
Mapping Control-Intensive Video Kernels onto a
Coarse-Grain Reconfigurable Architecture: the H.264/AVC Deblocking Filter

C. Arbelo1, A. Kanstein2, S. López1, J.F. López1, M. Berekovic3, R. Sarmiento1 and J.-Y. Mignolet3
1 Research Institute for Applied Microelectronics (IUMA), Department of Electronic Engineering and

Control (DIEA), University of Las Palmas de Gran Canaria, E-35017, Spain.
2 Freescale Inc., Toulouse, France

3 IMEC, Leuven, Belgium

Abstract

Deblocking filtering represents one of the most compute
intensive tasks in an H.264/AVC standard video decoder
due to its demanding memory accesses and irregular data
flow. For these reasons, an efficient implementation poses
big challenges, especially for programmable platforms. In
this sense, the mapping of this decoder’s functionality
onto a C-programmable coarse-grained reconfigurable
architecture named ADRES (Architecture for
Dynamically Reconfigurable Embedded Systems) is
presented in this paper, including results from the
evaluation of different topologies. The results obtained
show a considerable reduction in the number of cycles
and memory accesses needed to perform the filtering as
well as an increase in the degree of instruction
parallelism (ILP) when compared with an implementation
on a Very Long Instruction Word (VLIW) dedicated
processor. This demonstrates that high ILP is achievable
on the ADRES even for irregular, data-dependent kernels.

1 Introduction

The architectural requirements imposed by nowadays
multimedia applications are very strict, in the sense that
high levels of performance must be achieved under severe
area occupation and/or power dissipation constraints. In
addition, the architecture must be flexible enough in order
to support different versions of one particular application,
while maintaining the design effort and time-to-market as
low as possible.

This situation becomes even more stringent in the
case of video coding applications based on the
H.264/AVC [1] video coding standard. H.264/AVC
represents the state of the art standard as it provides better
coding efficiency when compared with its predecessors
such as MPEG-2 [2], MPEG-4 [3] and H.263 [4].

This work was partially supported by the Spanish Ministry of Education
and Science (MEC) under project TEC2005-08138-C02-01/MIC

However, these improved characteristics come at the

expense of an increased computational cost. For the
particular case of the decoder subsystem, the complexity
increases by a factor of two.

Coarse-grained reconfigurable architectures [5]
appear as potential candidates for the implementation of
real time H.264/AVC video codecs, as they achieve high
performance while maintaining a degree of flexibility
close to general purpose DSP processors. The ADRES
(Architecture for Dynamically Reconfigurable Embedded
Systems) architecture developed at IMEC represents a
suitable option for multimedia applications, as it
outperforms other optimized DSP processors [6].

The results obtained by mapping the adaptive
deblocking filter from a baseline profile H.264/AVC
video decoder onto the ADRES architecture are presented
in this paper. By using a proper set of optimization
techniques, the deblocking filtering kernel has been
considerably accelerated into the ADRES architecture,
yielding as a result, an increase of the whole decoder
performance.

The rest of this paper is organized as follows. Section
2 gives a functional overview of a generic H.264/AVC
decoder with special emphasis on the deblocking filtering
task, while in Section 3 the ADRES architecture together
with its associated compiler named DRESC (Dynamically
Reconfigurable Embedded Systems Compiler) are
introduced. The details about the different versions and
architectures developed for the adaptive deblocking
filtering kernel, together with the implementation results
obtained, are given in Section 4 and finally some
concluding remarks as well as future research directions
are outlined in Section 5.

2 The H.264/AVC decoder

The functional block diagram of a generic hybrid
video decoder based on the H.264/AVC standard is
shown in Fig. 1, where the deblocking filtering kernel has
been highlighted.

978-3-9810801-2-4/DATE07 © 2007 EDAA

Entropy
decoding

Inverse
quantization

Inverse
transformMemory buffer

Intra
prediction

Motion
compensation

+

Deblocking
filter

Reconstructed
memory

Intra prediction mode

INTRA/INTER

Motion vectors

Input bitstream

100101101...

