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ABSTRACT
One of the major problems with the GPU on-chip shared mem-
ory is bank conflicts. We observed that the throughput of the
GPU processor core is often constrained neither by the shared
memory bandwidth, nor by the shared memory latency (as
long as it stays constant), but is rather due to the varied laten-
cies caused by memory bank conflicts. This results in conflicts
at the writeback stage of the in-order pipeline and pipeline
stalls, thus degrading system throughput. Based on this ob-
servation, we investigate and propose a novel elastic pipeline
design that minimizes the negative impact of on-chip mem-
ory bank conflicts on system throughput, by decoupling bank
conflicts from pipeline stalls. Simulation results show that our
proposed elastic pipeline together with the co-designed bank-
conflict aware warp scheduling reduces the pipeline stalls by
up to 64.0% (with 42.3% on average) and improves the over-
all performance by up to 20.7% (on average 13.3%) for our
benchmark applications, at trivial hardware overhead.

Categories and Subject Descriptors: C.1.2[Multiple Data
Stream Architectures (Multiprocessors)]:SIMD; B.3.2[Design
Styles]:Interleaved memories
General Terms: Design, Performance

1. INTRODUCTION
The trend is quite clear that multi/many-core processors

are becoming pervasive computing platforms nowadays. GPU
is one example that uses massive lightweight cores to achieve
high aggregated performance, especially for highly data-parallel
workloads. Although GPUs are originally designed for graph-
ics processing, the performance of many well tuned general
purpose applications on GPUs have established them among
one of the most attractive computing platforms in a more gen-
eral context – leading to the GPGPU (General-purpose Pro-
cessing on GPUs) domain[2].

In manycore systems such as GPUs, massive multithreading
is used to hide long latencies of the core pipeline, interconnect
and different memory hierarchy levels. On such heavily multi-
threaded execution platforms, the overall system performance
is significantly affected by the efficiency of both on-chip and
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off-chip memory resources. As a rule, the factors impacting the
on-chip memory efficiency have quite different characteristics
compared to the off-chip case. For example, on-chip memories
tend to be more sensitive to dynamically changing latencies,
while bandwidth limitations are more severe for off-chip mem-
ories. In the particular case of GPUs, the on-chip first level
memories, including both the software managed shared mem-
ory and the hardware cache, are heavily banked, in order to
provide high bandwidth for the parallel SIMD lanes. Even
with adequate bandwidth provided by the parallel memory
banks, however, applications can still suffer drastic pipeline
stalls, resulting significant performance loss. This is due to
unbalanced accesses to the on-chip memory banks. This in-
creases the overhead in using on-chip shared memories, since
the programmer has to take care of the bank conflicts. Fur-
thermore, often the GPGPU shared memory utilization range
is constrained due to such overhead.

In this paper, we observed that the throughput of the GPU
processor core is often hampered neither by the on-chip mem-
ory bandwidth, nor by the on-chip memory latency (as long
as it stays constant), but rather by the varied latencies due to
memory bank conflicts, which end up with writeback conflicts
and pipeline stalls in the in-order pipeline, thus degrading sys-
tem throughput. To address this problem, we will investigate
novel elastic pipeline design that minimizes the negative im-
pact of on-chip memory bank conflicts on system throughput.

This paper makes the following specific contributions:

• We analyzed the GPU on-chip shared memory bank con-
flict problem, and identified how the bank conflicts are
translated into pipeline performance degradation;

• We investigate and propose a novel elastic pipeline design
that minimizes the negative impact of on-chip shared
memory conflicts on overall system throughput, by cut-
ting the link between bank conflict and pipeline stall;

• We co-designed bank-conflict aware warp scheduling to
assist our elastic pipeline hardware;

• We carefully simulated our proposal and have shown
pipeline stalls reduction of up to 64.0% leading to overall
system performance improvement of up to 20.7%.

The remainder of the paper is organized as follows. In Sec-
tion 2, we provide the background and motivation for this
work. In Section 3, we discuss our proposed elastic pipeline
design. The co-designed bank-conflict aware warp scheduling
technique is elaborated in Section 4. Simulated performance of
our proposed elastic pipeline in GPGPU applications is eval-
uated in Section 5, followed by some general discussions of
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Figure 1: (a)CUDA threads hierarchy; (b)thread execution in GPU core pipeline; (c)GPU chip organization

our simulated GPU core architecture along with the elastic
pipeline in Section 6. The major differences between our pro-
posal and related art are described in Section 7. Finally, Sec-
tion 8 concludes the paper.

2. BACKGROUND AND MOTIVATION
In this section, we will first introduce some GPGPU related

background and their shared memory accesses. Then we pro-
vide a motivation example.

2.1 Shared Memory Access on GPGPU
GPU utilization has spanned far beyond graphics render-

ing, covering a wide spectrum of general purpose computing
known as GPGPU[2]. The programming models of GPGPU
(such as OpenCL[4] and CUDA[19]) are generally referred to
as explicitly-parallel, bulk-synchronous SPMD (Single Program
Multiple Data). In such programming models, the program-
mer extracts the data-parallel section of the sequential ap-
plication code, identifies the basic working unit (typically an
element in the problem domain), and explicitly expresses the
same sequence of operations on each working unit in a kernel.
Multiple kernel instances (called threads in CUDA) are run-
ning independently on GPU cores. The parallel threads are
organized into a two-level hierarchy, in which a kernel (grid
in CUDA) consists of parallel CTAs (Cooperating Thread Ar-
ray, or block in CUDA), with each CTA composed by paral-
lel threads, as shown in Figure 1(a). Explicit, localized syn-
chronizations and on-chip data sharing mechanisms (such as
CUDA shared memory) are supported inside each CTA.

