
Automated HDL Generation: Comparative Evaluation
Yana Yankova, Koen Bertels, Stamatis Vassiliadis, Roel Meeuws, Arcilio Virginia

Computer Engineering Laboratory
Delft University of Technologies, The Netherlands

Email: {Y.D.Yankova, K.L.M.Bertels, S.Vassiliadis}@tudelft.nl, {rmeeuws, avirginia}@ce.et.tudelft.nl

Abstract— Reconfigurable computing (RC) systems, coupling general
purpose processor with reconfigurable components, offer a lot of advan-
tages. Nevertheless, currently a designer needs both in-depth software and
hardware design knowledge to develop applications for such platforms.
The automated hardware generation addresses this problem. However,
the success of such tools remains marginal. This paper discusses the
reasons for the lack of success. It presents a quantitative and qualitative
comparison of three hardware generators using the following criteria:
quality of the hardware model, the supported HLL constructs, and the
level of automation.

I. INTRODUCTION AND PROBLEM DESCRIPTION

Reconfigurable computing (RC) systems, coupling general pur-
pose processors (GPPs) with reconfigurable components, offer a lot
of advantages combining the flexibility of the software execution
with the computational speed of the application-specific hardware.
Nevertheless, currently a designer needs both in-depth software
and hardware design knowledge to develop applications for such
platforms. Therefore, dedicated tools and workbenches that make the
hardware details transparent to the software designer are necessary.
One component of a such workbench is an automated hardware
design generator that takes its input from a high level language
(HLL) such as C. In this generation process there are multiple
challenges to be overcome. These challenges range from mapping
the high-level (HL) constructs to the hardware to finding the proper
set of optimizations and transformations that would lead to optimal
hardware design. Multiple research projects, dating back more than
15 years, have addressed some of these problems. The goal of
the first projects in this field was to answer the question whether
it is possible to transform the high-level operations to hardware
gates and wires? TransmogrifierC [1] is representative of this line
of research. The goal of this compiler was to map simple integer
arithmetic operations from C source to low-level gate logic. With the
advance of the synthesis tools and the standardization of hardware
description languages (HDLs), like VHDL, the focus shifted towards
hardware implementation of more complicated high-level constructs
and better exploitation of the hardware execution. SpC [2], for
example, addressed the synthesis of pointers and dynamic memory
management implementation. With the appearance of the RC systems,
the research in the field branched with two main streams. Projects,
like Handel-C [3], remained oriented towards the hardware design-
ers. There, the C syntax is extended with constructs, exposing all
hardware details to the designer. Other projects, like Streams-C [4]
and SA-C [5], tried to hide the hardware details for the software
designers. They used C variations, excluding problematic constructs
and introducing language extensions that facilitated the optimizations
and the hardware mapping. Those extensions however meant that
existing applications had to be rewritten. Therefore, later projects like
DEFACTO [6], SPARK [7] and ROCCC [8] considered unmodified
C as input. Those projects emphasize parallelizing transformations
and some also address memory access optimizations. In recent years,
several commercial tools that generate hardware from HLL input also
appeared (eg. Catapult-C [9], Impulse-C[10]).

Despite all those efforts, and for the following reasons, the au-
tomated hardware generation is yet to become a widely adopted
industrial practice. (i) The first reason is the limited subset of the
supported HLL constructs (respectively, limited application domain)
for hardware implementation. The majority of the research projects
targets predominantly applications characterized by perfectly nested
loops and regular memory accesses. (ii) The second reason is the
lack of automation of the generation process. Commercial tools
do not limit the application domain but require extensive designer
input in both the applied optimizations and the actual mapping
process. Where the limited support for certain HLL constructs is
less problematic, the lack of automation is more problematic as it
implicitly requires hardware-design knowledge. (iii) The third and
the most important reason is the quality of the generated designs,
resulting in inefficient hardware utilization and low performance gain.
This paper studies the above outlined problems through an empirical
comparison between three research tools1, namely ROCCC, SPARK
and DWARV (a C to VHDL generator being developed as part of the
Delft Workbench [11]). The comparison is performed at the three
levels listed above. The data, used in the comparison, are obtained
through generation and synthesis of VHDL models, based on C
functions from different application domains.

