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Abstract 

 
Deblocking filtering represents one of the most compute 
intensive tasks in an H.264/AVC standard video decoder 
due to its demanding memory accesses and irregular data 
flow. For these reasons, an efficient implementation poses 
big challenges, especially for programmable platforms. In 
this sense, the mapping of this decoder’s functionality 
onto a C-programmable coarse-grained reconfigurable 
architecture named ADRES (Architecture for 
Dynamically Reconfigurable Embedded Systems) is 
presented in this paper, including results from the 
evaluation of different topologies. The results obtained 
show a considerable reduction in the number of cycles 
and memory accesses needed to perform the filtering as 
well as an increase in the degree of instruction 
parallelism (ILP) when compared with an implementation 
on a Very Long Instruction Word (VLIW) dedicated 
processor. This demonstrates that high ILP is achievable 
on the ADRES even for irregular, data-dependent kernels. 
 
1   Introduction 
 

The architectural requirements imposed by nowadays 
multimedia applications are very strict, in the sense that 
high levels of performance must be achieved under severe 
area occupation and/or power dissipation constraints. In 
addition, the architecture must be flexible enough in order 
to support different versions of one particular application, 
while maintaining the design effort and time-to-market as 
low as possible. 

This situation becomes even more stringent in the 
case of video coding applications based on the 
H.264/AVC [1] video coding standard. H.264/AVC 
represents the state of the art standard as it provides better 
coding efficiency when compared with its predecessors 
such as MPEG-2 [2], MPEG-4 [3] and H.263 [4]. 
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However, these improved characteristics come at the 

expense of an increased computational cost. For the 
particular case of the decoder subsystem, the complexity 
increases by a factor of two.  

Coarse-grained reconfigurable architectures [5] 
appear as potential candidates for the implementation of 
real time H.264/AVC video codecs, as they achieve high 
performance while maintaining a degree of flexibility 
close to general purpose DSP processors. The ADRES 
(Architecture for Dynamically Reconfigurable Embedded 
Systems) architecture developed at IMEC represents a 
suitable option for multimedia applications, as it 
outperforms other optimized DSP processors [6]. 

The results obtained by mapping the adaptive 
deblocking filter from a baseline profile H.264/AVC 
video decoder onto the ADRES architecture are presented 
in this paper. By using a proper set of optimization 
techniques, the deblocking filtering kernel has been 
considerably accelerated into the ADRES architecture, 
yielding as a result, an increase of the whole decoder 
performance. 

The rest of this paper is organized as follows. Section 
2 gives a functional overview of a generic H.264/AVC 
decoder with special emphasis on the deblocking filtering 
task, while in Section 3 the ADRES architecture together 
with its associated compiler named DRESC (Dynamically 
Reconfigurable Embedded Systems Compiler) are 
introduced. The details about the different versions and 
architectures developed for the adaptive deblocking 
filtering kernel, together with the implementation results 
obtained, are given in Section 4 and finally some 
concluding remarks as well as future research directions 
are outlined in Section 5. 

 
2   The H.264/AVC decoder 
 

The functional block diagram of a generic hybrid 
video decoder based on the H.264/AVC standard is 
shown in Fig. 1, where the deblocking filtering kernel has 
been highlighted.  
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Fig. 1: Block diagram of a generic H.264/AVC 

decoder. 
 

As it can be observed from this figure, the incoming 
video bitstream is stored on a memory buffer in order to 
be parsed and decoded by the entropy decoding stage. 
The syntax elements obtained after this process for each 
macroblock (16×16 luminance pixels and two blocks of 
8×8 chrominance pixels) are demultiplexed and sent to 
the different functional kernels involved in the decoding 
process. In particular, the syntax elements related to the 
coding of the luminance and chrominance residual 
samples of the current macroblock (MB) are re-ordered 
by following a typical inverse scan procedure and passed 
to the inverse transform kernel. In parallel, a predictor is 
composed from previously decoded pixels in the same 
frame (intra coded macroblocks) or from pixels pointed 
by the received motion vectors belonging to frames 
previously decoded (inter coded macroblocks) depending 
on the information stored in the MB layer of the received 
bitstream. The decoded and inversely transformed 
residual samples are then added to the selected predictor. 
Finally, a deblocking filter reduces the presence of 
annoying blocking artifacts resulting from the block-
based processing, so that the original macroblock is 
recovered with minimal quality losses.  
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Fig. 2: Pixels distribution for horizontal and 
vertical filtering. 

