al-
location problem into a non-linear problem.

Compiler analyses, transformations and scheduling dlgos should
be proposed for efficient parallel execution of EXEC instiarts. We
notice that altough standard compiler techniques can b tise paral-
lelism that can be exploited by reconfigurable architecturader the
Molen Programming Paradigm may differ from the loop leveigha
lelism or instruction level parallelism which is usuallydated by tradi-
tional compiler techniques.



Appendix A

Multimedia Design Space Exploration

In this appendix we examine the potential of the Molen apgnoa terms
of execution time for the well-known multimedia applicattoMPEG2 and
JPEG encoders and decoders. The multimedia benchmarksadieularly
suitable for the Molen approach as they usually involverisiee computation
for highly regular operations, intensive I/O or memory and require
real-time processing capabilities. More specifically, wef@rm a design space
exploration study and quantitatively analyze:

e performance boundaries we first determine the maximal performance
gains for each operation implemented on the reconfigurahtdware.
We also compute for each operation the latency range of tie vard-
ware designs whose execution on the reconfigurable harde/daster
then the pure software execution. Consequently we showfdhaial
operation implementations the MPEG2 encoder executedeoMtiien
processor achieves 53 % performance improvement comparéuet
pure software execution.

e parameter exchange we investigate the effects on performance of the
parameter passing between the general purpose proce$3B) €Bd re-
configurable hardware and we show that the overhead is rigglig

e memory bottlenecks we examine the effect of the data communication
between the reconfigurable hardware and memory on perfarenand
show that for DCT a high IO bandwidth (512 bytes/cycle) isuieed
when a fast execution time of around 20-30 cycles is impoBedSAD
and IDCT, the data communication bandwidth is not a congtrai

111



112 APPENDIXA. MULTIMEDIA DESIGN SPACE EXPLORATION

| Name | # frames| Resolution|

carphone 96 176x144
claire 168 360x288
container 300 352x288
football 125 352x240
foreman 300 352x288
garden 115| 352x240
mobile 140 352x240
standard 3 128x128
tennis 112 352x240

Table A.1: MPEG test sequences in YUV format

On the basis of our design space exploration, the hardwaigrter can com-
pute in advance for each hardware implementation the glmrdbrmance im-
provement and the influence of memory or parameter passieqdi@s on the
overall performance. For example, when a specific speed-upposed, the
designer is aided to choose the operations that can achieveduired speed-
up and the 10 bandwidth that eliminates the bottlenecksersgistem.

A.1 The MPEG2 and JPEG Case Study

In this section we explore the hardware constraints for @nm@nting on an
FPGA a set of well-known time-consuming multimedia operadi The main
goal is to determine the parameters that have a substanpali on the system
performance and their range of values in order for the Molesc@ssor to
outperform the standalone GPP.

Target Architecture and Applications We consider a Molen machine organi-
zation with an x86 as the Core Processor. More specificallycompiler gen-
erates code for the x86 architecture while the measurenaeetgerformed on
an AMD Athlon XP 1900+ at 1600 MHz. The considered applicatiare a set
of multimedia benchmarks consisting of the Berkeley MPEG&eer and de-
coder and the SPEC95 JPEG encoder and decoder. The timaitogsoper-
ations candidate for hardware execution are SAD (sum oflatesdifference),
2D DCT (2 dimensional discrete cosine transform), IDCT¢ise DCT), VLC
(variable length coding) and VLD (variable length decodinghe input data
are representative series of test images and scenes ofivaies, presented



A.1. THE MPEG2AND JPEG QASE STUDY 113

\ Name | Resolution|

boat.ppm 512x512
clegg.ppm 814x880
frymire.ppm | 1118x1105
lena.ppm 512x512
mandrill.ppm 507x509
monarch.ppm  768x512
peppers.ppm| 512x512
sail.ppm 768x512
serrano.ppm 629x794
tulips.ppm 768x512
penguin.ppm| 1024x739
specmun.ppn 1024x768
vigo.ppm 1024x768

Table A.2: JPEG test images

in Tables A.1 and A.2.

In this thesis we assume that the GPP and FPGA do not run ¢entlyrand
that the execution of an operation on the FPGA is each timeeped by the
FPGA configuration (even if the previous configuration is saene). More-
over, we assume that the FPGA performs only one operatidreatame time.

In order to evaluate the performance of the Molen procesmooriie applica-
tion where a functiory is executed on the FPGA, we compute the number of
GPP cycles for the Molen processor using:

NMolen ™ NX86 — T f + Neall - COSL (A.1)
cost = XSET + YEXEC + Npar * ZMOV_XR + C

where

e nen. the total number of GPP cycles spent in the considered@ppli
tion by the Molen processor;

e nxsg. the total number of GPP cycles when the considered apialicat
is executed exclusively on the GPP;

e n;: the total number of GPP cycles spent in all executions aftfon f
on the GPP;



114 APPENDIXA. MULTIMEDIA DESIGN SPACE EXPLORATION

e 1., the number of calls to functiofi in the considered application;

e cost: the number of GPP cycles for one execution of functjoon
FPGA; the time for FPGA configuration and execution is cotaain
GPP cycles.

e zspr: the number of GPP cycles required for one configuration ef th
FPGA for functionf;

e yuxpc. the number of GPP cycles required for one execution on the
FPGA of function f; it may depend on the input data. In order to be
constant for the chosen set of input data we consider thedarglues;

e n,,: the number of instructions for sending the parameters f@mRR
to XR and returning the results;

e zyov._xr. the number of GPP cycles for one MOXR instruction
(movtx or movfx)

e c: quantifies the calling convention differences in numbegBfP cycles.
As cis small (< 10 cycles) for the considered applications, we neglect
it.

