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Abstract

The hArtes project addresses optimal and rapid de-
sign of embedded systems from high-level descriptions,
targeting a combination of embedded processors, dig-
ital signal processing, and reconfigurable hardware.
In this paper, we present three tools from the hArtes
toolchain, namely profiling, compilation, and HDL gen-
eration tools, that facilitate the HW/SW partitioning,
co-design, co-verification, and co-execution of demand-
ing embedded applications. The described tools are
provided by the DelftWorkBench framework.

1. Introduction

The hArtes project addresses research and develop-
ment issues of embedded systems. It investigates hard-
ware/software integration and builds a general-purpose
toolchain, which accepts applications written in a mul-
tiplicity of high-level algorithm descriptions and it pro-
duces semi automatically a "best fit” mapping of such
applications into a heterogeneous reconfigurable sys-
tem. The tool chain is intended to provide a fast devel-
opment trajectory from application coding to the design
of a reconfigurable embedded computing system.

The hArtes toolchain is composed of the following
three toolboxes: 1algorithm exploration and transla-
tion ToolBox; 2)design space exploration (DSEQol-

Box; and 3)system synthesis (SysSyioplBox. The
input of this tool-chain is a high level application al-
gorithm, described in one of several supported formats
and languages, such as, Matlab or handcrafted C. The
internal representation of the application algorithms is
C code, annotated with pragmas by the tools in the
toolchain. The objectives of each hArtes ToolBox can
be summarized as follows:

e The Algorithm exploration and translation Tool-

Box provides tools with two basic functionalists.
They assist the designers to instrument and pos-
sibly improve the input algorithm at the highest
level of abstraction. Also, they translate the input
algorithms, described in different formats and lan-
guages (e.g., Simulink or graphical entry), into a
unified internal description in the C language.

e The Design space exploration ToolBgtovides

an optimal hardware/software partitioning of the
input algorithm for each reconfigurable heteroge-
neous system considered. A set of profilers and
cost estimators employ specific metrics to evaluate
a particular mapping of a candidate application on
the particular reconfigurable heterogeneous sys-
tem with respect to performance, hardware com-
plexity, power consumption, etc. The input of the
DSE ToolBox is the C description of the appli-
cation algorithm, annotated with specification di-
rectives from the algorithm exploration and trans-
lation ToolBox, and models of the reconfigurable
heterogeneous system platform. The DSE output
is an optimized partitioning of the application al-
gorithm for the considered reconfigurable hetero-
geneous system.

e The System synthesis ToolBpxocesses the op-

timized partitioning of the application algorithm
provided by the DSE ToolBox as its input. The
output comprises all generated files, required to
map the application algorithm on the components
of the considered reconfigurable heterogeneous
system with respect to its partitioning, i.e., pro-
gram executables, configuration bitstreams, mem-
ory images, etc.

In this paper, we address three specific tools from the
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Figure 1. hArtes Design Flow

hArtes toolchain, namely the profiling toolset from the
DSE toolbox, and the compilation and HDL generation
tools from the SysSyn Toolbox. All these three tools
have been developed within the DelftWorkBench [2] -
a semi-automatic tool platform for integrated hardware-

structions. In addition, intra- and inter-procedural epti
mizations addressing the configuration and data transfer
latency are applied. Simultaneously, the HDL genera-
tion unit provides the VHDL designs of the selected ker-
nels. As final step, the outputs of the compiler and the
HDL generation unit are linked and the execution is car-
ried on the MOLEN platform. The communication be-
tween the tools and the feedback loops within the chain
are secured through an architecture description file.

The organization of the paper is the following: Sec-
tion 2 presents the related work. Section 3 presents
the architecture description file used by the different
tools in the toolchain. Section 4 discusses the profil-
ing framework within the hArtes project. Section 5 and
section 6 presentthe MOLEN backend compiler and the
DWARV HDL generation tool, respectively. Section 7
concludes the paper.