 
The deblocking consists of horizontally filtering the 

vertical edges and vertically filtering the horizontal ones, 
taking as the unfiltered inputs the pixels marked in Fig. 2. 
For each edge within a reconstructed MB, independently 
of its nature, filtering starts computing the boundary 

strength (bS), which is a number ranging from zero (no 
filtering) to 4, that varies adaptively per block according 
to the coding conditions and the block pixel values. For 
strength 4, up to three pixels on either side of the edge can 
be modified (strong filter). On the other hand, for 
strengths between 1 and 3, only two pixels on either side 
of the edge may be affected (weak filter). Once the 
strength has been determined for an edge, a gradient-like 
analysis is performed to determine if the edge sharp 
should be preserved or filtered to attenuate blocking 
artifacts. In this sense, the filter is disabled, regardless of 
the filter strength, if |p0-q0|≥α or |p1-p0|≥β or |q1-q0|≥β, 
where α and β mainly depend on the quantization 
parameter. 
 
3   The ADRES/DRESC framework 
 

The ADRES coarse-grained array processor, as 
shown in Fig. 3, consists of an array of functional units 
(FUs), enhanced with register files (RFs) and connected 
through routing resources like wires, multiplexors and 
busses. ADRES is a templatized architecture that allows 
the construction of processors from an arbitrary number 
of function units, register files and interconnects. 
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Fig. 3: Architecture of the ADRES coarse-grain 

reconfigurable array 
 
The results of the ADRES FU, shown in Fig. 4, can 

be written to a local register file (RF), which is usually 
small and has fewer ports than the shared RF, or routed 
directly to the inputs of other FUs. The multiplexors 
shown in Fig.4 are used for routing data from different 
sources, while the configuration RAM acts as an 
instruction memory to control these components. It stores 
a number of configuration contexts locally, which are 
loaded on a cycle-by-cycle basis. In addition, ADRES 
provides predicates to let the compiler remove the control 
flow inside loops and efficiently implement prologues and 



epilogues of SW pipelined loops with conditional 
execution.  
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Fig. 4: ADRES coarse-grain array node 

 
For a complex architecture like ADRES, an 

automatic design methodology and programming tools 
are essential. Therefore the ADRES architecture has been 
developed together with its own C compilation 
framework, called DRESC (Dynamically Reconfigurable 
Embedded System Compiler). It maps computation-
intensive kernels, typically dataflow loops, onto the 
reconfigurable array, whereas the remaining code is 
mapped onto the VLIW processor. The data 
communication between the VLIW processor and the 
reconfigurable array is performed through the shared RF 
and shared memory.  

The compiler framework is shown in Fig.5. A design 
starts from a C-language description of the application. 
On the basis of execution time and possible speedup, the 
profiling and partitioning step identifies the candidate 
computation-intensive loops (kernels) for mapping onto 
the reconfigurable array.  
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Source-level transformations allow the pipelining of 

the kernel software to maximize performance. In the next 
step, a VLIW compiler framework called IMPACT [9] is 
used as a front-end and for high-level optimizations. 

IMPACT provides the control flow analysis to optimally 
replace branching with predicated operations [10], 
emitting an intermediate representation, called Lcode, 
which is used as input for scheduling together with the 
XML-based architecture.  

Applying a modulo scheduling algorithm to the 
Lcode achieves high parallelism for the kernels, whereas 
applying traditional instruction-level parallelism (ILP) 
scheduling techniques yields the available moderate 
parallelism for the non-loop code. The tools automatically 
identify and handle communications between these two 
parts and generate scheduled code for both the 
reconfigurable array and the VLIW processor. 

Predicates play an important role in the 
transformation of the code for modulo scheduling, 
because loop code must be free of branches and must 
feature a single exit point. This part of optimizations is 
provided by IMPACT. Also, predicates are needed to 
efficiently implement software pipelining, by guarding 
the execution during the prologue and epilogue stages 
implemented within the loop body. In array mode 
predicates are not used to guard operations but they 
provide the write enables to the register file and the 
memory, and special paths are used to route predicates to 
the loop stop signal.  

The modulo scheduling algorithm utilizes a graph-
based architecture representation, called MRRG (Modulo 
Routing Resource Graph), to model resources in a unified 
way, expose routing possibilities and enforce modulo 
constraints. The algorithm is based on congestion 
negotiation and simulated annealing methods. Starting 
from an invalid schedule that overuses resources, it tries 
to reduce overuse over time until a valid schedule is 
found [11]. One main advantage of the DRESC 
framework is its flexibility: the tools are designed to be 
retargetable within the ADRES template.  