Video out

Fig. 1: Block diagram of a generic H.264/AVC

decoder.

As it can be observed from this figure, the incoming
video bitstream is stored on a memory buffer in order to
be parsed and decoded by the entropy decoding stage.
The syntax elements obtained after this process for each
macroblock (16×16 luminance pixels and two blocks of
8×8 chrominance pixels) are demultiplexed and sent to
the different functional kernels involved in the decoding
process. In particular, the syntax elements related to the
coding of the luminance and chrominance residual
samples of the current macroblock (MB) are re-ordered
by following a typical inverse scan procedure and passed
to the inverse transform kernel. In parallel, a predictor is
composed from previously decoded pixels in the same
frame (intra coded macroblocks) or from pixels pointed
by the received motion vectors belonging to frames
previously decoded (inter coded macroblocks) depending
on the information stored in the MB layer of the received
bitstream. The decoded and inversely transformed
residual samples are then added to the selected predictor.
Finally, a deblocking filter reduces the presence of
annoying blocking artifacts resulting from the block-
based processing, so that the original macroblock is
recovered with minimal quality losses.

p3h p2h p1h p0h q0h q1h q2h q3h

p0v

p1v

p2v

p3v

q3v

q2v

q1v

v

Top Neighbour s

Le
ft

N
ei

gh
bo

ur
s

Horizontal Filtering

Vertical Filtering

Fig. 2: Pixels distribution for horizontal and
vertical filtering.

The deblocking consists of horizontally filtering the

vertical edges and vertically filtering the horizontal ones,
taking as the unfiltered inputs the pixels marked in Fig. 2.
For each edge within a reconstructed MB, independently
of its nature, filtering starts computing the boundary

strength (bS), which is a number ranging from zero (no
filtering) to 4, that varies adaptively per block according
to the coding conditions and the block pixel values. For
strength 4, up to three pixels on either side of the edge can
be modified (strong filter). On the other hand, for
strengths between 1 and 3, only two pixels on either side
of the edge may be affected (weak filter). Once the
strength has been determined for an edge, a gradient-like
analysis is performed to determine if the edge sharp
should be preserved or filtered to attenuate blocking
artifacts. In this sense, the filter is disabled, regardless of
the filter strength, if |p0-q0|≥α or |p1-p0|≥β or |q1-q0|≥β,
where α and β mainly depend on the quantization
parameter.

3 The ADRES/DRESC framework

The ADRES coarse-grained array processor, as
shown in Fig. 3, consists of an array of functional units
(FUs), enhanced with register files (RFs) and connected
through routing resources like wires, multiplexors and
busses. ADRES is a templatized architecture that allows
the construction of processors from an arbitrary number
of function units, register files and interconnects.

VLIW CU

Global PRF

Global DRF

IC
ac

he

C
on

tro
l U

ni
ts

VLIW View

Inst. Fetch

Branch ctrl
Inst. Dispatch

DMEM

CGA View

FU12
RF

FU13
RF

FU14
RF

FU15
RF

RF
FU9
RF RF

FU11
RF

FU4
RF

FU5
RF

FU6
RF

FU7
RF

FU0

Mode ctrl

V
LI

W

S
ec

tio
n

C
G

A

S
ec

tio
n

FU0

RF

FU1
(LD/ST)

RF

FU2
(LD/ST)

RF

FU3

RF

FU1
(LD/ST)

FU2
(LD/ST)

FU8
(LD/ST)

FU10
(LD/ST)

Fig. 3: Architecture of the ADRES coarse-grain

reconfigurable array

The results of the ADRES FU, shown in Fig. 4, can

be written to a local register file (RF), which is usually
small and has fewer ports than the shared RF, or routed
directly to the inputs of other FUs. The multiplexors
shown in Fig.4 are used for routing data from different
sources, while the configuration RAM acts as an
instruction memory to control these components. It stores
a number of configuration contexts locally, which are
loaded on a cycle-by-cycle basis. In addition, ADRES
provides predicates to let the compiler remove the control
flow inside loops and efficiently implement prologues and

epilogues of SW pipelined loops with conditional
execution.