During execution, a batch of threads from the same CTA
are grouped into a warp, which is the smallest unit for the
pipeline front-end processing (i.e., warp scheduling, fetching
and decoding stages in Figure 1(b)) in GPU cores, as illus-
trated in Figure 1. For high efficiency, warps are executed
on the fine-grain multithreaded GPU core in a SIMD fashion.
Figure 1 shows a warp configuration of 5 threads per warp
and a SIMD data path consisting of 5 lanes. The warps are

scheduled and issued to the pipeline in an interleaved manner
which is also known as barrel processing [22].

GPUs rely mainly on massive hardware multithreading to
hide external DRAM latencies. In addition, on-chip mem-
ory hierarchies are also deployed in GPUs in order to provide
high bandwidth and low latency. Such on-chip memories in-
clude, software managed caches (shared memory), or hardware
caches, or a combination of both[13]. To provide adequate
bandwidth for the GPU parallel SIMD lanes, the shared mem-
ory is heavily banked. However, when accesses to the shared
memory banks are unbalanced, shared memory bank conflicts
occur. For example, with the memory access pattern shown
on top of Figure 1(b), data needed by both lanes 0 and 4 re-
side in the same shared memory bank 0. In this case hot bank
is formed at bank 0, and the two conflicting accesses have to
be serialized, assuming a single-port shared memory design1.
As a result, the GPU core throughput may be substantially
degraded, as to be exemplified by the following example.

2.2 Motivation Example
A snapshot of the AES encryption kernel source is shown in

Figure 2. The code shown there deals with the second encryp-
tion stage. First, the stage input data indexes are loaded from
shared memory region stageBlock2 (phase I). Then the stage
input data are loaded from shared memory regions tBox*Block
(phase II), with the indexes from phase I. Afterwards the data
is processed (phase III), and finally stored to the shared mem-
ory region stageBlock1 (phase IV). The other stages of the
encryption process work similarly. In phase II an irregular ac-
cess pattern called indirection or gather is required, causing
shared memory bank conflicts during AES execution. As a
result, the kernel suffers from a large number of pipeline stalls
and non-trivial performance loss. With our proposed elas-
tic pipeline design (Section 3) together with the bank-conflict
aware warp scheduling technique (Section 4), the number of

1Even with dual-port shared memory banks, such serialization
can not be completely avoided when the bank conflict degree
is higher than two.



__global__ void aesEncrypt128( unsigned * result, unsigned * inData,
int inputSize) {
__shared__ UByte4 tBox0/1/2/3Block[256];
__shared__ UByte4 stageBlock1/2[BSIZE];
unsigned tx = threadIdx.x;
...
unsigned op1 = stageBlock2[posIdx_E[mod4tx*4]   + idx2].ubval[0];
unsigned op2 = stageBlock2[posIdx_E[mod4tx*4+1] + idx2].ubval[1];
unsigned op3 = stageBlock2[posIdx_E[mod4tx*4+2] + idx2].ubval[2];
unsigned op4 = stageBlock2[posIdx_E[mod4tx*4+3] + idx2].ubval[3];
op1 = tBox0Block[op1].uival;
op2 = tBox1Block[op2].uival;
op3 = tBox2Block[op3].uival;
op4 = tBox3Block[op4].uival;
...
stageBlock1[tx].uival = op1^op2^op3^op4^keyElem;
...
}

(I)
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Figure 2: AES source code
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Figure 3: Effect of elastic pipeline in: (a)reducing
pipeline stalls and (b)improving performance

pipeline stalls is reduced by 48.2%, which is translated to the
overall performance improvement by 10.5%, as Figure 3 shows.

3. ELASTIC PIPELINE
In this section, we will first analyze the mechanism through

which shared memory bank conflicts degrade GPU pipeline
performance. Then our elastic pipeline design and its imple-
mentation are presented, with emphasis on the conflict toler-
ance, hardware overhead and pipeline timing impact.

3.1 How Are Bank Conflicts Translated into
Pipeline Performance Degradation

The baseline in-order, single-issue GPU core pipeline config-
uration is illustrated on top of Figure 4(a). The warp schedul-
ing stage is not shown, and only one of the parallel SIMD
lanes of the execution/memory stages is shown in Figure 4(a)
for simple illustration2. Meanwhile, although only sub-stages
of the memory stage (MEM0/1 ) are explicitly shown in the
figure, other stages are also pipelined for increased execution
frequency3. ti denotes execution time in cycle i, and Wi de-
notes warp instruction fetched in cycle i.

For easy discussion, we have the definition of bank conflict
degree of SIMD shared memory access in the following:
Bank conflict degree: the maximal number of simultane-
ous accesses to the same bank during the same SIMD shared
memory access from the parallel lanes.

Following this definition, the conflict degree of a SIMD shared

2Please refer to Figure 1(b) for the pipeline details.
3We adopt a 24-stage pipeline (Section 5). Similar pipeline
configurations are widely used in contemporary GPU cores[18,
25] and research GPU microarchitectural models[5].

memory access ranges from 1 to simd width. For example,
the SIMD shared memory access in Figure 1(b) has a con-

flict degree of 2. In general, it takes
⌈

conflict degree
#shared memory ports

⌉
cycles to read/write all data for a SIMD shared memory ac-
cess.