2. Related Work

Profiling and Estimation Model: The goal of the
profiling and estimation model is to analyze the pro-
gram statically or/and dynamically in order to deter-
mine relevant information for design exploration, hard-
ware/software partitioning, and optimization. Multiple
profiling techniques are developed to analyze the input
application behavior for different criteria, such as per-
formance, memory bandwidth, power consumption, etc.
These techniques are applied either at compilation time
(using static analysis) or at run-time (dynamic profil-
ing). In [22], static pointer analysis is performed and in
[10] memory size of dependencies between loops is es-

software co-design targeting heterogeneous computing timated. For runtime profiling, the most common meth-

systems containing reconfigurable components, which
provide the required support for the Molen Program-
ming Paradigm [18]. The hardware support of this
paradigm is provided by the Molen machine organiza-
tion [20]. In the hArtes context, the DelftWorkBench
tools are further extended to support digital signal pro-

ods are code instrumentation [15], sampling [9], [21],
or hardware profiling [14]. Static analysis is less ac-
curate than dynamic profiling as it is based on estima-
tion, while dynamic profiling is slow and requires pro-
gram intervention. In our approach we combine both
static and dynamic approaches to develop an efficient

cessors and application specific hardware, besides the profiling tool in terms of accuracy and speed for hard-
reconfigurable co-processors support. The positions ware/software partitioning.

within the overall design flow of the tree tools discussed
are presented in Figure 1.

During the profiling phase, relevant execution and
data storage information is collected. In addition, pre-
liminary estimations of the hardware and the software
costs of the application’s kernels are performed. In the
next step, a set of optimizations and parallelizing trans-
formations are applied on the application. The output of
the toolbox is annotated C code. In the next tool box, the
final partitioning of this code is derived. The compiler

There are also several approaches for preliminary
hardware implementation cost estimation. In [17],
we find a constant time incremental estimation ap-
proach targeted at iterative hardware/software partition
ing, where at each partitioning step the estimates are
updated. More similar to our approach, the authors of
[11] estimate area by using linear regression models per
DFG node. Different DFG nodes are characterized by
different linear models. Nevertheless, those works use
synthesis-like schemes to predict area and delay, while

processes the code to be executed on the GPP, placingwe use a linear model based on software metrics.

the necessary configuration and hardware execution in-

Compiler: The main objectives of a compiler tar-



geting reconfigurable architectures is to guide the hard-
ware/software partitioning and to generate code opti-
mized for the specific features of such a hybrid architec-
ture. There are several compilation approaches for re-
configurable architectures. One approach is to use stan-
dard compilers for general purpose processors (GPP)
included in the target Field-programable Custom Com-
puting Machines (FCCM) and impose the programmers
to manually modify the assembly code in order to take
into account the reconfigurable hardware. However this
is a time consuming and error-prone process which re-
quires deep understanding of both hardware and soft-
ware features of the target architecture and application.

Another common approach (Garp [16], Napa [8]) is
to use compiler front-ends with high level optimizations
and to generate back C annotated code which is pro-
cessed by standard C compilers for the target GPP. The
annotations are transformed into calls to a dedicated li-
brary that handle the GPP-reconfigurable hardware in-
terface. In consequence, the code quality of the gener-
ated code is decreasing due to the translation back to C
thus loosing specific low level optimizations.

In our approach, we do not require manual interface
between the software and the hardware. Moreover, we
avoid the library calls overhead and perform low-level
specific optimizations.

Automated HDL Generation: One of the major
goals of the automated HDL generation is to sup-
port fast prototyping and provide early performance
estimation. Projects like Handel-C [3], oriented to-
wards the hardware designers, extend the C syntax
with constructs, exposing all hardware details to the de-
signer. Another goal of the HDL generation in the con-
text of the reconfigurable computing systems is to al-
low the software designers to develop applications for
such platforms without having hardware design knowl-
edge. Projects like DEFACTO [7], SPARK [6] and
ROCCC [5] consider unmodified C code as input. They
emphasize parallelizing transformations and some also
address memory access optimizations. Nevertheless,
the majority of those projects are highly application
domain oriented (ROCCC can handle only perfectly
nested loops from the image processing domain) or tar-
get only one type of optimizations (SPARK focus on
scheduling and increase of the instruction level paral-
lelism). In the recent years, several commercial tools
that generate implementations from HLL input also ap-
peared (e.g. Catapult-C [1], Impulse-C[4]). These
tools, however, require direct input for certain low-level
optimizations as well as for the actual mapping process.
In other words, these tools save code-writing time for
the hardware designers rather than facilitate the soft-
ware designers. Our work is similar to the previous