F
U

mu
x

mu
x

mu
x

reg reg reg

pred src1 src2

dst1pred_dst1 pred_dst2

R
F

From different src.

To different dest.

Conf. RAM

conf.
counter

buffer

Fig. 4: ADRES coarse-grain array node

For a complex architecture like ADRES, an

automatic design methodology and programming tools
are essential. Therefore the ADRES architecture has been
developed together with its own C compilation
framework, called DRESC (Dynamically Reconfigurable
Embedded System Compiler). It maps computation-
intensive kernels, typically dataflow loops, onto the
reconfigurable array, whereas the remaining code is
mapped onto the VLIW processor. The data
communication between the VLIW processor and the
reconfigurable array is performed through the shared RF
and shared memory.

The compiler framework is shown in Fig.5. A design
starts from a C-language description of the application.
On the basis of execution time and possible speedup, the
profiling and partitioning step identifies the candidate
computation-intensive loops (kernels) for mapping onto
the reconfigurable array.

 C implementation

Profiling/partitioning

Source-level
transformation

Impact front-end

Lcode

Instruction-level
parallelism scheduling

Dataflow analysis and
optimization

Register allocation Modulo scheduling

Code generation

Architecture
description in XML

Achritecture parser

Architecture
abstraction

Cosimulator
Fig. 5: Dynamically Reconfigurable Embedded

System Compiler (DRESC) Framework

Source-level transformations allow the pipelining of

the kernel software to maximize performance. In the next
step, a VLIW compiler framework called IMPACT [9] is
used as a front-end and for high-level optimizations.

IMPACT provides the control flow analysis to optimally
replace branching with predicated operations [10],
emitting an intermediate representation, called Lcode,
which is used as input for scheduling together with the
XML-based architecture.

Applying a modulo scheduling algorithm to the
Lcode achieves high parallelism for the kernels, whereas
applying traditional instruction-level parallelism (ILP)
scheduling techniques yields the available moderate
parallelism for the non-loop code. The tools automatically
identify and handle communications between these two
parts and generate scheduled code for both the
reconfigurable array and the VLIW processor.

Predicates play an important role in the
transformation of the code for modulo scheduling,
because loop code must be free of branches and must
feature a single exit point. This part of optimizations is
provided by IMPACT. Also, predicates are needed to
efficiently implement software pipelining, by guarding
the execution during the prologue and epilogue stages
implemented within the loop body. In array mode
predicates are not used to guard operations but they
provide the write enables to the register file and the
memory, and special paths are used to route predicates to
the loop stop signal.

The modulo scheduling algorithm utilizes a graph-
based architecture representation, called MRRG (Modulo
Routing Resource Graph), to model resources in a unified
way, expose routing possibilities and enforce modulo
constraints. The algorithm is based on congestion
negotiation and simulated annealing methods. Starting
from an invalid schedule that overuses resources, it tries
to reduce overuse over time until a valid schedule is
found [11]. One main advantage of the DRESC
framework is its flexibility: the tools are designed to be
retargetable within the ADRES template.

Some code transformations are required to allow
DRESC to map code onto the reconfigurable array, and to
achieve high performance. These transformations are
described in the following section in an exemplary way,
using the deblocking filtering kernel from H.264/AVC.

4 Mapping of the H.264/AVC deblocking

filter onto the ADRES architecture

This section describes the code versions developed in
order to optimize the deblocking filter performance as
much as possible together with the most significant
mapping results obtained for each version. It is important
to highlight that the results shown in this section have
been obtained by using the H.264/AVC decoder public C
code from libavcodec (available in the FFmpeg library on
sourceforge.net/projects/ffmpeg), with some modifica-
tions to make the mapping on ADRES feasible.