Some code transformations are required to allow 
DRESC to map code onto the reconfigurable array, and to 
achieve high performance. These transformations are 
described in the following section in an exemplary way, 
using the deblocking filtering kernel from H.264/AVC. 

 
4 Mapping of the H.264/AVC deblocking 

filter onto the ADRES architecture 
 

This section describes the code versions developed in 
order to optimize the deblocking filter performance as 
much as possible together with the most significant 
mapping results obtained for each version. It is important 
to highlight that the results shown in this section have 
been obtained by using the H.264/AVC decoder public C 
code from libavcodec (available in the FFmpeg library on 
sourceforge.net/projects/ffmpeg), with some modifica-
tions to make the mapping on ADRES feasible. 
 
4.1 Preliminary profiling results 
 

Before mapping the code corresponding to the 
H.264/AVC decoder onto the ADRES architecture, it is 



necessary to select which loops should be mapped onto 
the coarse grain array and which ones should be executed 
on the VLIW. For this purpose, in order to identify which 
functions involved in the deblocking filter are the most 
time consuming, profiling tools such as Gprof and 
Quantify have been used. 

The profiling results have been obtained by decoding 
the foreman_cif_bl.264 bitstream. This input bitstream 
results from encoding 300 frames of the FOREMAN raw 
video sequence in CIF format (352×288 pixels) with the 
H.264 baseline profile public C code [12] using no rate 
control. From these results, it is inferred that the functions 
where most time is spent, and therefore, the candidates for 
parallelization on the reconfigurable matrix, are the 
following: 

• filter_mb 
• filter_mb_luma_W 
• filter_mb_lumaV_S 
• filter_mb_lumaH_S 
• filter_mb_chroma_W 
• filter_mb_chroma_S 

The function filter_mb is the main function and is 
responsible for two tasks: For calculating the values of the 
boundary strength (bS) for the horizontal and vertical 
edges, and for invoking the appropriate functions 
according to the type of filtering; vertical or horizontal, 
luminance or chrominance. The function filter_mb_lu-
ma_W performs the vertical or horizontal luminance 
weak filter, whereas the next two compute the vertical 
and horizontal luminance strong filter, respectively. 
Similarly, the functions filter_mb_chro-ma_W and 
filter_mb_chroma_S perform the vertical and horizontal 
weak and strong filter for the chrominance samples. 
 
4.2 Versions developed 
 

Several versions have been developed in order to 
achieve a better deblocking filter performance in terms of 
cycle counts, the most representative ones being 
summarized in Fig. 6. 
 

 
The first modifications performed are the constraint-

removing transformations, necessary to map the loops on 
the array. These loop requirements basically consist on 
the removal of the exit points and the function calls inside 
the loop body. In this sense, function inlining is a widely 
used optimization technique to reduce the overhead 
associated with function calls at the expense of increase 
code size if the inline function is called in multiple places. 
Once it is possible to map the loops onto ADRES, several 
optimizations can be done to speed up the code, since a 

loop may not produce good performance in its original 
form though it is pipelineable. This purpose can be 
achieved by introducing some techniques such as loop 
coalescing, loop unrolling and loop merging; followed by 
the inclusion of special functions called intrinsics.  

Loop coalescing consists on the combination of a 
loop nest into a single loop, thus increasing the number of 
iterations of the loop. Currently the DRESC compiler can 
only pipeline the innermost loop of a nested loop; if the 
outer loops contribute to a significant portion of the total 
execution time, or the total number of iterations of the 
innermost loops is too small so that the overhead of 
prologue and epilogue is dominant, only pipelining the 
innermost loops won't produce good performance. 

Loop unrolling expands a loop as each new iteration 
contains several copies of a single iteration. In this way, 
the number of iterations of the loop is reduced as many 
times as copies are made. Applied to the ADRES 
architecture, it helps to increase the size of loop bodies so 
that pipelining is more efficient since more instructions 
can be scheduled for parallel execution. 

The last loop optimization, loop merging, combines 
different loops into a single one, increasing the loop body 
and therefore reducing the overhead of prologue and 
epilogue. 