As Figure 4(a) shows, Wi is a shared memory access with a
conflict degree of 2, and it suffers from shared memory bank
conflict in cycle i+3, at MEM0 stage. The bank conflict holds
Wi at MEM0 for an additional cycle (assuming single port
shared memory), until it gets resolved at the end of cycle i+4.
In the baseline pipeline configuration with unified memory
stages, the bank conflict in cycle i+3 has two consequences:
(1) it blocks the upstream pipeline stages in the same cycle,
thus inuring a pipeline stall which is finally observed by the
pipeline front-end in cycle i+4; (2) it introduces a bubble into
the MEM1 stage in cycle i+4, which finally turns into a write-
back bubble in cycle i+5.

Notice the fact that it is unnecessary for execution of Wi+1

to be blocked by Wi, if Wi+1 is not a shared memory access.
Thus a possible pipeline configuration which is able to elimi-
nate the above mentioned consequence (1) of the baseline can
be considered, as Figure 4(b) shows. With the help of the
extra NONMEM path, Wi+1 is now no longer blocked by Wi,
instead it steps into the NONMEM path while Wi is wait-
ing at stage MEM0 for the shared memory access conflict to
be resolved, as Figure 4(b) shows. Unfortunately, this cannot
avoid the writeback bubble in cycle i+5. Moreover, the bank
conflict of Wi in cycle i+3 causes writeback conflict4 at the
beginning of cycle i+6, which finally incurs a pipeline stall at
fetch stage in the same cycle, as shown in Figure 4(b).

Our observation: Through the above analysis, we can see
that the throughput of the GPU core is constrained neither
by the shared memory bandwidth, nor by the shared mem-
ory latency (as long as it stays constant), but rather by the
varied execution latencies due to memory bank conflicts. The
variation in execution latency incurs writeback bubbles and
writeback conflicts, which further cause pipeline stalls in the
in-order pipeline, thus hurting system throughput.

3.2 Elastic Pipeline Design
To address the problem discussed above, we propose an elas-

tic pipeline design which is able to eliminate the negative im-
pact of shared memory bank conflicts on system throughput,
as shown in Figure 5. Compared with the baseline pipeline
with split memory stages in Figure 4(b), the major change is
the added buses to forward matured instructions from EXE
and NONMEM0/1 stages to the writeback stage. This ef-
fectively turns the original 2-stage NONMEM pipeline into a
2-entry FIFO queue (we will refer to it as “NONMEM queue”
hereafter). Note, the output from the EXE stage can be for-
warded directly to writeback only if it is not a memory in-
struction, whereas forwarding from NONMEM0 to writeback
is always allowed. Such non-memory instructions can bypass
some or all memory stages, simply because they do not need
any processing by the memory pipeline. As Figure 5 shows,
by forwarding matured instructions in the NONMEM queue
to the writeback stage, the writeback conflict is removed, and
thus the link between bank conflict and writeback conflict is
cut off and the pipeline stall due to bank conflict is eliminated.

4Note the writeback throughput for a single issue pipeline is
1 instruction/cycle at maximum.
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3.2.1 Safe Scheduling Distance and Conflict Tolerance
For easy discussion, we first define warp types as follows:

Memory warp: a warp which is ready for pipeline scheduling
and is going to access any type of memory (e.g., shared/global/
constant) in its next instruction execution.
Shared memory warp: a ready warp which is going to ac-
cess on-chip shared memory in its next instruction execution.
Non-memory warp: a ready warp which is not going to
access any memory type during its next instruction execution.

In Figure 5 it is assumed that Wi+1 is a non-memory in-
struction. Otherwise, Wi+1 will be blocked at EXE stage in
cycle i+4, since Wi is pending at MEM0 in the same cycle, due
to its shared memory bank conflicts. Such a problem exists
even if Wi+1 is not a shared memory access5. To avoid this
problem, we have the constraint of safe memory warp schedule
distance, defined as:
Safe memory warp schedule distance: the minimal num-
ber of cycles between the scheduling of a shared memory warp
and a following memory warp, in order to avoid pipeline stall
due to shared memory bank conflicts.

It is easy to verify the relationship between safe mem dist

5Note, in such case, even if there exists a third path (with
fixed number of stages) for that memory access type, write-
back bubbles cannot be avoided, due to the same phenomenon
illustrated in Figure 4(b).

(short for“safe memory warp schedule distance”) and the shared
memory bank conflict degree, in the following equation:

safe mem dist =

⌈
conflict degree

#shared memory ports

⌉
(1)

The safe memory warp schedule distance constraint requires
that memory warps should not be scheduled for execution in
next safe mem dist−1 cycles after a bank-conflicting shared
memory warp is scheduled. For example, safe mem dist for
Wi in Figure 5 is

⌈
2
1

⌉
= 2, which means that in the next cycle,

only non-memory warp can be allowed for scheduling.
It is important to point out that, the elastic pipeline handles

bank conflicts of any degree without introducing pipeline stalls,
as far as the safe mem dist constraint is met. We will discuss
this in more detail in Section 4.