The rest of the paper is organized as follows. Section II de-
scribes the evaluation criteria and the selected test applications. Brief
overview of the evaluated tools is also included. Section III presents
and discusses the obtained empirical results. Section IV outlines
future research directions and concludes the paper.

II. EVALUATION SETUP

The comparison criteria are defined in the next subsection. The
profile of the test applications is presented in Section II-C. The main
features of the tested tools are discussed in Section II-B.

A. Criteria of Evaluation

The criteria used to evaluate the studied tools are grouped into
three categories: supported HLL constructs, degree of automation,
and quality of the generated designs.

In our experiments we consider combined GPP/FPGA co-execution
with dynamic reconfiguration. Therefore, the evaluation of the de-
signs quality is performed not only in terms of latency/throughput,
but also in terms of utilized resources(area). The smaller designs
would allow more than one function to reside simultaneously on
the reconfigurable fabric. This brings two major benefits: (1) several
algorithms can be executed in parallel; and (2) the reconfiguration
frequency will be reduced, which will reduce the reconfiguration time
and will improve the overall application performance. Nevertheless,
there is a trade-off between the speed and the area of the designs. The

1Mentor Graphics currently does not provide academic licenses for
Catapult-C; Impulse-C license was granted to the authors short before camera-
ready deadline. Hence evaluation and comparison with a commercial tool was
not possible



higher speed normally is achieved through parallel computation. The
parallel computation implies higher resource utilization. Therefore,
in order to properly evaluate the different tools, we need a metric
that will capture objectively the size and the speed of the designs.
To this purpose we propose to use throughput per slice2.

Where the quality of the design can be expressed in numbers,
quantitative metrics for the other two evaluation criteria cannot be
defined. Nevertheless, they have direct impact on the tool appeal to
the designer, hence they also have to be considered in the evaluation.
Fully automated hardware generation is likely out of scope for the
near future. But the degree to which human intervention is required to
arrive at a particular hardware design does constitute a discriminative
factor useful to compare different approaches. We will discuss the
degree of automation in two aspects: (1) hardware resource specifi-
cation; and (2) optimizations guidance. The description of the existing
architecture (memory bandwidth, access time, etc) is not considered
as resource specification as it does not vary between the designs.
However, the number of adders to be used in a design is considered
additional specification. The performance of given optimization is
not considered as a guidance. However, deciding on which loop to
perform unrolling and how many times, is considered an example of
designer guidance.

The last criterion used in our evaluation is the supported HLL
constructs. As all three tools take C source code as input, the
discussion will be oriented towards the C language constructs and
the degree to which those constructs are supported. This criterion is
also hard to be expressed in quantitative terms. Moreover, some C
constructs can be substituted by others while preserving the semantic
(for example, a do− while loop can be replaced with a for loop),
hence support of a full-featured C is not a must from a semantic point
of view. In addition, a definition of ”minimum required” subset of
constructs could be viewed as subjective. Therefore, we will evaluate
the tools based on the lack of support of those constructs, used in
our data set applications, for which in the given context its semantic
counterpart cannot be found.

B. Tools Description

SPARK is designed to provide a toolbox for studying the effect of
different optimizations on the area and delay of the derived designs.
The emphasis in the project is operation scheduling techniques,
aimed to increase the instruction-level parallelism in control-intensive
kernels. SPARK has benefited of more than six years of research in
the field of high-level synthesis.

ROCCC started three years ago and, as a descendant of SA-C
and Streams-C, targets streaming applications. The emphasis in the
project is to apply loop-parallelizing transformations and memory
access optimizations. These optimizations are implemented assum-
ing ”sliding window” operations: the input stream is processed as
sequence of smaller blocks (windows) that overlap with a certain
offset.