In our design space exploration, we first analyze the purevaoé execution
and extract the relevant profile information for the consedeapplications and
functions. Based on the profile information and Formula Aué&,examine the
performance and the hardware parameters for the targetrivVie@®CM. The
profile information is extracted usingalt Library [78] for code instrumenta-
tion. Additionally, we develop a set of analysis routinesteasure the number
of cycles executed in a specific function (using RDTSC - ReateTStamp
Counter instruction) and the number of function calls. Mspecifically, we
have measured the values foxgg, ny andn.,y; included in Formula A.1. In
order to minimize the impact of external factors on the messents, we run
the applications in single mode and with the highest psiaritLinux.

As illustrated in Formula A.1, the cost per function call foreconfigurable
execution is determined by the cost of the FPGA configurdtignr), FPGA
execution (g x gc) and transfer of parameters)(oyv_xr). The influence of
these factors on the overall performance and their optiarajes are explored
in the rest of this section.

Cost RangeThe purpose of the GPP extension with reconfigurable hard-
ware is to achieve a performance improvement over the GR# atoeaning



A.1. THE MPEG2AND JPEG QASE STUDY 115

MPEG encoder
Input SAD DCT | IDCT | VLCI | VLCII
carphone| 997 | 37796| 2612| 2631| 2196
claire 1092 | 37595| 2177| 1710 1524
container| 1008 | 37590| 2208 | 1842 1476
football | 1484 | 37537 | 2827 | 2795 2318
foreman | 1298 | 37572| 2193 | 1577 1494
garden | 1311 | 37594 | 2463 | 2046 1524
mobile | 1092 | 37536| 2519| 2123 1564
standard| 1199 | 37549 | 3423 | 2930 2239
tennis | 1344 | 37531| 2221| 1702 1578

MPEG decoder
Input IDCT | VLD | VLD I
carphone| 2513| 1763 1347

claire 2056 745 659
container| 2087 880 586
football 2678 | 1940 1499
foreman | 2071 568 606
garden | 2332| 1091 662
mobile 2398 | 1177 722
standard| 3295 - -
tennis 2099 718 713

Table A.3: Software cost (bold) expressed in GPP cyclesHerftinctions
included in MPEG2 application

Nolen < M xgg Which holds when
cost < ny/Near- (A.2)

The values for limit costi{¢ /n.,;) in Formula A.2 are presented in Tables A.3
and A.4. They represent the cut-off points for the hardwamecetion from
where an implementation provides a performance improvéméfe refer to
the minimal values of each operation as the software cossénmted in bold
in Tables A.3 and A.4). For an implementation that executesoperation in

a number of cycles less than the software cost, a performamm®vement is
guaranteed to hold for all input data in the study.

Performance boundariesFor each operation, we determine the number of



116 APPENDIXA. MULTIMEDIA DESIGN SPACE EXPLORATION

JPEG encodef JPEG decoder
Input | VLC DCT | IDCT | VLD
boat 2272 | 2746| 2905| 7322
clegg | 3631 | 2748 | 3701 | 13950

frymire | 3371| 2758| 3313| 12989
lena 2469 | 2759| 3461 | 8080

mandrill | 3463 | 2759 | 3686 | 12967

monarch| 2403 | 2758 | 3360| 7836

penguin | 2488 | 2762| 3453| 8014

peppers| 2505 | 2764| 3463 | 8369
sall 3110| 2758 | 3545| 11276

serrano | 2955| 2766| 3698 | 10753

specmun| 2375| 2776| 3389| 7389
tulips | 2882 | 2760| 3571| 10177
vigo 2550 | 2755 3424 | 8444

Table A.4: Software cost (bold) expressed in GPP cyclesHerftinctions
included in JPEG application

cycles it consumes in the pure software approach from theabapplication

(nf/nxse) as presented in Table A.5 (second column). These valuessent

the maximal improvements of the overall performance thatlmachieved by
hardware acceleration of the considered functions. Weadkiat implement-
ing the SAD function on the FPGA can improve the overall penfance up
to 38 % while the overall improvement for VLC is very low (0.2)%/Nhen

taking into account all the functions for MPEG2 encoder (FAdl), the max-
imal reduction of the number of cycles is 65 % compared to tive goftware
implementation.

We are also interested in determining the boundaries betwiééch any real
implementation should be situated. The upper boundary snvthere is no
improvement, meaning ;... = nxss and the lower (theoretical) boundary
corresponds to an infinite hardware acceleratiam{ = 0) of each function.
These boundaries are presented in Fig. A.1 and they limiddsign space
where a hardware designer should place a particular impigtien. When
all operations are designed to execute at the software ttwet, an overall
performance improvement is still guaranteed (6 % in Fig.)AThis improve-
ment is due to the safe choice of minimal value for the soféwanst in order
to guarantee no performance decreasing even for the wasticput data.

For the real, non-optimized FPGA implementations desdribg32], we also
plotted in Fig. A.1 the performance for the same operatis®uming that



A.1. THE MPEG2AND JPEG QASE STUDY 117

MPEG Encoder
T T T T T
14 Upper
(VN T \L 6%
g 89* Sof t ware Cost *
; 08 F 53% .
S oorr 65%
s i
) Real i st B
©
> ]
(8] \
(=]
> LowerT]
02 |
01 —
0 | | | | |
0 1 2 3 4 5

#fct in hardware

Figure A.1: Relative performance boundaries and a realemphtation anal-
ysis

compiler optimizations hide the configuration latenay£r = 0) as pre-
sented in [94] [93]. After converting the reported numbercgtles to our
target processor, we obtain 53% performance improvement.

Parameter Passing Impactin order to understand the impact of the Molen
parameter passing mechanism, we assume a scenario in wkidos$t from
Formula A.1 is exclusively spent for passing parametetst( = npq, *
zmov.xr andxspr = yexrec = 0). Under this theoretical assumption
we compute the maximal number of cycles W ov_xr aszyov.xr =
software_cost/nyq, given in Table A.5 (last column). In order to interpret
the results, it is important to realize that MCOXR instructions resemble the
move general purpose register instructions which usuatjyire a small num-
ber (~ 3) of cycles. Our computations show that for the SAD functian
MOV _XR instruction can be executed in up to 166 cycles before theimal
performance (38 % in Table A.5, second column) is consumethd case of
DCT, the MOV_XR can take up to 37531 cycles before the penalty is higher
than the maximal performance gain of 25.4 %.