3.2.2 Out-of-order Instruction Commitment
In Figure 5, the elastic pipeline shows the behavior of out-

of-order instruction commitment. For GPU cores with strict
barrel processing (Section 6) (assumed in our evaluation), it
is not a problem since the in-flight instructions are from dif-
ferent warps. In the case of relaxed barrel processing in which
consecutively issued instructions may come from a same warp
(but without data dependence), out-of-order instruction com-
mitment within the same execution context may occur. This
is penalized by the pipeline being unable to support precise
exception. Possible solutions are discussed in Section 6.

3.2.3 Extension for Large Warp Size
Above we have assumed #warp size=simd width. In real

GPU implementations, however, the number of threads in a
warp can be a multiple of GPU core pipeline SIMD width6.
In this case, a warp is divided into smaller subwarps with the
size of each equaling the number of SIMD lanes. All subwarps
from the same warp are executed by the SIMD pipeline con-
secutively. Therefore, warp size/simd width free issue slots are
needed for a warp to be completely issued into the pipeline.
Moreover, each warp will occupy the SIMD pipeline for at
least warp size/simd width cycles during execution. Consider
for example warp size/simd width = 2. In this case both Wi

and Wi+1 in Figure 5 will have to execute the same shared

6For example, there are 32 threads per warp in CUDA and 8
SIMD lanes in NVIDIA GPGPUs before Fermi[13].



memory access instruction for the first and second half of the
same warp, respectively. Since Wi is blocked at stage MEM0
in cycle i+4, Wi+1 is unable to step into MEM0 from the EXE
stage at the beginning of the same cycle. This results Wi+1

being blocked at EXE and all upstream pipeline stages being
blocked in cycle i+4, thus incurring a pipeline stall.

WB
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MEM0 MEM1

data returned from interconnect

0
1 A

B

PREMEM queue

NONMEM queue

PREMEM

NONMEM0 NONMEM1

Figure 6: Elastic pipeline logic diagram

To solve this problem, an extension has to be adopted to the
elastic pipeline shown at the top of Figure 5. In the extension,
we introduce another source of elasticity to the MEM path, by
placing before theMEM0 stage a (warp size/simd width−1)-
entry FIFO queue (“PREMEM queue” in Figure 6). With
the help of the PREMEM queue, the elastic pipeline can han-
dle all consecutive, back-to-back issued bank-conflicting SIMD
shared memory accesses from the same warp, regardless of the
conflict degree of each.

The logic diagram of the final elastic pipeline with the exten-
sion for large warp size is shown in Figure 6, for the case with
2 memory stages and 1-entry PREMEM queue. The num-
bers inside the multiplexers denote the MUX inputs priority
(smaller numbers have higher priorities).

With the elastic pipeline configuration of Figure 6, Wi+1

in Figure 5 will be buffered in the PREMEM queue in cycle
i+4, while Wi+2 will directly step into writeback stage at the
beginning of cycle i+5.

To summarize, the elastic pipeline adds two FIFO queues
to the baseline pipeline: the NONMEM queue with a depth
of M and the PREMEM queue with a depth of N, where

M = #MEM stages (2)

N =

⌈
warp size

simd width

⌉
− 1 (3)

3.2.4 Hardware Overhead and Impact on Pipeline Tim-
ing

Table 1: Elastic pipeline HW overhead per GPU core
Type Logic complexity Quantity

Pipeline latches simd width M+N

(M+3)-to-1 MUX M+2 1

(N+1)-to-1 MUX N 1

The additional hardware overhead as compared with the
baseline pipeline is summarized in Table 1. The metric for
the logic complexity of pipeline latches is that of a pipeline
latch in a single SIMD lane. As we can see in Table 1, the
area consumption of the additional pipeline latches is in the
order of (M + N) · simd width. Considering small Ms and
Ns in realistic GPU core pipeline designs (e.g. M=4, N=3 in
our evaluation), this additional cost is well acceptable. The
hardware overhead of the two multiplexers is negligible.

The control paths of the two multiplexers are not shown
in Figure 6, since they are simply valid signals from relevant

pipeline latches at the beginning of each stage, and are there-
fore not in the critical path. Compared with the baseline
pipeline, all other pipeline stages’ timing is untouched, with
only one exception of the EXE stage, as illustrated in Fig-
ure 67. There are two separate paths in which the EXE stage
is prolonged: path A and B, as marked by the two dash lines in
Figure 6. A is the (N+1)-to-1 multiplexer and B is the (M+3)-
to-1 multiplexer listed in Table 1. With standard critical path
optimizations such as the priority on late arriving signal tech-
nique[6], both A and B only incur an additional latency of
2-to-1 MUX for the EXE stage. Therefore, the increased la-
tency to stage EXE is that of a 2-to-1 MUX in total, which
will not noticeably affect the target frequency of the pipeline
in most cases (assumed in our experimental evaluation).

4. BANK-CONFLICT AWARE WARP
SCHEDULING

As discussed in Section 3.2.1, in order to completely avoid
the pipeline stall due to shared memory bank conflicts, the
constraint of safe memory warp schedule distance must be
satisfied. Otherwise, two consequences will happen: 1) the
PREMEM queue will get saturated, which results in pipeline
stalls; and 2) the NONMEM will get emptied, which results
in writeback starvation. In the end the pipeline throughput is
degraded. In order to cope with this problem, warp scheduling
logic should prevent any memory warp from being scheduled
in the time frame of warp safe mem dist (Equation (5)) cycles
after a bank-conflicting shared memory warp is scheduled for
execution. This is called “bank-conflict aware warp schedul-
ing”, which will be discussed in the following.