DWARV is in its first year of development and currently does
not target a particular application domain. It does not perform
any optimization on the input code. The current emphasis of the
tool is on straightforward generation of VHDL designs considering
actual software/hardware co-execution on the MOLEN polymorphic
processor [12], which involves a GPP augmented with reconfigurable
accelerators.

2As we use this metric to compare the tools among each other and not the
different models, generated by a single tool, we consider this metric applicable
even for latency-driven designs

Every tool accepts as input C source code, possibly containing
annotations. However, none of the tools supports full-featured C
input. ROCCC, being strictly oriented towards streaming applications,
accepts only perfectly nested constant-bound loops with an affine
index function, operating on arrays. Moreover, all arrays are assumed
to be located in the memory and no local data is allowed. SPARK,
on the other hand, assumes that all data is transferred on the chip
(either as local arrays or as input ports) before the computation starts
and does not support any memory accesses. DWARV allows memory
accesses and also supports local arrays, mapped to VHDL arrays.
It does not impose limitations on the loop bounds. But it does not
support control jumps. A more detailed list of the supported structures
and the imposed restrictions is given in Section III.

C. Data Set

In order to compare the performance of C to VHDL translation
tools, we have built a dataset of roughly 140 C functions. These
functions come from a broad range of application domains, so we
assume the results to be applicable to real world applications. As a
consequence of the broad scope of the dataset, the candidate functions
have varying types of algorithms and memory access patterns as can
be observed in Table I. In the experiments, described in the next
section, the original data sizes for the benchmarks were used.

Domain bit-
based

streaming account-
keepinga

control-
intensive

integer-
based

Memory-
access

Compression x x x x

Cryptography x x xb x 1D, Random

DSP x x xb x 1D, 2D
ECC x x x x Static

Mathematics xb Static

Multimedia xb x x xb Static, 1D, 2D

General
Purpose

xb x x 1D, 2D, Ran-
dom

anon-constant space-complexity
bonly some instances in that domain express this characteristic

TABLE I
ALGORITHMIC CHARACTERISTICS OF APPLICATION DOMAIN.

As explained in the previous section each compiler has certain
restrictions imposed on the C input code(see Table IV). Our intention
was to modify the kernels such as to make them compliant with all
three compilers. However, the combined restrictions of the three tools
reduced the data set significantly. In order to have a broader set of
data, we extended this subset with synthetic benchmarks specifically
created to run on all tools. In Table II, the number of functions
in each application domain for each tool under consideration is
depicted. These numbers represent the number of kernels whose
generated VHDL was successfully synthesized. There are some minor
differences in the numbers of functions in the datasets for SPARK
with and without optimizations, this is because some functions did
not synthesized when SPARK was invoked without optimizations.
As very few of the function matched the ROCCC’s requirements,
we were not able to prepare and present empirical data for the
ROCCC compiler. The combined restrictions of DWARV and SPARK
utlimately narrowed the test benchmark set to only 44 kernels.

III. RESULTS

Automation: Table III summarizes the degree of automation of the
tools.

• DWARV and ROCCC do not require any additional informa-
tion, besides the memory bandwidth and latency (DWARV)



Domain Dataset DWARV SPARK
Compression 2 1 0
Cryptography 66 10 3
DSP 4 4 4
ECC 6 2 2
Mathematics 15 8 6
Multimedia 34 12 10
General Purpose 15 3 3
Synthetic 16 11 16
Total 158 51 44

TABLE II
FUNCTIONS PER APPLICATION DOMAIN.

in order to generate a design. However, SPARK does require
additional specification of what kind (adders, multipliers, etc)
and how many components to be used in the design. Such
specifications give bigger control to an experienced designer, but
will make it difficult for a non-expert to derive an optimal design
in reasonable time. Moreover, if a type of resource, required by
the C code, is not included in the resource description, VHDL
design will not be generated.

• As DWARV currently does not perform any optimizations,
the optimization criterion cannot be applied on it. ROCCC
and SPARK, however, do perform optimizations. Nevertheless,
both tools require designer guidance for performing them. For
example, ROCCC requires external specification which loops
should be unrolled and the unrolling factor. SPARK requires
explicit specification of the type of code motions3 and the
scheduling strategies to be applied.