4.1 Preliminary profiling results

Before mapping the code corresponding to the
H.264/AVC decoder onto the ADRES architecture, it is

necessary to select which loops should be mapped onto
the coarse grain array and which ones should be executed
on the VLIW. For this purpose, in order to identify which
functions involved in the deblocking filter are the most
time consuming, profiling tools such as Gprof and
Quantify have been used.

The profiling results have been obtained by decoding
the foreman_cif_bl.264 bitstream. This input bitstream
results from encoding 300 frames of the FOREMAN raw
video sequence in CIF format (352×288 pixels) with the
H.264 baseline profile public C code [12] using no rate
control. From these results, it is inferred that the functions
where most time is spent, and therefore, the candidates for
parallelization on the reconfigurable matrix, are the
following:

• filter_mb
• filter_mb_luma_W
• filter_mb_lumaV_S
• filter_mb_lumaH_S
• filter_mb_chroma_W
• filter_mb_chroma_S

The function filter_mb is the main function and is
responsible for two tasks: For calculating the values of the
boundary strength (bS) for the horizontal and vertical
edges, and for invoking the appropriate functions
according to the type of filtering; vertical or horizontal,
luminance or chrominance. The function filter_mb_lu-
ma_W performs the vertical or horizontal luminance
weak filter, whereas the next two compute the vertical
and horizontal luminance strong filter, respectively.
Similarly, the functions filter_mb_chro-ma_W and
filter_mb_chroma_S perform the vertical and horizontal
weak and strong filter for the chrominance samples.

4.2 Versions developed

Several versions have been developed in order to
achieve a better deblocking filter performance in terms of
cycle counts, the most representative ones being
summarized in Fig. 6.

The first modifications performed are the constraint-

removing transformations, necessary to map the loops on
the array. These loop requirements basically consist on
the removal of the exit points and the function calls inside
the loop body. In this sense, function inlining is a widely
used optimization technique to reduce the overhead
associated with function calls at the expense of increase
code size if the inline function is called in multiple places.
Once it is possible to map the loops onto ADRES, several
optimizations can be done to speed up the code, since a

loop may not produce good performance in its original
form though it is pipelineable. This purpose can be
achieved by introducing some techniques such as loop
coalescing, loop unrolling and loop merging; followed by
the inclusion of special functions called intrinsics.

Loop coalescing consists on the combination of a
loop nest into a single loop, thus increasing the number of
iterations of the loop. Currently the DRESC compiler can
only pipeline the innermost loop of a nested loop; if the
outer loops contribute to a significant portion of the total
execution time, or the total number of iterations of the
innermost loops is too small so that the overhead of
prologue and epilogue is dominant, only pipelining the
innermost loops won't produce good performance.

Loop unrolling expands a loop as each new iteration
contains several copies of a single iteration. In this way,
the number of iterations of the loop is reduced as many
times as copies are made. Applied to the ADRES
architecture, it helps to increase the size of loop bodies so
that pipelining is more efficient since more instructions
can be scheduled for parallel execution.

The last loop optimization, loop merging, combines
different loops into a single one, increasing the loop body
and therefore reducing the overhead of prologue and
epilogue.

Another technique to be considered to improve the
performance of the code is the addition of intrinsics. An
intrinsic is a function known by the compiler directly
mapped to a sequence of one or more assembly language
instructions. Intrinsic functions perform simple and useful
operations that are difficult to express concisely in C or
C++, with the additional advantage that no calling linkage
is required. Two different types of intrinsics were added;
common intrinsics and special ones known as SIMD
(Single Instruction Multiple Data).