Another technique to be considered to improve the 
performance of the code is the addition of intrinsics. An 
intrinsic is a function known by the compiler directly 
mapped to a sequence of one or more assembly language 
instructions. Intrinsic functions perform simple and useful 
operations that are difficult to express concisely in C or 
C++, with the additional advantage that no calling linkage 
is required. Two different types of intrinsics were added; 
common intrinsics and special ones known as SIMD 
(Single Instruction Multiple Data).  

Common intrinsics perform special arithmetic 
operations in a more efficient way, whereas SIMD are 
instructions designed to accelerate the application by 
exploiting the parallelism since they let one instruction 
perform the same operation on multiple data elements. 
After exhaustively studying the code for potential 
opportunities to use intrinsics functions, the inclusion of 
intrinsics to perform average, clipping and shift, and 
round operations, appear as potential alternatives to speed 
up the filtering functions.  

The SIMD instructions implemented are the dot 
product operation and the inner sum operation. The first 
one consists on the sum of 4 8-bit multiplications and the 
other one performs the sum of 4 8-bit values. These 
instructions enhance the performance of the luminance 
and chrominance filters. 
 
4.3 Mapping results 

 
To verify the complete application, a co-simulator is 

used in order to simulate the compiled application using 
two different bitstreams of 300 frames each. The 
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Fig. 6: Diagram of the developed versions 



bitstreams used are NEWS and FOREMAN, both of them in 
CIF format (352x288 pixels). While the FOREMAN 
sequence has been encoded with the H.264 reference 
encoder as previously mentioned, the NEWS sequence has 
been encoded with a proprietary encoder and rate control 
set to 256kbps. The selected testbench sequences have 
very different spatial and temporal characteristics as 
NEWS represents the typical “head and shoulders” 
sequence with low motion, large static background areas 
and no context changes, whereas FOREMAN is a highly 
textured sequence with a chaotic motion field produced 
by the combination of local and global movements. The 
first frame of each sequence is shown in Fig. 7.  

 

   
Fig. 7: First frame of NEWS (left) and FOREMAN 

(right) sequences 
 

Relating to the architecture, a 4x4 instance from 
ADRES template is used consisting on 12 distributed RFs 
(DRFs) and a register file shared by the VLIW processor 
and 16 FUs. These include 16 ALUs, 8 multipliers and 4 
load/store units being each of them connected not only to 
connected to the 4 nearest neighbours, but also with FUs 
within one hop (4x4_dresc_arch_meshplus_12DRF). 

The results of the mapped loops for NEWS sequence 
are listed in Table 1, where the total cycle count and IPC 
(Instructions Per Cycle) for the three versions developed 
are presented. This last parameter reflects the parallelism 
achieved, being the maximum value equal to the number 
of FUs (16 in this case). 

 
 VLIW ADRES 

 V0.0 v1.0 v2.0 v3.0 

  cycles IPC cycles IPC cycles IPC cycles IPC 

filter_mb  224.109.963 0,98 167.827.505 3,63 122.195.422 6,64 109.293.556 7,31 

 filter_mb_luma_W  107.052.758 2,66 50.553.210 9,19 38.087.280 13,49 29.799.770 11,47 

filter_mb_lumaV_S  3.079.483 3,26 812.258 14,24 895.061 13,78 622.994 13,01 

filter_mb_lumaH_S  3.316.625 3,17 914.525 13,39 902.750 13,47 690.800 13,23 

filter_mb_chroma_W  47.999.672 1,87 34.946.144 7,34 14.478.264 12,15 11.797.104 9,26 

filter_mb_chroma_S  3.792.376 1,89 1.369.032 8,90 889.084 11,38 810.404 8,83 

Tab. 1:  Number of cycles and IPC for the 
deblocking filter functions mapped onto ADRES 
 

The results prove that mapping the loops on ADRES 
substantially decreases the cycle counts besides 
increasing the parallelism from approximately 2 to 12 
instructions per cycle. It has to be pointed out that 
especially with the deblocking filter, the IPC increases 
proportionally more than the cycle count decreases, 

because more instructions have been predicated when 
mapping the conditional code to the array, and therefore 
more code is executed speculatively 

Finally, the overall vs. the kernel cycle counts for the 
sequences commented before are outlined in Table 2. 
Comparing the results for the last version against the ones 
obtained from the original code, it is noticeable a speed-
up of approximately 3 times for the kernel. The speed-up 
is constrained by the high complexity of the deblocking 
filter which requires conditional processing on the block 
edges and sample level, resulting in many conditional 
branches that become a challenge for parallel processing. 
The overall speed-up is lower since only one of the most 
computationally intensive kernels, the deblocking filter, 
has been mapped and optimized. In order to achieve 
better results some other significant kernels, such as the 
motion compensation and the inverse transform, should 
be mapped. 
 