4.1 Obtaining Bank Conflict Information
In order to apply bank-conflict aware warp scheduling, we

have to first find out which instructions will cause shared
memory bank conflicts, and their corresponding conflict de-
gree. This information may be obtained in two ways: 1) static
program analysis; 2) dynamic detection. We chose dynamic
bank conflict detection instead of compile-time analysis in our
implementation for two reasons. First, some shared memory
access patterns (and therefore the bank conflict patterns) are
only known at runtime. This is the case for regular access
patterns (e.g. 1D strided) whose pattern parameters (e.g., the
stride) are unknown at compile time, or irregular accesses the
bank conflict patterns of which can not be identified statically
(such as the AES example). Second, there is no additional
hardware cost incurred directly by the dynamic detection it-
self, as the shared memory bank conflict detection logic is also
needed in the baseline pipeline8.

Note, for warp sizes larger than the number of SIMD lanes,
the bank conflict degree of the entire warp is the accumula-
tion of all subwarp SIMD accesses, as given by the following
equation:

warp bkconf degree =

� warp size
simd width �−1∑

i=0

conflict degreei (4)

7Note, although not shown in Figure 4(a), there is a MUX
at the end of MEM1 stage in the baseline pipeline, since an
arbitration to select writeback data from either inside the GPU
core pipeline or from the interconnect is needed.
8The shared memory has to identify the conflict degree of each
SIMD shared memory access (i.e., conflict degreei in Equa-
tion (4)) in order to resolve it.
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where conflict degreei is the shared memory bank conflict de-
gree of subwarp i, which is measured by the hardware dynami-
cally. warp bkconf degree is obtained by an accumulator and
a valid result is generated at fastest every

⌈
warp size
simd width

⌉
cycles

(if there is no pipeline stall during that time).
Accordingly, the safe memory warp schedule distance in

Equation (1) is extended in the following:

warp safe mem dist =

⎡
⎢⎢⎢
∑� warp size

simd width �−1

i=0 conflict degreei
#shared memory ports

⎤
⎥⎥⎥

(5)

And the safe memory warp schedule distance constraint now
requires that the scheduling interval between bank-conflicting
shared memory warp and memory warp should be no less than
warp safe mem dist cycles.

It is very important to note that, the bank conflict degree
of the latest scheduled shared memory warp can not be ob-
tained in time by simply checking the warp bkconf degree
accumulator on the fly. This is due to the fact that it may
have not reached memory stages or finished shared memory
accesses yet when its bank conflict information is needed by
the warp scheduling logic. Therefore, we need to predict
warp bkconf degree for a shared memory warp before the real
value becomes valid, by only its shared memory instruction
PC. In our design, we implement a simple prediction scheme
which predicts the bank conflict degree of a shared memory
instruction to be the one measured during the latest execution
of the same instruction.

4.2 Bank Conflict History Cache
In order to maintain the historic conflict degree informa-

tion, we implement a small private bank conflict history cache
distributed in each GPU core, as shown in Figure 7. At each
time a new kernel is launched, both the bank conflict his-
tory cache and the last warp bkconf degree counter are cleared.
The cache is updated whenever a warp execution of shared
memory instruction gets resolved and the warp bkconf degree

accumulator generates a valid value for it9. Whenever a shared
memory warp is scheduled, the last warp bkconf degree counter
is set to its latest warp bank conflict degree in history, by
checking it in the conflict history cache. If a cache miss oc-
curs, then the last warp bkconf degree counter is set to a de-
fault value (0 in our design). The memory warp mask is gen-
erated by checking if the safe memory warp schedule distance
constraint is violated. Note, in our design we assume the warp
scheduling stage knows whether or not a ready warp is a shared
memory access (the“warp to sched is shmem access” signal in
Figure 7), or a memory access (the “warp is memory access”
signal). This can be done easily with negligible overhead. For
example, we can look up the committing warp’s next instruc-
tion type in a per-core type bit-vector (initialized at kernel
launch time) at pipeline writeback stage (only 2 bits per PC
per kernel is enough for this purpose), and setup the 2-bit type
register associated with the committing warp (only 2 bits per
a hardware warp context).

When we use the bank conflict history cache to predict the
conflict degree of scheduled shared memory access, the result
is incorrect in two situations: (1) when a cache miss hap-
pens (e.g., compulsory misses due to the cold cache after a
new kernel is launched) and unfortunately the default out-
put value generated is different from the actual conflict de-
gree; (2) when the conflict degree of the same shared memory
instruction varies among consecutive execution. Case (1) is
unavoidable for any kernel. Fortunately, its impact on over-
all performance is usually negligible. Case (2) occurs only in
kernels with irregular shared memory access patterns and dy-
namically changing conflict degree (e.g., AES). It is important
to note that, incorrect prediction of the shared memory bank
conflict degree in the elastic pipeline will not always result in
pipeline stalls. Indeed, the pipeline will be stalled only when
the predicted value is smaller than the actual conflict degree
and there is at least one memory warp scheduled which vio-
lates the safe memory warp schedule distance constraint. We
will see the impact of incorrect bank conflict degree prediction
on pipeline stalls in Section 5.1.

4.3 The proposed Warp Scheduling
With the bank access conflict history for each shared mem-

ory instruction maintained in the conflict history cache, bank-
conflict aware warp scheduling can apply the same scheduling
scheme as the baseline pipeline to schedule the ready warps for
execution. The only difference is that if a previously scheduled
warp will be/is still being blocked at the memory stages due
to shared memory bank conflicts, then all memory warps are
excluded from the ready warp pool, as Figure 7 shows.