In order to analyze the communication overhead between GBIFRGA, we
assumed an exaggerated scenario in which the cost for tdevaee configu-



118

APPENDIXA. MULTIMEDIA DESIGN SPACE EXPLORATION

| Function| MAX Improv | MOV _XR max |

MPEG2 encoder
SAD 38.0 % 166
DCT 25.4 % 37531
IDCT 1.6 % 2177
VLC I 0.2% 225
VLCII 0.1% 369
MPEG2 decoder
IDCT 38.3% 2056
VLD I 3.1% 284
VLD Il 2.0% 586
JPEG encoder
VLC 14.7 % 568
DCT 14.0 % 2746
JPEG decoder
IDCT 49.5 % 581
VLD 24.3 % 732

Table A.5: Marginal improvement for each function and thexiimal cost for
MOV _XR (cycles)

ration and execution is half of the software cost. The impdcty;ov_xr IS
presented in Fig. A.2 showing that the MPEG2 encoder is tiye applica-
tion whose performance may be negatively influenced hyv_xr. This is
explained by the low software cost for SAD (compared to DCAplE A.3)
and the large number (8) of parameters. In conclusion, weidenthat for
the operations under considerations, transferring paensiand returning the
results is not a bottleneck in the system.

Communication FPGA - Memory Finally, we investigate the FPGA-memory
data communication bandwidth as some parameters passed #€PIGA in
XRs are pointers to blocks of data placed in external memlarthis context,
we assume that access to memory is sequential and symrhétiicaber of
cycles to read and write one block of data are equal). In daldetermine the
amount of data transferred to/from external memory, weothice a special
pass in the compiler to annotate each basic block of the derex functions
with the number of read and write memory instructions, ad aglthe corre-
sponding number of bytes. Stack operations are not coresides read/write
(R/W) operations, as the FPGA implementation most probalillynot use a



A.1. THE MPEG2AND JPEG QASE STUDY 119

1
08
g2
B\ 06 [~ |
C
53
S8
~ 04r MPE® encoder 7
02 B
0 | | | | |
0 20 40 60 80 100

#cycles for mov_xr

Figure A.2: zp0ov_xr impact when passing parameters requires software

cost/2

stack. In Table A.6, we present the number of read and writenong oper-
ations together with the corresponding number of byteB(Bnd W.B). In
column RW_B, the total number of read and written bytes BR+ W_B) is
given.

When we assume automatic transformation and FPGA mappifgrped by
tools such as Compaan [54], that preserve the memory ascpegermed in
software, we can analyze the memory bandwidth. As far asdbelts for
DCT are concerned, our calculations are done using the Bsrkaplemen-
tation of the MPEG2 encoder benchmark including forward Biouble pre-
cision. Figure A.3 shows the computed bandwidth requirgséar different
execution times. Our calculations indicate that DCT is thesthdemanding
function. The reasons of this high bandwidth requiremeat &i) the use of
doubles (8 bytes) to minimize information loss during coegsion, (ii) tem-
porary results are also stored in memory and (iii) the patarsere each time
read from memory. If a fast DCT design of around 20-30 cyctesequired
then around 512 bytes need to be transferred per cycle outilize the DCT
unit. Fast SAD and IDCT implementations are less demandinfamas 10
is concerned. If SAD is going to be implemented in around Sasjcas de-



120 APPENDIXA. MULTIMEDIA DESIGN SPACE EXPLORATION

MPERX2 encoder
400 T T T T T

350

300

250

200

150

#cycl es( EXECUTE)

100

50

o 1 i
18 32 64 128 256 512
#Byt es/ cgcl

Figure A.3: Execution time for different bandwidth

| Function| Read] R.B [ Write | WB | RW.B |

MPEG2 encoder
SAD 235 235 0 0 235
DCT 2112 | 13824| 192 | 1152 | 14976
IDCT 254 636 128 | 256 892

VLC I 129 197 1 4 201
VLC I 128 192 0 0 192
MPEG2 decoder
IDCT 254 636 128 | 256 892
VLD | 288 962 72| 270 1232
VLD Il 225 749 55| 207 956

JPEG encoder
VLC 184 547 118 | 472 1019
DCT 256 | 1024 128 | 512 1536
JPEG decoder
IDCT 344 995 128 | 320 1315
VLD 1849 | 6752 539 | 1926 8678

Table A.6: Number of loads/stores performed in the purensi approach



A.1. THE MPEG2AND JPEG QASE STUDY 121

scribed in [97], then a bandwidth of 47 bytes per cycle is ghoto have a
performance gain of 37 % (which is close to the maximal 38 %rawgment).
When a bandwidth of 128 bytes per cycle is assumed, then a $%&Eation
can be performed without starvation even in 2 cycles. Singitaclusions can
be drawn for IDCT. We finally also computed the bandwidth rezraents tak-
ing into account the weighted execution times for each fonctThis curve
reflects the requirements of a possible real implementaimhsuggests that a
fast execution time of around 50 cycles for all operatiomgines a bandwidth
of 83 bytes per cycle.

We emphasize that the presented results are based on thepdssu that
yex EC 1S constant (requiring the maximal possible delay) for acgmefunc-
tion, even though it can vary according to the specific in@iade.g. for VLD
function). Therefore, the actual performance improvermeamiy be higher that
presented in this appendix.






Bibliography

[1]

2]

[3]

[4]

R. Hartenstein, “A decade of reconfigurable computingvigionary ret-
rospective,” inProceedings of Design, Automation and Test in Euyope
(Munich, Germany), pp. 642—649, March 2001.