Common intrinsics perform special arithmetic
operations in a more efficient way, whereas SIMD are
instructions designed to accelerate the application by
exploiting the parallelism since they let one instruction
perform the same operation on multiple data elements.
After exhaustively studying the code for potential
opportunities to use intrinsics functions, the inclusion of
intrinsics to perform average, clipping and shift, and
round operations, appear as potential alternatives to speed
up the filtering functions.

The SIMD instructions implemented are the dot
product operation and the inner sum operation. The first
one consists on the sum of 4 8-bit multiplications and the
other one performs the sum of 4 8-bit values. These
instructions enhance the performance of the luminance
and chrominance filters.

4.3 Mapping results

To verify the complete application, a co-simulator is

used in order to simulate the compiled application using
two different bitstreams of 300 frames each. The

v0.0
(Original Code)

Inlining
Removal of Shortcuts

Optimizations

v2.0v3.0
(Final version) Intrinsics

v1.0 Loop coalescing
Loop unrolling
Merge loops

Fig. 6: Diagram of the developed versions

bitstreams used are NEWS and FOREMAN, both of them in
CIF format (352x288 pixels). While the FOREMAN
sequence has been encoded with the H.264 reference
encoder as previously mentioned, the NEWS sequence has
been encoded with a proprietary encoder and rate control
set to 256kbps. The selected testbench sequences have
very different spatial and temporal characteristics as
NEWS represents the typical “head and shoulders”
sequence with low motion, large static background areas
and no context changes, whereas FOREMAN is a highly
textured sequence with a chaotic motion field produced
by the combination of local and global movements. The
first frame of each sequence is shown in Fig. 7.

Fig. 7: First frame of NEWS (left) and FOREMAN

(right) sequences

Relating to the architecture, a 4x4 instance from
ADRES template is used consisting on 12 distributed RFs
(DRFs) and a register file shared by the VLIW processor
and 16 FUs. These include 16 ALUs, 8 multipliers and 4
load/store units being each of them connected not only to
connected to the 4 nearest neighbours, but also with FUs
within one hop (4x4_dresc_arch_meshplus_12DRF).

The results of the mapped loops for NEWS sequence
are listed in Table 1, where the total cycle count and IPC
(Instructions Per Cycle) for the three versions developed
are presented. This last parameter reflects the parallelism
achieved, being the maximum value equal to the number
of FUs (16 in this case).

 VLIW ADRES

 V0.0 v1.0 v2.0 v3.0

 cycles IPC cycles IPC cycles IPC cycles IPC

filter_mb 224.109.963 0,98 167.827.505 3,63 122.195.422 6,64 109.293.556 7,31

 filter_mb_luma_W 107.052.758 2,66 50.553.210 9,19 38.087.280 13,49 29.799.770 11,47

filter_mb_lumaV_S 3.079.483 3,26 812.258 14,24 895.061 13,78 622.994 13,01

filter_mb_lumaH_S 3.316.625 3,17 914.525 13,39 902.750 13,47 690.800 13,23

filter_mb_chroma_W 47.999.672 1,87 34.946.144 7,34 14.478.264 12,15 11.797.104 9,26

filter_mb_chroma_S 3.792.376 1,89 1.369.032 8,90 889.084 11,38 810.404 8,83

Tab. 1: Number of cycles and IPC for the
deblocking filter functions mapped onto ADRES

The results prove that mapping the loops on ADRES
substantially decreases the cycle counts besides
increasing the parallelism from approximately 2 to 12
instructions per cycle. It has to be pointed out that
especially with the deblocking filter, the IPC increases
proportionally more than the cycle count decreases,

because more instructions have been predicated when
mapping the conditional code to the array, and therefore
more code is executed speculatively

Finally, the overall vs. the kernel cycle counts for the
sequences commented before are outlined in Table 2.
Comparing the results for the last version against the ones
obtained from the original code, it is noticeable a speed-
up of approximately 3 times for the kernel. The speed-up
is constrained by the high complexity of the deblocking
filter which requires conditional processing on the block
edges and sample level, resulting in many conditional
branches that become a challenge for parallel processing.
The overall speed-up is lower since only one of the most
computationally intensive kernels, the deblocking filter,
has been mapped and optimized. In order to achieve
better results some other significant kernels, such as the
motion compensation and the inverse transform, should
be mapped.