ones in the sense that it combines the advantages of
them all, but also differs in several aspects. Our tool
is oriented towards the software designers like ROCCC
and SPARK. But we differ from ROCCC as we target
broader application domain and we are looking into dif-
ferent level optimizations (unlike SPARK). Moreover,
we do not impose severe limitations on the accepted C
subset and respect the physical limitations of the avail-
able 10 bandwidth and access times. Under these lim-
itations, the available operation parallelism is fully ex-
ploited. The generated designs have the MOLEN CCU
interface, which allows actual execution on a real hard-
ware prototype platform.

The Molen polymorphic processoris established
on the basis of the tightly coupled co-processor archi-
tectural paradigm [20][19]. Within the Molen con-
cept, a general purpose core processor controls the
execution and reconfiguration of reconfigurable co-
processors (RP), tuning the latter to various application
specific algorithms. An operation, executed by the RP,
is divided into two distinct phasesetandexecute The
set phase is responsible for reconfiguring the RP for the
operation. In the execute phase, the actual execution of
the operations is performed. No specific instructions are
associated with specific operations to configure and ex-
ecute on the RP. Instead, pointersaoonfigurable mi-
crocode(pu-code) are utilized. Theu-code emulates
both the configuration and the execution of different RP
implementations resulting in two types of microcode:
1) reconfiguration microcode that controls the RP con-
figuration; and 2) execution microcode that controls the
execution of the configured RP implementation. The
main advantage of this approach is that a one-time poly-
morphic ISA @ISA) extension of only four (up to eight)
instructions supports an arbitrary number of application
specific functionalities running on the reconfigurable
processor RP. The complete list of alSA instructions
is presented in [18].

Generally speaking, the Molen co-processors are not
limited to be only reconfigurable implementations, they
can actually be various types of augmenting hardware
units. For example, in the context of hArtes, a digi-
tal signal processor (DSP) and reconfigurable hardware
units are considered as Molen co-processors identically.

The Molen machine organization and the Molen pro-
graming paradigm are targeted by the DelftWorkBench
and hArtes toolchains.

3. Architecture Description File

The XML Architecture Description File aims to pro-
vide a flexible specification of the target architecture
and it is used for information exchange between the



tools involved in the hArtes project. More specifically,
we use the XML format for the description of the tar-
get reconfigurable architecture as it is both human and
machine readable, self documenting, platform indepen-
dent and its strict syntax and parsing constraints allow
using efficient parsing algorithms. In consequence, the
XML format is suitable for the structured architecture
description needed by the tools involved in the hArtes
project.

File Organization: In the XML Architecture de-
scription File, the root element denoted as OR-
GANIZATION contains two elements HARDWARE
and OPERATIONS. The HARDWARE element in-
cludes a list of FUNCTIONALCOMPONENTS and
a list of STORAGECOMPONENTS. Each FUNC-
TIONAL _COMPONENTS is composed by

o NAME, such as GPP, FPGA or DSP,

e TYPE, for the identification of the FUNC-
TIONAL_COMPONENT, such as VIRTEXI-
IPROXC2VP40 or I BMPOWERPC405,

e SIZE, which is relevant only for reconfigurable
hardware and represents the number of available
CLB,

e FREQUENCY for the maximum frequency of the
FUNCTIONAL_COMPONENT.