D. Cronquist, C. Fisher, M. Figueroa, P. Franklin, andEbeling, “Ar-
chitecture design of reconfigurable pipelined datapath#dvanced Re-
search in VLSIpp. 23-40, 1999.

C. Ebeling, D. Cronquist, and P. Franklin, “RaPiD - refigarable
pipelined datapath,” in6th International Workshop on Field Pro-
grammable Logic and Applications (FPL 96)ol. 1142, (Darmstadt,
Germany), pp. 126135, Springer-Verlag Lecture Notes im@ater Sci-
ence (LNCS), September 1996.

M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, |. Bratt, BGreenwald,

H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shaidm
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “Badlon

of the raw microprocessor: An exposed-wire-delay architecfor ILP
and streams,” ilProceedings of International Symposium on Computer
Architecture June 2004.

[5] A. Marshall, T. Stansfield, |. Kostarnov, J. VuilleminpéB. L. Hutch-

[6]

ings, “A reconfigurable arithmetic array for multimedia éipations,” in
Proceedings 7th ACM International Symposium on Field-Raognable
Gate Arrays (FPGA 99)p. 135-143, February 1999.

B. Kastrup, J. van Meerbergen, and K. Nowak, “Seeking (tight)
problems for the solutions of reconfigurable computing,9ih Interna-
tional Workshop on Field-Programmable Logic and Applioas (FPL
99), (Glasgow, Scotland), pp. 520-525, Springer-Verlag Lectiotes
in Computer Science (LNCS), September 1999.

123



124

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

R. Wittig and P. Chow, “Onechip: An FPGA processor witltaafig-
urable logic,” in4th IEEE Symposium on FPGAs for Custom Comput-
ing Machines (FCCM 96)Napa Valley, California), pp. 126-135, April
1996.

H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadehg & C. Filho,
“MorphoSys: An integrated reconfigurable system for dateafel and
computation-intensive application,” IEEE Transactions on Computers
vol. 49(5), pp. 465481, May 2000.

J. Jacob and P. Chow, “Memory interfacing and instrutspecification
for reconfigurable processors,” #th ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays (FPGA 9®onterey, Cali-
fornia), pp. 145-154, February 1999.

P. Athanas and H. Silverman, “Processor reconfigunattbrough
instruction-set metamorphosis,” IEEE Computervol. 26(3), pp. 11—
18, March 1993.

S. Trimberger, “Reprogrammable instruction set aeedbr,” in U.S.
Patent No. 5,737,63April 1998.

T. Miyamori and K. Olukotun, “A quantitative analysi$ configurable
coprocessors for multimedia applications,” 6th IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM,98)apa Valley, Cal-
ifornia), pp. 2—22, Springer-Verlag Lecture Notes in Coi@plScience
(LNCS), April 1998.

S. Sawitzki, A. Gratz, and R. Spallek, “Increasing rogrocessor perfor-
mance with tightly-coupled reconfigurable logic arrays,8ih Interna-

tional Workshop on Field-Programmable Logic and Applioas (FPL

98), (Tallin, Estonia), pp. 411-415, September 1998.

C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami, “A dagbed design
approach for reconfigurable VLIW processors,THEE Design and Test
Conference in EuropéMunich, Germany), pp. 778-780, March 1999.

S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Maad R. R.
Taylor, “Piperench: A reconfigurable architecture and civenp IEEE
Computervol. 33(4), pp. 70-77, April 2000.

R. Razdan and M. Smith, “A high performance microaretitire with
hardware-programmable functional units,”2ith Annual International



BIBLIOGRAPHY 125

Symposium on Microarchitecture MICRO;2{San Jose, California),
pp. 172-180, November 1994,

[17] B. Kastrup, A. Bink, and J. Hoogerbrugge, “Concise: Agiler-driven
cpld-based instruction set accelerator,” Fmoceedings of FCCM'99
(Napa Valley CA), pp. 92—-100, April 1999.

[18] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaeraordigurable
functional unit,” in Proc. IEEE Symp. on Field-Programmable Custom
Computing MachinegNapa, California), pp. 87-96, 1997.

[19] M. B. Gokhale and J. M. Stone, “Napa C: Compiling for a Igib
RISC/FPGA Architecture,” irProceedings of FCCM'98([Napa Valley,
CA), pp. 126-137, April 1998.

[20] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. £idl Arnold,
and M. Gokhale, “The napa adaptive processing architettimePro-
ceedings of IEEE Symposium on FPGAs for Custom Computing Ma-
chines pp. 28-37, April 1998.

[21] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Gachitecture
and C compiler,JEEE Computervol. 33(4), pp. 62—-69, April 2000.

[22] C. Hauser and J. Wawrzynek, “GARP: A MIPS processor \aitiecon-
figurable coprocessor,” iProc. of the 5th IEEE Symposium on Field-
Programmable Custom Computing Machingg. 12—-21, April 1997.

[23] Z. A. Ye, N. Shenoy, and P. Banerjee, “A C compiler for aggssor with
a reconfigurable functional unit,” IACM/SIGDA Symposium on FPGAs
(Monterey, California, USA), pp. 95-100, Feb 2000.

[24] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The Charearecon-
figurable functional unit,” irProc. of the 5th IEEE Symposium on FPGAs
for Custom Computing Machine@d.os Alamitos, Caliornia), pp. 87-96,
1997.

[25] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, Rylor,
and R. Laufer, “A coprocessor for streaming multimedia &region,”
in Proc. of the 26th International Symposium on Computer Aechire
(Georgia, USA), pp. 28-39, 1999.

[26] B. Mei, F. Veredas, and B. Masschelein, “Mapping an A/a6c decoder
onto the adres reconfigurable architecture,Pimoceedings International



126

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

BIBLIOGRAPHY

Conference on Field Programmable Logic and ApplicationBL(RR005)
(Tampere, Finland), pp. 622—625, August 2005.