Once it is guaranteed by the warp scheduling logic that there
is no memory warp violating the safe memory warp sched-
ule distance constraint, then shared memory bank conflicts
incurred by a single warp can be effectively handled by the
elastic pipeline design, as discussed in Section 3.2. Other-
wise, the elastic pipeline will get saturated and stalls due to
bank conflicts will occur. We will see the impact of the bank-
aware warp scheduling on overall performance in Section 5.2.
It should be noted that, warp scheduling just by itself is un-
able to reduce pipeline stalls caused by shared memory bank
conflicts, without the elastic pipeline infrastructure.

9Note, in our design the conflict degree value from the ac-
cumulator has been decreased by

⌈
warp size
simd width

⌉
before written

to the conflict history cache, in order to align the value for
instruction with no bank conflict to zero.



4.4 Hardware Overhead

Table 2: Hardware overhead of bank conflict predic-
tion and warp mask generation (per GPU core)

Type Logic complexity Quantity

Bank conflict
history cache

#cache lines·(log2(warp size)+
14-log2(#cache sets)) bits,
dual port (1R+1W)

1

AND/NAND
gate

– 2·#warp con-
texts per core

Accumulator log2(warp size) bits 1

2-to-1 MUX – 1

Counter log2(warp size) bits 1

Comparator log2(warp size) bits 1

As discussed above, our bank-conflict aware warp scheduling
does not incur any additional overhead in scheduling logic – it
simply utilizes the same scheduling as the baseline. However,
the warp ready signal generation logic needs to be modified
to make it be aware of in-flight bank-conflicting shared mem-
ory accesses and enforce the constraint on following warps to
be scheduled, as shown in Figure 7. Table 2 summarizes the
hardware overhead incurred by the bank conflict degree pre-
diction and bank-conflict aware warp ready signal generation.
The main contributor in Table 2 is the bank conflict degree
history cache. Assuming 14 bits PC (which is able to handle
kernels with up to 16K instructions – large enough from our
experience), this turns to 14-log2(#cache sets) bits cache tag
size. Remember, each conflict degreei in Equation (4) takes
log2(simd width) bits (Section 3.1), therefore the cache con-
tent warp bkconf degree occupies log2(warp size) bits. The
total size of the bank conflict history cache is summarized in
Table 2. In our design, we implemented a 2-way set associa-
tive conflict history cache with 256 sets, which is capable of
removing all capacity and conflict misses for all kernels in our
evaluation. In this case, the conflict history cache consumes
only 704 bytes (with warp size=32), which is quite trivial.

Regarding the timing impact, the increase in the warp ready
signal generation delay observed by the default warp scheduler
is only that of one AND gate, as shown in Figure 7.

5. EXPERIMENTAL EVALUATION
Experimental Setup: We use a modified version of GPGPU-
Sim[5], which is a cycle level full system simulator for GPUs
implementing ptx ISA[20]. We model GPU cores with a 24-
stage pipeline similar to contemporary implementations[18,
25]. The detailed configuration of the GPU processor is shown
in Table 3. The GPU processor with the baseline pipeline
(“baseline GPU”) and the case with the proposed elastic pipeline
(“enhanced GPU”) are evaluated in this paper. They differ
only in the core pipeline configurations and warp scheduling
schemes, as Table 3 shows. The number of memory pipeline
stages and the warp size/simd width ratio are 4 (see Table 3).
Therefore the queue depth is set to 4 for the NONMEM queue,
and 3 for the PREMEM queue in the elastic pipeline, accord-
ing to Equations (2) and (3).

We select 8 shared memory intensive benchmarks from CUDA
SDK[19] and other public sources[17]. Table 4 lists the main
characteristics of the selected benchmarks. The instruction
count in columns total instructions and shared memory in-
structions shows two numbers, with the first being the num-
ber of dynamic instructions executed by all 128 scalar pipelines
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Figure 8: Pipeline stall reduction. In each group:
left bar: baseline GPU; right bar: elastic pipeline en-
hanced GPU

(i.e., SIMD lanes) of 16 GPU cores, and the second number be-
ing the ptx instruction count in the compiled program. Shared
memory intensity is the ratio of dynamic shared memory in-
structions to total executed instructions. The average bank
conflict degree field shows the average number of cycles spent
on a SIMD shared memory access for each benchmark appli-
cation. This is collected by running the benchmarks on the
baseline GPU. Theoretic speedup calculates, assuming IPC=1
(normalized to a single scalar pipeline/SIMD lane) for all in-
structions except shared memory accesses (i.e., all pipeline in-
efficiency comes from pipeline stalls caused by shared memory
bank conflicts), the speedup that can be gained by eliminating
all pipeline stalls. CTAs per core denotes the maximal number
of concurrent CTAs that can be allocated on each GPU core.
A Y in the Irregular shared memory patterns column indicates
kernels with shared memory instructions with irregular access
patterns and dynamically varied bank conflict degree.