Compiler Resource Specification Optimizations Guidance
DWARV No N/A
ROCCC No Yes
SPARK Yes Yes

TABLE III
DEGREE OF AUTOMATION

High-Level Constructs: A summary of the supported C constructs
is given in Table IV. The floating point types, the unions and the
”address-of” operator are omitted from the table as they are not
supported by any of the tools. The integer types and the compound
statement are supported by all three tools, therefore they are also
omitted from the table. Nevertheless, the sheer quantification of
the supported C constructs cannot reflect the actual functionality,
supported by the tools. As can be seen from Table V, the number of
supported constructs by the different tools is almost equal. However,
the limited support of the different variations of these high level
constructs also explains the reduction by 50% of the kernels in our
dataset. This is due to the fact that arithmetic and logical operations
constitute the majority of the C constructs. The difference in the
functionality is due to the context in which the control and memory
accesses constructs as well as the compound data types are supported.
DWARV is mainly restricted by the lack of support for structures.
The most severe SPARK limitation is the requirement all arrays
to be with constant size. This limitation stems from the fact that
SPARK treats the arrays not as memory locations, rather as on-chip

3optimizations that speculatively move operations up and down on the
control flow graph of the function in order to increase the instruction-level
parallelism

registers. Treating all storage elements as on-chip registers, prohibits
also pointer arithmetic. The limitations imposed by ROCCC (for
loops with regular stride, operating on arrays’ windows, defined as
an affine function of the loop iterator scalar) were even more severe,
reducing the kernel dataset to 6% even though it does support a
similar number of C-constructs.

Compiler High Level
Constructs

Supported Ap-
plications

Reason For
Limited
Support

DWARV 31/50 50% Structures
ROCCC 31/50 6% Perfectly

Nested Loops
SPARK 37/50 50% Constant size

arrays

TABLE V
DEGREE OF AUTOMATION

Fig. 1. Designs Quality

Quality: To evaluate and compare the quality of the generated de-
signs, we have selected the metric throughput per slice. As explained
above, only SPARK and DWARV were capable of successfully
generating and synthesizing hardware. In order to assess the quality
of the designs, we limit the comparison to the 44 kernels that could be
synthesized by both tools. For the generation of the SPARK models,
the default resources and optimizations settings were used. The actual
synthesis was performed using the Xilinx ISE 8.2 tools for the Virtex
II Pro. To estimate the latency (in number of cycles), the generated
models were also simulated using ModelSim 6.1. The majority of the
models, generated by SPARK, failed to simulate, because generates
bidirectional ports for the in/out function parameters and the provided
resolution function prevents proper input data feed. Therefore, to
estimate the latency for those functions, we used the simulated
latency of the DWARV’s models and recovered the corresponding
loop iteration counts. Based on those numbers and the number of
states in the FSMs, the latency was computed. Then the estimated,



Compiler Pointers Aggregates Arithmetic
and Logic

Function
Calls

Array Sub-
scripting

In-
direction

Labeled
and Jump

Selection Iteration

DWARV As arrays 1D Arrays Yes No Yes Yes No if for

ROCCC As arrays 2D Arrays excluding
? :

Inlined or
lookup tables

Loop index No No if for4

SPARK
V1.2

As
function
argu-
ments

1D Arrays excluding
? :

Inlined Yes No case,
break in
switch

Yes for

TABLE IV
SUPPORT FOR C CONSTRUCTS

clock frequency and number of slices were used to compute the
throughput per slice for each design. As can be seen in Figure 1.
SPARK, outperforms DWARV for the majority of the functions. It
is due to the fact that DWARV considers memory accesses, while
SPARK assumes that all data reside on the chip in registers (either
as IO ports or internal signals). Nevertheless, such an assumption
has two major drawbacks. It connects directly the design size to
the size of the input/output data. Small input/output data do not
have great impact on the design area. However, 6 of the generated
by SPARK functions require more than the available slices and 3
functions were too big to be synthesized at all. Moreover, in the
context of heterogeneous systems, it is not reasonable to assume that
each component in the system will process only autonomous data.
The communication between the different components should not be
ignored.