B. Mei, S. Vernalde, D. Verkest, H. de Man, and R. Lauwesg“Dresc:
A retargetable compiler for coarse-grained reconfiguraldhitectures,”
in FPT 2002 (Hong Kong , China), pp. 166—-173, December 2002.

A. L. Rosa, L. Lavagno, and C. Passerone, “Hardwareisoé design
space exploration for a reconfigurable processorPrioc. of DATE 2003
(Munich, Germany), pp. 570-575, March 2003.

F. Campi, M. Toma, A. Lodi, A. Cappelli, R. Canegallo,daR. Guerri-
eri, “A VLIW processor with reconfigurable instruction setembedded
applications,” inin ISSCC Digest of Technical Papemp. 250-251, Feb
2003.

M. Sima, S. Vassiliadis, S.Cotofana, J. van Eijndhgvand K. Vis-
sers, “Field-programmable custom computing machines xentamy,”

in 12th International Conference on Field Programmable Lagyic Ap-
plications (FPL) vol. 2438, (Montpellier, France), pp. 79-88, Springer-
Verlag Lecture Notes in Computer Science (LNCS), Sep 2002.

S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. BertelsK@zmanov, and
E. Moscu Panainte, “The Molen Polymorphic Procesd&ZE Transac-
tions on Computersrol. 53(11), pp. 1363— 1375, November 2004.

S. Vassiliadis, S. Wong, and S. Cotofana, “The maotencoded pro-
cessor,” inl1th International Conference on Field Programmable Logic
and Applications (FPL)vol. 2147, (Belfast, UK), pp. 275285, Springer-
Verlag Lecture Notes in Computer Science (LNCS), Aug 2001.

S. Vassiliadis, G. Gaydadijiev, K. Bertels, and E. MoBanainte, “The
Molen Programming Paradigm,” iRroceedings of the Third Interna-
tional Workshop on Systems, Architectures, Modeling, @nmil&tion,
(Samos, Greece), pp. 1-7, July 2003.

R. J. Meeuws, Y. D. Yankova, and K. Bertels, “Towards amitative
model for hardware/software partitioning,” RCosy Reporip. 57, April
2006.

C. Galuzzi, E. Moscu Panainte, Y. D. Yankova, K. Bertalsd S. Vassil-
iadis, “Automatic selection of application-specific ingttion-set exten-
sions,” INCODES+ISSS 2006 - Proceedings of the 4th international con-



BIBLIOGRAPHY 127

ference on Hardware/software codesign and system systhgsi 160—
165, October 2006.

[36] C. Galuzzi, K. Bertels, and S. Vassiliadis, “A lineamaplexity algorithm
for the automatic generation of convex multiple input npléi output
instructions,” inProceedings of ARC 200pp. 130-141, March 2007.

[37] Y. D. Yankova, K. Bertels, S. Vassiliadis, R. J. Meeuasd A. Vir-
ginia, “Automated hdl generation: Comparative evaluatiaon Proceed-
ings of International Symposium on Circuits and SystenSAKR2007,)
May 2007.

[38] Z. Guo and W. Najjar, “A compiler intermediate repretsion for recon-
figurable fabrics,” inProc. of the 16th International Conference on Field
Programmable Logic and Applications (FPL 200@Yladrid, Spain), Au-
gust 2006.

[39] J. Cardoso and H. Neto, “Towards an automatic path framaTM byte-
codes to hardware through high-level synthesis,JEEE International
Conference on Electronics, Circuits and Systewat 1, (Lisboa, Portu-
gal), pp. 8588, 1998.

[40] G. Kuzmanov, G. N. Gaydadijiev, and S. Vassiliadis, “Thelen media
processor: Design and evaluation,” fmoceedings of the International
Workshop on Application Specific Processors, WASP ,200526—33,
September 2005.

[41] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “@timg for the
Molen Programming Paradigm,” ia3th International Conference on
Field Programmable Logic and Applications (FRWpl. 2778, (Lisbon,
Portugal), pp. 900-910, Springer-Verlag Lecture Notesom@uter Sci-
ence (LNCS), Sep 2003.

[42] http://suif.stanford.edu/suif/suif2.
[43] http://www.eecs.harvard.edu/hube/software.
[44] “Isoliec 9899,” (http://www.open-std.org/JTCL1/SENG14/www/standards).

[45] G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “Thelen media
processor: Design and evaluation,” Bmoceedings of the International
Workshop on Application Specific Processors, WASP ,200526—33,
September 2005.



128

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

BIBLIOGRAPHY

G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “Migex Il Pro
MOLEN processor,” irProceedings of the 4th International Workshop on
Computer Systems: Architectures, Modelling, and Simaria(SEAMOS
2004) pp. 192—-202, July 2004.

G. Kuzmanov, G. N. Gaydadjiev, and S. Vassiliadis, “TM@LEN pro-
cessor prototype,” irProceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 20@4) 296—
299, April 2004.

Xilinx Corporation, PowerPC Processor Reference Guidgeptember
2003.

Xilinx Corporation, Virtex-1I Pro Platform FPGA Handbook v2,.@cto-
ber 2002.

Xilinx Corporation, Virtex-ll Pro and Virtex-Il Pro X Platform FPGAs:
Functional DescriptionJune 2004.

S. Sobek and K. BurkeRowerPC Embedded Application Binary Inter-
face 32-Bit Implementation, Version 1.0

G. Kuzmanov and S. Vassiliadis, “Arbitrating Instriaets in anppu-coded
CCM,”in Proceedings of the 13th International Conference on Fietat P
grammable Logic and Applications (FPL'Q3yol. 2778, (Lisbon, Por-
tugal), pp. 81-90, Springer-Verlag Lecture Notes in Corap&cience
(LNCS), September 2003.