Additionally, in order to accommodate to the
Molen Programming Paradigm, each FUNC-
TIONAL _COMPONENT has associated a set of
XRs in the range limits specified by the STARR
and ENDXR elemnets. Finally, MASTER element
indicates if the FUNCTIONALCOMPONENT is the
unique master processor or one of the co-processors
included in the target architectures.

Exanpl e:
<HARDWARE>
<FUNCTI| ONAL_ COVPONENT>
<NAME> GPP </ NAME>
<TYPE> Power PC </ TYPE>
<MASTER> YES </ MASTER>
<START_XR> 1 </ START_XR>
<END_XR> 512 </ END_XR>
<FREQUENCY> 250VHz </ FREQUENCY>
</ FUNCTI ONAL_ COVPONENT>

We notice that the SIZE element is not included in
the presented example, because it is optional and not
relevant for a GPP.

Similarly, each STORAGECOMPONENT contains
the following elements:

¢ NAME, e.g. MEM1

e SHARED, used to indicate if it is shared or local
memory. Ex. yes=shared memory

e FUNCTIONAL_COMPONENT, the name of the
functional component associated to this storage
component. EX. FPGA (local memory of the
FPGA)

e TYPE, e.g. SDRAM
e SIZE, the size of the memory. Ex. 128MB

e START_ADDRESS, ENDADDRESS - the range
of memory addresses mapped to this memory, in
order to meet the shared memory requirement for
the target architecture.

Exanpl e:
<STORAGE_COVPONENT>
<NAME> MEML </ NAME>
<SHARED> YES </ SHARED>
<CONNECT> ALL </ CONNECT>
<TYPE> SDRAM </ TYPE>
<Sl ZE> 128MB </ SI ZE>
<START_ADDRESS> 0 </ START_ADDRESS>
<END_ADDRESS> FFFF. . FFFF </ END_ADDRESS>
</ STORAGE_COVPONENT>

The OPERATIONS element is used for the descrip-

tion of the operations that are implemented on the hard-
ware components. It contains a list of OP elements that

include the following:

e SW_PROFILE describes the software features of
the application and is composed of:

— NAME, for the name of the software opera-
tion

— SW_EXEC_CYCLES, for the number of cy-
cles when the operation is executed on the
master processor

— SW_CALLS, for the number of executions of
the operation

e alist of IMPLEMENTATION elements which de-
scribe the hardware features of the specific imple-
mentation and has an "id” attribute which is used
by the tools that associated an unique identifier to
each hardware implementation. It contains the fol-
lowing elements:

— NAME, for the name of the implementation.
Ex. SAD

— COMPONENT, for the name of the com-
ponent where this implementation is placed.
Ex. FPGA

— SIZE, for the size of implementation.
100 slices

Ex.



— START.INPUT_XR, START.OUTPUTXR,
for the first XRs with the input /output pa-
rameters

— SET_ADDRESS, EXECADDRESS, for the
memory addresses of the microcode associ-
ated with SET/EXEC

— SET.CYCLES, EXECCYCLES, for the
number of component cycles associated with
hardware configuration/ execution phase

— FREQUENCY - the frequency of the imple-
mentation

Exanpl e:
<OP | D="SAD" >
<SW PROFI LE>
<NAME> SAD </ NAME>
<SW EXEC_CYCLES> 10000 </ SW EXEC_CYCLES>
<SW CALLS> 100 </ SW CALLS>
</ SW PROFI LE>

<| MPLEMENTATI ON | D="11">
<NAME> SAD_V1 </ NAME>
<COVPONENT> FPGA </ COMPONENT>
<Sl| ZE> 100 </ S| ZE>
<START_| NPUT_XR> 3 </ START_I NPUT_XR>
<START_QUTPUT_XR> 10 </ START_QUTPUT_XR>
<SET_ADDRESS> 0X00000000 </ SET_ADDRESS>
<EXEC_ADDRESS> 0X00000000 </ EXEC ADDRESS>
<SET_CYCLES> 100 </ SET_CYCLES>
<EXEC_CYCLES> 200 </ EXEC_CYCLES>
<FREQUENCY> 150MHz </ FREQUENCY>