Note, the kernel names followed by a � denote the CUDA
code which has originally been hand-optimized to avoid shared
memory bank conflicts, by changing the layout of the data
structures in shared memory (e.g., by padding one additional
column to a 2D array). We adopt the code but undo such op-
timizations in our evaluation of elastic pipeline performance
in Sections 5.1 and 5.2. There are two reasons for this. First,
we found that in practice if the shared memory bank con-
flict is a problem, the programmer will either remove it (by
the above mentioned hand-optimizations), or simply avoid us-
ing the shared memory. Due to this we were unable to find
many existing code with heavy shared memory bank conflicts.
That is why we manually roll back the shared memory hand-
optimizations for these kernels and use them in our initial
evaluation presented in this paper. Second, assuming the elas-
tic pipeline is adopted in the GPU core, we also want to in-
spect how it performs for these kernels, without specific shared
memory optimizations from the programmer.

5.1 Effect on Pipeline Stall Reduction
Figure 8 shows the proposed elastic pipeline and the bank-

conflict aware warp scheduling effect on reducing pipeline stalls.
The results are per kernel, with the left bar of each group show-
ing the number of pipeline stalls in the baseline GPU, and the
right bar showing the stalls in the enhanced GPU. The number
of stalls are normalized to the baseline GPU. Inside each bar,



Table 3: The GPU processor configurations
Number of Cores 16

Core Configuration

8-wide SIMD execution pipeline, 24 pipeline stages (with 4 memory stages)

32 threads/warp, 1024 threads/core, 8 CTAs/core, 16384 registers/core

execution model: strict barrel processing (Section 6)

warp scheduling policy: Round-robin (baseline GPU) vs bank-conflict aware warp scheduling (enhanced GPU)

pipeline configuration: baseline pipeline (baseline GPU) vs elastic pipeline (enhanced GPU)

On-chip Memories 16KB software managed cache (i.e., shared memory)/core, 8 banks, 1 access per core cycle per bank

DRAM

4 GDDR3 memory channels, 2 DRAM chips per channel, 2KB page per DRAM chip, 8 banks

8 Bytes/channel/transmission (51.2GB/s bandwidth in total), 800 MHz bus freq, 32 DRAM request buffer entries

memory controller policy: out-of-order (FR-FCFS)[21]

Interconnect Network crossbar, 32-Byte flit size

Table 4: Benchmark Characteristics
Benchmark
name

Source Grid
Dimen-
sions

CTA
Dimen-
sions

CTAs
per
core

Total in-
structions

Shared
memory in-
structions

Shared
mem-
ory
inten-
sity

Average
bank
conflict
degree

Theo-
retic
speedup

Irregular
shared
memory
pattern

AES encypt Other[17] (257,1,1) (256,1,1) 2 35132928/534 12697856/193 36.1% 1.54 1.19 Y

AES decypt Other[17] (257,1,1) (256,1,1) 2 35527680/540 12763648/194 35.9% 1.53 1.19 Y

Reduction CUDA SDK (16384,1,1) (256,1,1) 4 415170560/49 16744448/5 4.0% 3.07 1.09 Y

Transpose� CUDA SDK (16,16,1) (16,16,1) 4 3538944/54 131072/2 3.7% 4.50 1.13 N

DCT� CUDA SDK (16,32,1) (8,4,2) 7 7274496/222 1572864/48 21.6% 3.33 1.50 N

IDCT� CUDA SDK (16,32,1) (8,4,2) 7 7405568/226 1572864/48 21.2% 3.33 1.50 N

DCT short� CUDA SDK (16,16,1) (8,4,4) 7 10223616/337 1048576/40 10.3% 2.75 1.18 N

IDCT short� CUDA SDK (16,16,1) (8,4,4) 7 10190848/336 1048576/40 10.3% 2.75 1.18 N

the pipeline stalls are broken down into three categories (from
bottom to top): warp scheduling fails, shared memory bank
conflicts, and other reasons (i.e., writeback conflicts incurred
by data returned from interconnect).

As Figure 8 shows, the number of pipeline stalls are signif-
icantly reduced by the elastic pipeline. In all kernels except
AES encrypt/decrypt, the pipeline stalls caused by bank con-
flicts are almost completely removed in the enhanced GPU.
Remember, the bank conflict stalls in the elastic pipeline may
occur, only if the conflict degree prediction made by the bank
conflict history cache is incorrect (Section 4.2). The bank con-
flict history cache was unable to produce constantly precise
conflict degree prediction for the highly irregular shared mem-
ory access patterns in the AES kernels. This results in a large
number of bank conflict stalls.

On the other hand, the number of pipeline stalls due to warp
scheduling failures are increased for some kernels. This is ex-
pected, since the bank-conflict aware warp scheduling masks
off the ready warps which violate the constraint of safe memory
warp schedule distance. Contrary to our expectation, the num-
ber of warp scheduling fails is actually reduced for Transpose
and DCT/IDCT short kernels. Detailed investigation reveals
that this is related to the inter operation between our elastic
pipeline design and the rest of the GPU processor, such as
the on-chip synchronization and control flow re-convergence
mechanisms, and off-chip DRAM organizations. For exam-
ple, drastic DRAM channel conflicts are observed during the
Transpose kernel execution on the baseline GPU. Whereas in
the GPU enhanced by the elastic pipeline and the bank-conflict
aware warp scheduling, such channel conflicts are substantially
reduced and DRAM efficiency is improved.

The last type of pipeline stalls (other pipeline stalls in Fig-
ure 8) is caused by writeback conflicts incurred by data re-
turned from interconnect. The number is slightly increased in
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Figure 9: Performance improvement

the elastic pipeline as shown in Figure 8. This is because the
number of such conflicts is relatively small, and a large portion
of them are well hidden by the large amount of bank conflict
stalls at the upstream of the pipeline, in the baseline GPU.