E. Moscu Panainte, K. Bertels, and S. Vassiliadis, ‘fWiubdia recon-
figurable hardware design space explorationPinceedings of the 16th
IASTED International Conference on Parallel and DistriédtComput-
ing and Systems (PDCS 200gp. 398-403, November 2004.

B. Kienhuis, E. Rijpkema, and E. Deprettere, “CompaReriving pro-
cess networks from matlab for embedded signal processickjtec-
tures,” inProc. of CODES’2000(San Diego, CA), pp. 13-17, May 2000.

C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Depreft “ Laura:
Leiden Architecture Research and Exploration Tool,"1i8th Interna-
tional Conference on Field Programmable Logic and Applmas (FPL)
vol. 2778, (Lisbon, Portugal), pp. 911-920, Springer-&griLecture
Notes in Computer Science (LNCS), Sep 2003.



BIBLIOGRAPHY 129

[56] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, dadDeprettere,
“System design using Kahn process networks: The Compaaradlap-
proach,” inProc. of DATE 2004(Paris, France), pp. 340-345, Feb 2004.

[57] http://www.xilinx.com/iseeval/index.htm.
[58] http://www.xilinx.com/ise/embedded/edk.htm.

[59] G. Amdahl, “Validity of the single processor approaah dchieving
large-scale computing capabilities,” Proceedings of AFIPS Confer-
ence pp. 483-485, 1967.

[60] A.V.Aho, R. Sethi, and J. D. UllmaiGompilers: principles, techniques,
and tools Addison-Wesley Longman Publishing, 1986.

[61] S. Muchnick,Advanced Compiler Design and Implementatidtorgan
Kaufmann Publishers, 1997.

[62] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “@wic Hardware
Reconfigurations: Performance Impact on MPEG2,Pioceedings of
SAMOSvol. 3133, (Samos, Greece), pp. 284—-292, Springer-Vérag
ture Notes in Computer Science (LNCS), July 2004.

[63] J. Noguera and R. Badia, “A hw/sw partitioning algonittfor dynam-
ically reconfigurable architectures,” ifroceedings of Design, Automa-
tion and Test in EuropgMunich, Germany), March 2001.

[64] J. Noguera and R. Badia, “Run-time HW/SW codesign fecite event
systems using dynamically reconfigurable architectur@s,Proceed-
ings of the 13th international symposium on System syisth®&adrid,
Spain), pp. 100-106, 2000.

[65] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “PlosverPC back-
end molen compiler,” irFPL, vol. 3203, (Antwerp, Belgium), pp. 434—
443, Springer-Verlag Lecture Notes in Computer Science GBIN
September 2004.

[66] J. Resano, D. Mozos, and F. Catthoor, “A hybrid prefescheduling
heuristic to minimize at run-time the reconfiguration owsat of dy-
namically reconfigurable hardware,” DATE 2005 (Munich, Germany),
pp. 106-111, March 2005.



130 BIBLIOGRAPHY

[67] X.Tang, M. Aalsma, and R. Jou, “A compiler directed aggerh to hiding
configuration latency in Chameleon processorsFRL, vol. 1896, (Vil-
lach, Austria), pp. 29—-38, Springer-Verlag Lecture NoteComputer
Science (LNCS), Aug 2000.

[68] Q. Cai and J. Xue, “Optimal and efficient speculatiosdzh partial
redundancy elimination,” iPACM CGQ (San Francisco, California),
pp. 91-102, 2003.

[69] J. Edmonds and R. Karp, “Theoretical improvements goathmic ef-
ficiency for network flow problems,” idournal of the ACMvol. 19 (2),
pp. 248-264, 1972.

[70] J.-F. Lalande, M. Syska, and Y. Verhoeven, “Mascopt -eamork op-
timization library: Graph manipulation,” Tech. Rep. RTS® INRIA
Sophia Antipolis, 2004 route des lucioles - BP 93 - FR-0690pH=a
Antipolis, April 2004.

[71] L. Pillai, “Video compression using DCT,” iApplication Note: Virtex-I|
Series (http://direct.xilinx.com/bvdocs/appnotes/xappGid).

[72] L. Pillai, “Quantization,” inApplication Note: Virtex and Virtex-Il Series
(http://direct.xilinx.com/bvdocs/appnotes/xapp6 ) p

[73] L. Pillai, “Variable length coding,” imApplication Note: Virtex-1l Series
(http://direct.xilinx.com/bvdocs/appnotes/xapp62if) p

[74] P.S. Magnusson, M. Christensson, J. Eskilson, D. Fers@s. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Sinféchill sys-
tem simulation platform,IEEE Transactions on Computengol. 35(2),
pp. 50-58, February 2002.

[75] B. Blodget, C. Bobda, M. Huebner, and A. Niyonkuru, “falrand dy-
namic reconfiguration of Xilinx Virtex-1l FPGAs,” irFPL, vol. 3203,
(Antwerp, Belgium), pp. 801-810, Springer-Verlag LectiNetes in
Computer Science (LNCS), September 2004.

[76] S. Vassiliadis, G. Kuzmanov, S. Wong, E. Moscu PanaiGteN. Gay-
dadjiev, K. Bertels, and D. Cheresiz, “PISC: Polymorphgtinction set
computers,” inProceedings of the International Workshop on Applied
Reconfigurable Computing (ARC 2006p. 274—-286, March 2006.

[77] L. Pillai, “Video compression using IDCT,” iApplication Note: Virtex-
Il Series (http://direct.xilinx.com/bvdocs/appnotes/xappGitk).



BIBLIOGRAPHY 131

[78] M.Mercaldi, M. D. Smith, and G. Holloway, “The halt liary,” in The
Machine-SUIF Documentation S¢Hardvard University), 2002.

[79] R. Fischer, K. Buchenrieder, and U. Nageldinger, “Radg the power
consumption of FPGAs through retiming,” it2th IEEE International
Conference and Workshops on the Engineering of ComputesdBays-
tems (ECBS’'05)pp. 89-94, 2005.