</ | MPLEMENTATI ON\>

</ OP>

Tools Interaction with the XML Description File :

In the presented Architecture Description File, there is a
clear delimitation about the hardware/software features
of the target architecture/application. The information
included in a SWPROFILE element has to be provided
by the hArtes profiling tools, while the information con-
tained in an OP element has to be provided by the au-
tomatic synthesis tools that generates a specific imple-
mentation for a specific operation. Finally, the infor-
mation for the HARDWARE element are general and
should be introduced by the hardware provider.

It is important to mention that this is the initial Ar-
chitecture Description File and additional relevant in-
formation can be easily added when required by differ-
ent components of the hArtes toolchain.

4. Profiling and Estimation Model

In this section, we discuss profiling and estimation
framework. The goal of this framework is to analyze
the program statically or/and dynamically in order to
determine relevant information for design exploration,
hardware/software partitioning, and optimization.

Profiling: The first step in our framework is program
analysis and profiling. The goal of this step is to deter-
mine relevant information for design exploration, parti-
tioning, and optimization. The conceptual view of the
profiling stage is depicted in Figure 2. As it can be ob-
served, a distinction between dynamic and static profil-
ing is made. Static profiling comprises all compile-time
program analysis, while in the dynamic profiling the ap-
plication run-time behavior is considered.
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Figure 2. Profiling Framework

The main goal of the dynamic code analysis is to
determine which parts of an application are computa-
tionally intensive when executed on a GPP. The coarse
grain profiling inspects the application at function level
and gathers information such as CPU time or the exe-
cution frequency of these functions. The result of such
analysis can be a large list of kernel functions for com-
plex applications. Based on the selection criteria pro-
vided (such as performance, area, power consumption,
memory etc.), the profiler identifies the most promising
functions and constructs the candidate for acceleration
function lists. These candidate functions can be ana-
lyzed further at fine-grain level (such as basic block or
statement level) to gather detailed information such as
number of memory accesses, loop nesting level, etc.

The profiler also helps to estimate the potential
speedup that can be achieved when the kernels are ex-
ecuted on the reconfigurable hardware and estimates
the initial cost of a hardware mapping. Additionally,
it could be used to predict the upper and lower bounds
of the speed up possible for the whole application. The
output of the profiler is included in the architecture de-
scription file (see Section 3) and in the C code, where
candidate functions are annotated with the profiling in-
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formation.

Estimation Model: In the current stage of the
project, static profiling information is fed into a quanti-
tative prediction model for hardware/software partition-
ing. This linear model predicts area and delay using
software complexity metrics, which are values that rep-
resent application structure. An example is the Cyclo-
matic Complexity [13], which stands for the number of
decisions in the code and thus gives some indication of
the control intensity of the code.

The first version of this model is now complete and
it is based on a set of 126 C-functions from a broad
range of application domains, like Compression, Mul-
timedia, and Cryptography. The functions were com-
piled to VHDL by the DWARV C-to-VHDL compiler
(see Section 6) and synthesized. The resulting area was
used to fit the model. The model predicts several area
metrics, like the number of LUTs and Flip-Flops. As
an example the Flip-Flop model has an estimated error
of 28,1% and its general performance can be seen in
Figure 3.

In our future work we aim to extend this model
further by adding prediction of delay and reconfigura-
tion latency. Furthermore, specific cases might bene-
fit from specialized models. Also, we can incorporate
advanced software complexity metrics to improve our
model quality.

We notice that not all types of software code are suit-
able for hardware implementation. Certain code seg-
ments (such as 1/O access) impose constraints for the
hardware mapping. The hardware mapping of these
code segments, instead of increasing expected perfor-
mance, they decrease the performance due to the over-

head associated with mapping. This characteristic of the
software code makes it unsuitable for hardware map-
ping. The feasibility check uses the linear model de-
scribed above and excludes these notorious functions
which are not profitable for hardware mapping. In
the subsequent phase of the tool chain, these candidate
function modules can be aggregated/segregated for op-
timum fitin order to satisfy the constraints (such as area,
power, memory ports) imposed on chip.