IV. CONCLUSION AND FUTURE RESEARCH

In this paper we presented a comparison between three VHDL
generation tools and reported on various possibilities and limitations
of each approach, using a set of criteria. The goal of this assessment
was to evaluate the current state of the automated HDL generation
when intended to be used by software designers, developing appli-
cations for RC systems. From automation point of view, DWARV
requires least designer intervention, but it does not offer any op-
timizations in its current state. ROCCC hides the hardware details
from the designer, but requires detailed guidance to perform high-
level optimizations. SPARK has least automation among the three
tools, requiring specification of the resources to be used and the
optimizations to be applied. The three tools accept similar subset of
HLL constructs, but the supported context and form differ. ROCCC
is highly application oriented, which results in severe restrictions
on the input code. SPARK and DWARV target broader range of
applications, hence they have more relaxed restrictions compared
to ROCCC. Nevertheless, none of the tools provided the necessary
support in order all applications from the data set to be processed.
Due to the severe restrictions by ROCCC, we had to limit our
empirical comparison to only two of the tools. In terms of quality,
SPARK, as expected, outperformed DWARV in the majority of the
cases. The reasons of the poorer performance of DWARV lies in the
lack of optimizations. Nevertheless, studying the different application
profiles, it can be concluded that a single type of optimizations will
not fit all application domains. For example, some of the applications
are characterized with regular memory accesses and would benefit of
data prefetching and computation pipelining optimizations. Other ap-
plications, however, are characterized with random memory accesses
and cannot benefit from prefetching and pipelining optimizations. In
other words, a C to VHDL compiler should not only apply certain
set of optimizations. Rather it should be able to infer the semantic of

the high-level code. Based on this semantic analysis, an appropriate
computation model and optimization set should be selected. In our
future research we aim to address this problem. A possible solution
in this direction is the use of hardware design patterns, by analogy
of the mainstream software design patterns where proven solutions
are reused in new designs.

REFERENCES

[1] D. Galloway, “The transmogrifier C hardware description language and
compiler for FPGAs,” in IEEE Symposium on FPGAs for Custom
Computing Machines, 1995, pp. 136–144.

[2] L. Séméria and G. D. Micheli, “Resolution, optimization, and encoding
of pointer variables for the behavioral synthesis from c.” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 20, no. 2, pp. 213–233,
2001.

[3] Handel-c language reference. [Online]. Available:
http://www.celoxica.com/

[4] M. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski, “Stream-
oriented fpga computing in the streams-c high level language.” in
Proceedings of the 8th IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 2000), 2000, pp. 49–58.

[5] W. A. Najjar, A. P. W. Böhm, B. A. Draper, J. Hammes, R. Rinker, J. R.
Beveridge, M. Chawathe, and C. Ross, “High-level language abstraction
for reconfigurable computing.” IEEE Computer, vol. 36, no. 8, pp. 63–
69, 2003.

[6] P. C. Diniz, M. W. Hall, J. Park, B. So, and H. E. Ziegler, “Bridging
the gap between compilation and synthesis in the defacto system.”
in Proceedings of 14th International Workshop on Languages and
Compilers for Parallel Computing (LCPC’01), 2001, pp. 52–70.

[7] Spark: A parallelizing approach to the high-level synthesis of digital
circuits. [Online]. Available: http://mesl.ucsd.edu/spark/

[8] Riversite optimizing complier for configurable computing. [Online].
Available: http://www.cs.ucr.edu/ roccc/

[9] C-based design. [Online]. Available: http://www.mentor.com/products/c-
based design/

[10] Impulse-c. [Online]. Available: http://www.impulsec.com/
[11] Delft workbench. [Online]. Available: http://ce.et.tudelft.nl/DWB/
[12] Molen prototype. [Online]. Available:

http://ce.et.tudelft.nl/MOLEN/Prototype/