4.4 Architecture exploration

Since ADRES is a template for a CGRA, architecture
variations can be easily derived using the XML-based
architecture description language. Architectural aspects
such as number of resources, interconnection topologies
and number of distributed register files can be easily
specified by the description language. This flexibility
together with the automatic support from the DRESC
framework, allow the exploration of new architectures to
find an optimal instance for a given application.

From the architecture instance used for the kernel
optimization (mesh-plus connectivity with 12 DRFs), two
experiments have been done varying only one architecture
parameter and fixing the others. The first experiment
consists on modifying the interconnections between FUs.
The three instances used are shown in Fig. 8 while the
results for each of them, in terms of cycle counts and IPC,
are listed in Table 3.

As expected, the more interconnections between FUs,

the less the cycles are needed, due to the fact that there is
a better routability between components and therefore, the
operations can be easily scheduled. On the other hand this

v0.0 v3.0 speed-up

overall kernel overall kernel overall kernel

NEWS 2.207.500.396 389.350.877 1.984.299.764 153.014.628 1,11 2,54

FOREMAN 3.075.140.626 745.777.008 2.576.058.975 230.920.308 1,19 3,23

Tab. 2: Mapping speed-up obtained

 FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

FU FU

(a) (b) (c)
Fig. 8: Architecture instances (a) Mesh, (b) Mesh-

Plus and (c) Mesh-Full.

may lead to more wires and wider multiplexors, which
indicates more area, longer delays and higher power
consumption.

The second experiment consists on varying the

number of distributed register files. Figure 9 shows the
instances used and the results are presented in Table 4.

Results show an important decrease in the cycle

counts when the number of DRFs is increased. As each
FU has a local RF, the number of required cycles is
reduced, since it is not necessary to spend cycles loading
and storing the intermediate data to the global RF. In
contrast, the addition of DRFs involves an augment of the
area needed and in the number of configuration bits to
provide an address for each port.

5 Conclusions and further research

This paper presents the procedure and the most
significant results obtained by mapping a H.264/AVC
standard-compliant deblocking filter onto the ADRES

architecture, In particular, 6 functions that belong to this
kernel have been optimized and mapped onto the array in
order to accelerate the code. Big efforts have been made
to overcome the inherent complexity of the deblocking
filter. In addition, architectural tradeoffs have been
inspected in order to accelerate the filtering kernel at the
cost of an increase in the hardware cost.

The results show a speed-up of approximately 3 times
for the kernel and 1.15 times for overall performance over
a 4-issue VLIW, as well as an important increase in the
degree of parallelism.

ACKNOWLEDGMENT
The authors wish to thank IMEC for supporting the

student internships which made this work possible, and
for providing access to the tools.

REFERENCES
[1] T. Wiegand (Ed.), "Draft ITU-T Recommendation H.264

and Draft ISO/IEC 14496-10 AVC," Joint Video Team of
ISO/IEC/JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVT-
G050, Pattaya, Thailand, March 2003.

[2] ISO/IEC JTC1/SC29 CD 11544, “Coded Representation of
Picture and Audio Information - Progressive Bi-Level
Image Compression”, Recommendation H.262 Nov., 1993.

[3] MPEG-4 Part 2: Visual (IS 14496-2), Doc. N2502, Atlantic
City, N.J., USA, October 1998.

[4] “Video coding for Low Bit Rate Communication”, ITU-T
Recommendation H.263, July 1995.

[5] B. Mei, A Coarse-Grained Reconfigurable Architecture
Template and its Compilation Techniques, PhD Thesis
IMEC, January 2005.