[80] E. Moscu Panainte, K. Bertels, and S. Vassiliadis, ttiretion schedul-
ing for dynamic hardware configurations,” Rroceedings of Design, Au-
tomation and Test in Europe (DATE 0§Munich, Germany), pp. 100—
105, March 2005.

[81] S. Fekete, E. Khler, and J. Teich, “Optimal FPGA moduepment with
temporal precedence constraints,’Hroceedings of Design, Automation
and Test in Europe 2005 (DATE Qpp. 658-665, 2001.

[82] R. Maestre, F. J. Kurdahi, N. Bagherzadeh, H. Singh, &ntida, and
M. Fernndez, “Kernel scheduling in reconfigurable computiin Pro-
ceedings of Design, Automation and Test in Europe (DATE [89)90—
96, 1999.

[83] S. Swenson, “Spatial instruction scheduling for rawchiaes,” inMas-
ter's thesis, Massachusetts Institute of Technology, B2 22002.

[84] S. Hauck, “Configuration prefetch for single contextaafigurable co-
processors,” ifProceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arraypp. 65—74, February 1998.

[85] K. Chatha and R. Vemuri, “Hardware-software codesign dynam-
ically reconfigurable architectures,” i@th International Workshop on
Field-Programmable Logic and Applications (FPL 99%lasgow, UK),
pp. 175-184, Springer-Verlag Lecture Notes in Computereigm
(LNCS), September 1999.

[86] R. H. A. Hirschbiel and M. Weber, “A novel paradigm of pdel com-
putation and its use to implement simple high performancevisare,” in
Proceedings of the Joint International Conference on \fezal Parallel
Processingpp. 51-62, March 1990.

[87] R.Hartenstein, J. Becker, and R. Kress, “Two-levetifianing of image
processing algorithms for the parallel map-oriented maghiin Pro-
ceedings of the 4th International Workshop on Hardwareyoe Co-
Design pp. 77-84, March 1996.



132

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

BIBLIOGRAPHY

L. Lin, “High-level synthesis, introduction to chip drsystem design,”
Kluwer Acad. Publ., Boston, London, 1992.

M. A. George, M. Pink, D. Kearney, and G. Wigley, “Effiaieallocation

of FPGA area to multiple users in an operating system fornfigorable
computing,” inProceedings of Engineering of Reconfigurable Systems
and Algorithms (ERSAO2pp. 238—242, 2002.

H. Walder and M. Platzner, “Online scheduling for bleggrtitioned re-
configurable devices,” iltn Proceedings of the Design, Automation and
Test in Europe Conference and ExhibitigMunich, Germany), pp. 290—
295, 2003.

M. Dales, “Managing a reconfigurable processor in a gangurpose
workstation environment,” inn Proceedings of the Design, Automa-
tion and Test in Europe Conference and ExhibitiGMunich, Germany),
pp. 10980-10985, 2003.

B. Jeong, S. Yoo, S. Lee, and K. Choi, “Hardware-sofevemsynthesis
for runtime incrementally reconfigurable FPGAs, Rnoceedings of Asia
and South Pacific DAGpp. 169-174, January 2000.

E. Moscu Panainte, K. Bertels, and S. Vassiliadis, “Maen compiler
for reconfigurable processor#XCM Transactions in Embedded Comput-
ing Systems (TECS)ol. 6(1), February 2007.

E. Moscu Panainte, K. Bertels, and S. Vassiliadis,gtptocedural com-
piler optimization for partial run-time reconfigurationfournal of VLSI
Signal Processingvol. 43(2), pp. 161-172, May 2006.

P. Barth, “A Davis-Putnam based enumeration algoritfon linear
pseudo-Boolean optimization,” Research Report MPI-R9BI3, Max-
Planck-Institut fur Informatik, Im Stadtwald, D-66123&hriicken, Ger-
many, January 1995.

Sundance, “Fc-jpeg04 jpeg compression design spatdit”
(http://www.sundance.com/docs/FC-JPEG04 Sundance 50300df),
pp. 1-4, 2004.

S. Vassiliadis, E. A. Hakkennes, S. Wong, and G. G. Paska“The
sum-of-absolute-difference motion estimation accetefatn Proceed-
ings of the 24th Euromicro Conferend®asteras, Sweden), pp. 559-566,
Aug 1998.



List of Publications

International Journals

1. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadifie Molen Com-
piler for Reconfigurable Processors ACM Transactions in Embedded
Computing Systems (TECS), February 2007, Volume 6, Issue 1

2. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadisterprocedural
Compiler Optimization for Partial Run-Time Reconguration,
Journal of VLSI Signal Processing, pp. 161-172, May 200duiv
43, Number 2

3. S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M. Bertefs.K.
Kuzmanov, E. Moscu Panaint&he Molen Polymorphic Processor
IEEE Transactions on Computers, pp. 1363- 1375, Novembe4,20
\olume 53, Issue 11

International Conferences

1. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliad@mpiler-driven
FPGA-area Allocation for Reconfigurable Computing Proc. of
Design, Automation and Test in Europe 2006 (DATE 06), pp.-389,
March 2006

2. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadi)struction
Scheduling for Dynamic Hardware Configurations Proc. of Design,
Automation and Test in Europe 2005 (DATE 05), pp. 100-109520

3. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadisterprocedural
Optimization for Dynamic Hardware Configurations, Proc. of the
International Workshop on Systems, Architectures, Maugliand
Simulation (SAMOS 05), pp. 2-11, July 2005, Springer-Vegrzecture
Notes in Computer Science (LNCS)

133



134

Pub

1

List of Publications

. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadithe PowerPC
Backend Molen Compiler, in 14th International Conference on
Field-Programmable Logic and Applications (FPL'04), pp34443,
September 2004, Springer-Verlag Lecture Notes in Compbitéence
(LNCS), vol. 3203