5. MOLEN Compiler

In this section, we present the design flow and the
organization of the MOLEN compiler which aims to al-
low easy compilation and optimizations of applications
for the reconfigurable architecture.

The compiler uses the XML Architecture Descrip-
tion File discussed in section 3 in order to extract pro-
file information and software/hardware features of the
kernels proposed for execution on the reconfigurable
hardware. Based on these features the compiler can ap-
ply the appropriate optimizations, transformations and
scheduling algorithms which are specifically designed
for such hybrid architectures.

GNU C compiler extensions The compiler is based
on GNU C compiler infrastructure version 4.1 for the
PowerPC GPP and the following extensions have been
implemented in order to accommodate the Molen Pro-
gramming Paradigm [18].

In the first step, the functions annotated with pragma
directives for execution on the reconfigurable hardware
are identified in the compiler frontend. Next the calls to
the functions identified in the previous step are replaced
with associated SET/EXECUTE pseudo-functions. Fi-
nally based on the Architecture Description File, the
compiler generates the corresponding SET/EXECUTE
instructions, instructions to transfer parameters, urcstr
tions to obtain the return result and instructions for syn-
chronization. Moreover a set of 512 transfer register
(denoted as XRs) associated to the reconfigurable hard-
ware have been added as a separate Register File.

For a C application that contains the code presented
in Figure 4, the generated code is depicted in Fig-
ure 5. The XR registers are implemented as mem-
ory address (0x000a, 0x000b and 0x0014 in the ex-
ample). The instruction sequence composed of "nop”,
"sync” and "bl” is for synchronization. The encoding
for SET/EXECUTE instructions includes the memory
address of the reconfigurable microcode that is used for
the hardware configuration and execution of a specific
operation.



#pragma cal | _fpga op
int func(int x,int y) {

} .

void main(int argc, char **argv) {
é-; func(1, 2);

} -

Figure 4. Application source code

.l ong 8388899
li 9,1
nt dcr 0x000a, 9
li 9,2
nt dcr 0x000b, 9
creqv 6,6,6
sync
nop
nop
nop
b

. L5:
.1 ong 8389718
nop
nfdcr 3,0x0014

# encoding for SET

. L5

# encoding for EXECUTE

Figure 5. Generated assembly code

MOLEN specific optimizations: In order to reduce
the reconfiguration overhead, which is a main short-
coming of the current FPGAs, an algorithm that com-
bines scheduling (for hiding reconfiguration latency)
and hw/sw codesign has been proposed. The main idea
of the algorithm is to make an intra-procedural schedul-
ing of SET instructions in order to anticipate the recon-
figuration well in advance of hardware execution (and
thus ’hiding’ the reconfiguration latency). The algo-
rithm is aware of the placement constraint and using
the Architecture Description File (Section 3) can decide
that the implementation of a certain function in hard-
ware does not provide performance improvement and
switch back to its software implementation.

An example is shown in Figure 5. The graph in the
figure represents the control flow graph of a program
that uses reconfigurable operations opl, op2 and op3.
The labels on the edges represent the execution fre-
guency of the edges. An FPGA area allocation is also
presented and it can be seen that op2 conflicts with both
opl and op3.

We can easily observe that repetitive configurations
of opl and op2 in the loops (blocks B5 and B10) are re-
dundant. Also after moving the configuration of op1 (to
block B2) the configuration from block B13 becomes
useless, so it will be eliminated.