 
4.4 Architecture exploration  
 

Since ADRES is a template for a CGRA, architecture 
variations can be easily derived using the XML-based 
architecture description language. Architectural aspects 
such as number of resources, interconnection topologies 
and number of distributed register files can be easily 
specified by the description language. This flexibility 
together with the automatic support from the DRESC 
framework, allow the exploration of new architectures to 
find an optimal instance for a given application. 

From the architecture instance used for the kernel 
optimization (mesh-plus connectivity with 12 DRFs), two 
experiments have been done varying only one architecture 
parameter and fixing the others. The first experiment 
consists on modifying the interconnections between FUs. 
The three instances used are shown in Fig. 8 while the 
results for each of them, in terms of cycle counts and IPC, 
are listed in Table 3. 

 
As expected, the more interconnections between FUs, 

the less the cycles are needed, due to the fact that there is 
a better routability between components and therefore, the 
operations can be easily scheduled. On the other hand this 

 
v0.0 v3.0 speed-up 

 
overall kernel overall kernel overall kernel 

NEWS 2.207.500.396 389.350.877 1.984.299.764 153.014.628 1,11 2,54 

FOREMAN 3.075.140.626 745.777.008 2.576.058.975 230.920.308 1,19 3,23 

Tab. 2:  Mapping speed-up obtained  
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may lead to more wires and wider multiplexors, which 
indicates more area, longer delays and higher power 
consumption. 

 

 
 
The second experiment consists on varying the 

number of distributed register files. Figure 9 shows the 
instances used and the results are presented in Table 4.  

 

 
 

 
 
Results show an important decrease in the cycle 

counts when the number of DRFs is increased. As each 
FU has a local RF, the number of required cycles is 
reduced, since it is not necessary to spend cycles loading 
and storing the intermediate data to the global RF. In 
contrast, the addition of DRFs involves an augment of the 
area needed and in the number of configuration bits to 
provide an address for each port. 

 
5   Conclusions and further research 
 

This paper presents the procedure and the most 
significant results obtained by mapping a H.264/AVC 
standard-compliant deblocking filter onto the ADRES 

architecture, In particular, 6 functions that belong to this 
kernel have been optimized and mapped onto the array in 
order to accelerate the code. Big efforts have been made 
to overcome the inherent complexity of the deblocking 
filter. In addition, architectural tradeoffs have been 
inspected in order to accelerate the filtering kernel at the 
cost of an increase in the hardware cost. 

The results show a speed-up of approximately 3 times 
for the kernel and 1.15 times for overall performance over 
a 4-issue VLIW, as well as an important increase in the 
degree of parallelism.  
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 No DRFs 4-Shared DRFs 12-DRFs 

 cycles IPC cycles IPC Cycles IPC 

filter_mb 129.067.024 7,81 112.845.676 7,23 109.293.556 7,31 

filter_mb_luma_W 38.616.270 10,96 31.739.400 10,03 29.799.770 11,47 

filter_mb_lumaV_S 950.263 12,12 686.082 13,56 622.994 13,01 

filter_mb_lumaH_S 1.008.725 10,65 804.625 10,73 690.800 13,23 

filter_mb_chroma_W 13.137.684 10,48 11.886.476 10,26 11.797.104 9,26 

filter_mb_chroma_S 952.028 8,83 818.272 10,19 810.404 8,83 

Tab. 4: Cycles and IPC for instances with different 
DRFs 

 Mesh Mesh-Plus Mesh-Full 

 cycles IPC cycles IPC Cycles IPC 

filter_mb 109.375.152 6,93 109.293.556 7,31 108.701.536 7,18 

filter_mb_luma_W 35.442.330 9,97 29.799.770 11,47 28.918.120 11,45 

filter_mb_lumaV_S 686.082 10,93 622.994 13,01 626.937 13,27 

filter_mb_lumaH_S 753.600 11,86 690.800 13,23 690.800 13,34 

filter_mb_chroma_W 13.227.056 7,62 11.797.104 9,26 10.099.036 11,62 

filter_mb_chroma_S 959.896 7,16 810.404 8,83 806.140 8,87 

Tab 3. : Cycles and IPC for different 
interconnection topologies 