E. Moscu Panainte, K.L.M. Bertels, S. Vassiliaflgnamic Hardware

Reconfigurations: Performance Impact on MPEG2 Proc. of the
International Workshop on Systems, Architectures, Matgli and
Simulation (SAMOS 04), pp. 284-292, July 2004, July 2003;jr&er-
Verlag Lecture Notes in Computer Science (LNCS), vol. 3133

. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadidultimedia Re-
configurable Hardware Design Space Exploration Proc. of the
16th IASTED International Conference on Parallel and [bsted
Computing and Systems (PDCS 2004), pp. 398-403, Novemifzr 20

. E. Moscu Panainte, K.L.M. Bertels, S. Vassiliad@pmpiling for
the Molen Programming Paradigm, Proc. of the 13th International
Conference on Field Programmable Logic and Applicatior3L{63),
pp. 900-910, September 2003, Springer-Verlag Lecture dNate
Computer Science (LNCS), vol. 2778

. S. Vassiliadis, G. N. Gaydadjiev, K.L.M. Bertels, E. Mogeanainte,
The Molen Programming Paradigm, Proc. of the Third International
Workshop on Systems, Architectures, Modeling, and Sinarat
(SAMOS 03), pp. 1-10, July 2003, Springer-Verlag Lecturetddoin
Computer Science (LNCS), vol. 3133

lications not directly related to this dissertation

. CG Galuzzi, E. Moscu Panainte, Y. D. Yankova, K.L.M. Blsit8. Vas-
siliadis, Automatic Selection of Application-Specific Instruction-Set
Extensions Proc. of the 4th international conference on Hard-
ware/software codesign and system synthesis (CODES+I$86),2
pp. 160-165, October 2006

. E. Moscu Panainte, I. Athanasiu, S. D. CotofaAa, Optimization
Framework for Retargetable Compilers, Proc.. 13th International
Conference on Control Systems and Computer Sciences (ASES-
pp. 427-432, May 2001



Samenvatting

doeld voor herconfigureerbare architecturen die valleneotdt Molen

Programeer Paradigma. In het bijzonder introduceren wijpakket van
compiler optimalisaties dat €én van de belangrijksteri#&gomingen van her-
configureerbare architecturen, namelijk configuratie bgad, tegengaat. De
voorgestelde optimalisaties zijn gebaseerd op inter- &a procedurele data-
flow analyse, met inachtneming van de concurrentie strijddenbeschikbare
herconfigureerbare hardware en van de ruimte-tijd toemgjziDe hardware
configuratie instructies zijn geplaatst voor de hardwaratie instructies, zo-
dat gebruik wordt gemaakt van het aanwezige parallellisrsgen de hardware
configuratie fase en de sequentiéle uitvoer van operagpiele doofd processor.
De introprocedurele optimalisatie maakt gebruik van heh’sat cut’ graaf al-
goritme met het doel het aantal hardware configuraties taimeleren door de
overtollige configuraties te identificeren. Daarnaast gmésren wij twee al-
goritmen voor het toewijzen van de beschikbare herconfegbege hardware,
die het totale te herconfigureren gebied minimaliseren etotdde prestatie
verbetering maximaliseren. Gebaseerd op profilering etwsoé/hardware
schattingen, genereren de compiler optimalisaties enalgijiong algoritmes
geoptimaliseerde code voor de bedoelde herconfigureedratgtectuur en
toepassing, zodanig dat deze voldoet aan de ruimte-tijerkemen. Tevens
assisteren zij bij de keuze tussen hardware en softwareatihg van de oper-
aties die geschikt zijn voor uitvoering op de herconfigubeee hardware. Ten
einde de Molen compiler te evalueren, presenteren wij, &zste, een exper-
iment met een toepassing uit een multi-media benchmarlgngeiteerd met
de Molen compiler en uitgevoerd op de Molen polymorphic ragaiocessor.
Het programma blijkt 2,5 keer sneller voltooid te zijn op dedonfigureerbare
hardware dan het geval is bij een pure software aanpak. \gEme maken wij
de inschatting dat de intraprocedurele compiler optiratiks tot 94 % aan
prestatie verbetering, vergeleken met een pure softwaradeging, bijdragen,

In dit proefschrift presenteren wij de opzet van de Molen comier

135



136 Samenvatting

terwijl de intraprocedurele compiler optimilisaties entdewijzing algoritmes
het aantal herconfiguraties aanzienlijk vermindert voorgderuikte bench-
marks. Ten slotte stellen wij vast dat de belangrijke inglogan onze compiler
optimalisaties en toewijzing algoritmes, op de prestatidlen toenemen voor
toekomstige snellere FPGAs.



Curriculum Vitae

A

Elena Moscu Panaintewas born on the
21st of January 1977 in Adjud, Romania.
After finishing her secondary education at
"Liceul Teoretic Emil Botta, Adjud”, she
studied Computer Science at the Faculty of
Automatic Control and Computers 6Po-
litehnica” University Bucharest, where she
graduated as M.Sc. in 2000 on a retargetable
framework for compiler optimizations. The
work for her thesis was carried out during
a six-month scholarship at Computer Engi-
neering group, TU Delft. Between 2000 and

2002, she was a teaching assistant at the Faculty of Autoi@afitrol and

Computers, Bucharest.

In 2002, she started her Ph.D studies at Computer Engirgegroup, TU
Delft. She worked in DelftWorkBench project under the swmon of
Prof. Stamatis Vassiladis and Prof. Koen Bertels. Her woalk Yocused
on compiler optimizations for reconfigurable architectur&he results of
this research is presented in this thesis.

Her main research interests include: Compiler Design antin@ga-
tions, Reconfigurable Computing, Hardware/Software csifre Embed-
ded Systems, Computer Architecture and Image Processing.

137