The proposed algorithm is based on two data flow

entry
20
B1[ read c
20

[N

INITIAL:

#SETopl :
#SET op2 :
#SET op3 :

FINAL:

#SETopl :
#SET op2 :
#SET op3
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10+10= 20
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/5T
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EXEC opl B13

SET0p2

a)

b)

Figure 6. a) Area allocation b) Application
control flow graph

anlyses, graph algorithms, profile information and in-
cludes the following:

e construction of anticipability graph. This is a sub-
set of the control flow graph in which the edges
that cannot 'propagate’ upwards the set instruc-
tions are eliminated.

minimum s-t cut. This phase has the role to se-
lect those edges that minimize the number of re-
quired reconfigurations. The total number can be
computed in various ways, using static or dynamic
profiling.

selection of hardware/software execution. If the
reconfiguration overhead could not be sufficiently
reduced even after the above presented scheduling,
the algorithm decides to switch to pure software
execution of an operation. This selection requires
information about hardware conflicts and execu-
tion time must be available.

The proposed optimization is going to be imple-
mented in the GCC compiler which provides support
for data-flow analysis and scheduling. Additionally the
proposed algorithm could be extended for interproce-
dural SET scheduling which would further improve the
performance gains. Finally we notice that the FPGA



area allocation has a significant impact on the consid-
ered algorithm and the compiler can be used to provide
directives for the FPGA area allocator.

In our future work, we will address the "memory
wall” problem, which is very important in the context
of the reconfigurable computing. Additional microcode
prefetch instructions should be carefully6 scheduled in
order to reduce the data transfer overhead. Finally, we
will address the parallel execution of multiple opera-
tions on the reconfigurable hardware.

6. HDL Generation

After the hardware/software partitioning is per-
formed, HDL designs for the hardware segments have
to be developed. The manually crafted designs are the
best solution from a performance/quality point of view.

Nevertheless, such a design takes several men months'. I
to be developed. Another possible solution that could tionally,

speed-up the HW design process is the use of already
existing IP cores. However, the IP library solution also
has some shortcomings. First, the necessary core might
not be available in the library. Another problem with
the IP cores is that they are not designed for a particu-
lar application, rather to be used in multiple scenarios.
Hence, they include overhead in functionality, which
translates to area overhead. Moreover, the IP cores have
various interfaces. Thus, wrappers have to be imple-
mented for each IP core. The third possibility of au-
tomated HDL generation cannot provide the quality of
the manually crafted designs. Nevertheless, by applying
set of optimizations, designs with a reasonable quality
can be derived within seconds. Moreover, such designs
are tailored for the particular application and hardware
organization.

#pragma
int f(){
}

#pragma
int g({

]

Hardware
Description

VHDL
Generator

N

entity CCU_G

entity CCU_F

end entity; end entity;

Figure 7. DWARV Toolset

Due to these reasons, in the DelftWorkBench project

we envision all three approaches for hardware genera-
tion. The most critical kernels are implemented manu-
ally. The kernels, for which IP cores are available, are
instantiated from the library. For non-critical kernels,
as well as for the purposes of fast prototyping and fast
performance estimation, automated HDL generation is
considered. This generation is performed by DWARV
toolset (see Figure 7). The input of DWARV is anno-
tated C code. The initial emphasis of DWARV was to
provide straightforward generation of VHDL designs
considering actual software/hardware co-execution on
the MOLEN polymorphic processor. Therefore, consid-
ering also the tool’s early stage of development, several
restrictions are imposed on the input code. Currently,
only one dimensional memory addressing is supported.
Structures, unions, and floating point types are not sup-
ported yet. The iteration and selection statements are
limited to for andif statements, respectively. Addi-
control jumps and function calls are not al-
lowed. Although syntactically restricted, this C sub-
set does not impose severe limitations on the supported
functionality. The unsupported constructs can be sub-
stituted with others preserving the statement semantic
(e.g.,while loop can be substituted witfor loop). An
additional requirement of the toolset is the code seg-
ment that has to be implemented in the hardware to be
separated in a pragma annotated function. The input
code first is processed by a CDFG Builder. This tool is
currently implemented as a pass within the SUIF2 com-
piler framework. The purpose of this module is to per-
form high-level hardware-independent optimizations on
the code and to transform it into intermediate represen-
tation (IR), suitable for hardware mapping. Currently,
the set of implemented optimizations includes simpli-
fied scalar replacement, static single assignment, com-
mon sub-expression elimination, and dead code elimi-
nation. The output IR is a hierarchical data-flow graph
(HDFG) in a binary format. This is a directed acyclic
graph with two types of nodes: simple and compound.
The simple nodes represent arithmetic and logic opera-
tions and registers. The compound nodes represent the
loops in the input code and contain sub-HDFG of the
loop body. The edges of the graph represent the data de-
pendencies and the precedence order (not shown in the
figure) between the operations. The HDFG is further
process by a VHDL Generator. This tool is currently
implemented as a stand-alone console application. Its
purpose is to perform low-level hardware-dependent
optimizations and to generate the final VHDL code.
Currently, the tool performs only ASAP scheduling on
the input graph. The memory bandwidth and access
times are provided to the VHDL Generator as addi-