[6] M. Berekovic, A. Kanstein, D. Desmet, A. Bartic, B. Mei
and J.Y. Mignolet, “Mapping of Video Compression
Algorithms on the ADRES Coarse-Grain Reconfigurable
Array”, Workshop on Multimedia and Stream
Processors’05, Barcelona, November 12, 2005.

[7] H. Huebert, B. Stabernack and H. Richter, “Tool-Aided
Performance Analysis and Optimization of an H.264
Decoder for Embedded System”, Consumer Electronics,
2004 IEEE International Symposium on Consumer
Electronics, pp. 400 - 405, Sept. 1-3, 2004.

[8] X. Quan, L. Jilin, W. Shijie, Z. Jiandong. “H.264/AVC
Baseline Profile Decoder Optimizations on Independent
Platform”, International Conference on Wireless
Communications, Networking and Mobile Computing,
2005, Volume 2, pp. 1253 - 1256, 23-26 Sept. 2005

[9] P. P. Chang and S. A. Mahlke and W. Y. Chen and N. J.
Warter and W. W. Hwu, “IMPACT: An Architectural
Framework for Multiple-Instruction-Issue Processors”,
Proc. of the 18th International Symposium on Computer
Architecture (ISCA), pp. 266-275, 1991.

[10] Scott A. Mahlke, “Exploiting Instruction-Level Parallelism
in the Presence of Conditional Branches”, PhD thesis,
University of Illinois, Urbana IL, September 1996

[11] B. Mei, S. Vernalde, D. Verkest, H. De Man, R.
Lauwereins, “Exploiting Loop-Level Parallelism on
Coarse-Grained Reconfigurable Architectures Using
Modulo Scheduling”, Proc of DATE 2003, Munich, March,
2003

[12] Available at: http://iphome.hhi.de/suehring/tml/index.htm

 FU FU

FU FU

RF RF

FU

RF

FU

RF

FU

RF

FU

RF

FU FU

FU FU

RF RF

FU

RF

FU

RF

FU

RF

FU

RF

(c)

VLIW RF

FU FU

FU FU

FU

FU

FU

FU

FU FU

FU FU

FU

FU

FU

FU

(a)

VLIW RF

FU FU

FU FU

FU

FU

FU

FU

FU FU

FU FU

FU

FU

FU

FU

VLIW RF

RF

RF

RF

RF

(b)

Fig. 9.: Architecture instances (a) No local DRFs,
(b) 4 shared local DRFs and (c) 12 local DRFs.

 No DRFs 4-Shared DRFs 12-DRFs

 cycles IPC cycles IPC Cycles IPC

filter_mb 129.067.024 7,81 112.845.676 7,23 109.293.556 7,31

filter_mb_luma_W 38.616.270 10,96 31.739.400 10,03 29.799.770 11,47

filter_mb_lumaV_S 950.263 12,12 686.082 13,56 622.994 13,01

filter_mb_lumaH_S 1.008.725 10,65 804.625 10,73 690.800 13,23

filter_mb_chroma_W 13.137.684 10,48 11.886.476 10,26 11.797.104 9,26

filter_mb_chroma_S 952.028 8,83 818.272 10,19 810.404 8,83

Tab. 4: Cycles and IPC for instances with different
DRFs

 Mesh Mesh-Plus Mesh-Full

 cycles IPC cycles IPC Cycles IPC

filter_mb 109.375.152 6,93 109.293.556 7,31 108.701.536 7,18

filter_mb_luma_W 35.442.330 9,97 29.799.770 11,47 28.918.120 11,45

filter_mb_lumaV_S 686.082 10,93 622.994 13,01 626.937 13,27

filter_mb_lumaH_S 753.600 11,86 690.800 13,23 690.800 13,34

filter_mb_chroma_W 13.227.056 7,62 11.797.104 9,26 10.099.036 11,62

filter_mb_chroma_S 959.896 7,16 810.404 8,83 806.140 8,87

Tab 3. : Cycles and IPC for different
interconnection topologies