1DelftWorkBench Automated Reconfigurable VHDL Generator



tional input. The currently selected computation model
is FSM-based.

An example of the performed translation process is
presented in Figure 8. The input C code (Figure 8a)
is the fmult function of the G721 encoder application
from the MediaBench benchmark suite [12]. The func-
tion is transformed into the HDFG, shown in Figure 8b
by the CDFG Builder. The shaded area in the figure is
the compoundoop node of thefor-loop in the func-
tion with the loop body sub-DFG. The edges denote the

data dependencies between the operations. The prece-

dence edges are not shown in the figure. The generated
graph is further processed by the VHDL generator and
an FSM-based design is generated (Figure 8c).

The long term goal of DWARYV is to provide opti-
mized support for broad range of application domains.
In order to achieve this goal, work will be carried out in
several directions. In the first place, the input language
restrictions will be relaxed. The targeted set includes
almost all C language constructs, excluding dynamic
memory routine, interrupt and exception handling. The
CDFG Builder will be extended to perform advanced
optimizations on the input code based on the informa-
tion provided by the profiler or other preceding tools.
A summary of the required input is given in Table 1.
In addition, analysis of the semantic of the code is also
considered. This semantic analysis would allow to se-
lect the most appropriate optimization set and computa-
tion model for the target application. The nodes of the
HDFG will be extended with new types of compound
nodes such as VLIW instruction-like nodes. The VHDL
Generator will be extended to perform resource allo-
cation and more sophisticated scheduling of the trans-
formed algorithm. As an additional input, a compo-
nent library will be provided. Such a library will con-
tain available IP cores and DSP blocks and would allow
for optimized exploitation of the underlying hardware.
Optimal implementation of non-trivial operations (divi-
sion, floating point arithmetic) will also be included in
this library. The set of generated outputs will be ex-
tended. The algorithm will not be mapped to a single
FSM-based model. Rather, the particular model will be
selected based on the semantic analysis, performed by
the CDFG Builder.

7. Conclusions

In this paper, we presented the profiling, compilation
and HDL generation tools from the DelftWorkBench
project. The goal of those tools is to facilitated and
automate the design and development of RC applica-
tions. The profiling framework supports the HW/SW
partitioning suggesting code segments as candidates for

Software Hardware

Pragma annotation of the
segments to be imple
mented in the hardwate

Data (un)aliasing

Memory bandwidth and
access tim

XREG bandwidth and ac
cess timetim@

Number of memory banks
Components (IP) library
Available area

DSP blocks

Actual data size
Data alignment
Data distribution

IO parameters
numbers

XREG

aCurrently also required

Table 1. HDL Generator Input Require-
ments

hardware acceleration. In addition, the profiler pro-

vides information, required for advanced optimizations

performed by the other tools of the hArtes toolchain.

Transparently for the designer, the compiler handles the
GPP-reconfigurable hardware interface and provides
optimizations that reduce the reconfiguration and data
transfer penalties. The HDL generator allows fast pro-
totyping and early performance estimation. It also assits
the designers to develop applications for reconfigurable
architectures without in-depth hardware knowledge.
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