5.2 Performance Improvements
Figure 9 compares the performance of the baseline GPU,

the enhanced GPU with pure elastic pipe design (with default
warp scheduling), the enhanced GPU with elastic pipeline aug-
mented by bank-conflict aware warp scheduling, and the the-
oretic speedup. We can see that the performance is improved
by the pure elastic pipeline only slightly (3.2% on average),
without the assistance of proper warp scheduling. While with
the co-designed bank-conflict aware warp scheduling, an ad-
ditional 10.1% improvement is gained, leading to the aver-
age performance improvement of the elastic pipeline design by
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Figure 10: Elastic pipeline vs hand-optimized code for
conflicting kernels

13.3%, as compared to the baseline. This confirms our analysis
in Section 4. For AES encrypt/decrypt, the achieved speedup
by the elastic pipeline is substantially smaller than the theo-
retical bound, mainly because a large portion of bank conflict
stalls still remain in the elastic pipeline, as shown in Figure 8.
DCT and IDCT see a huge gap between the actually achieved
performance gain by elastic pipeline and the theoretic bound.
This is due to the number of pipeline stalls caused by warp
scheduling fails is significantly increased, also shown in Fig-
ure 8. It is interesting to see that the speedup of our elastic
pipeline design exceeds the theoretic bound, for kernels Trans-
pose and DCT/IDCT short. This results from the fact that
the number of warp scheduling fails is reduced, thanks to the
positive interaction between the elastic pipeline and the rest
of the system in these cases, as discussed in Section 5.1.

In order to find out how our elastic pipeline performs in
relieving the overhead of reducing shared memory bank con-
flicts from software side, we compared the performance of un-
optimized code (i.e., CUDA SDK code with shared memory
bank conflict optimizations removed by us) running on the en-
hanced GPU versus the hand-optimized code (i.e. the original
CUDA SDK code) running on the baseline GPU, as shown in
Figure 10. As we can see from the figure, on average the per-
formance of un-optimized kernel running on elastic pipeline
cores is on par with the optimized kernel running on baseline
cores. However, we also found that for DCT/IDCT kernels,
the performance gap is quite large. In-depth analysis reveals
that this is due to the change of warp execution order by the
elastic pipeline interacts poorly with the global memory ac-
cess which results in degraded DRAM access efficiency. This
actually leaves the room for further optimizations. For exam-
ple, a simple variant of our bank-conflict aware warp schedul-
ing allows issuing of memory instructions violating the safe
memory warp schedule distance, if there is no ready warps
to execute non-memory instruction10. This variant essentially
trades more bank conflict stalls for less scheduling fails. Theo-
retically, the performance should not change since the number
of total pipeline stalls is kept the same. However, the per-
formance of IDCT with the variant is increased by 5.1% as

10In the original bank-conflict aware warp scheduling, the ready
warp pool is masked to empty in this case and pipeline will be
stalled due to scheduling fails.
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conflicting kernels

compared with the original bank-conflict aware warp schedul-
ing, simply due to the change of warp execution order11.

Nonetheless, the results in Figure 10 show the strong po-
tential of our elastic pipeline design to relieve the burden of
avoiding shared memory bank conflicts from the programmer.
Note also, static program analysis and optimizations are un-
able to avoid bank conflicts caused by irregular conflict pat-
terns, which can be effectively handled by our proposal as
demonstrated by the substantial performance improvement by
elastic pipeline for the AES and Reduction kernels in Figure 9.
Therefore, we can safely draw the conclusion that, our elastic
pipeline proposal is capable of relieving the shared memory
bank conflict issue for both regular and irregular access pat-
terns, and thus enables more GPGPU applications to exploit
the on-chip shared memory for improved performance and ef-
ficiency which is otherwise not possible without our proposal.

5.3 Performance of Non-Conflicting Kernels
Besides bank-conflicting kernels, we also would like to find

out to which extent the proposed elastic pipeline will affect the
execution of normal kernels without on-chip shared memory
bank conflicts. Note, in this case, the bank-conflict aware
warp scheduling behaves exactly the same as the default warp
scheduling, since the conflict degree predicted by the bank
conflict history cache is constantly zero (Figure 7).

The performance of the non-conflicting kernels (i.e. the orig-
inal CUDA SDK source code) execution on both the baseline
and elastic pipeline cores is shown in Figure 11. As we can see
in the figure, the difference in performance is negligible. The
performance difference between the baseline pipeline and the
elastic pipeline for kernels without any bank conflict is due to:
(1) the elastic pipeline can hide some of the writeback conflicts
caused by the competition between core pipeline instructions
and global memory loads (Figure 1); (2) the writeback MUX
in the elastic pipeline (Figure 6) changes the default warp com-
pletion order of baseline in some cases (e.g., when the MEM
and NONMEM paths compete for writeback, or, when there
is a pipeline bypass in the NONMEM path (Figure 5)), which
will further affect warp scheduling and execution order later.
Factor (1) is always beneficial while factor (2) can contribute
either positively or negatively to overall performance, depend-
ing on other subtle conditions (e.g. varied global memory ac-

11We did not adopt this variant as it degrades the performance
for other kernels.



cess efficiency, synchronization efficiency and control flow re-
convergence efficiency, under different warp execution orders).

6. DISCUSSIONS
In this paper we assume barrel processing [22], which lays

the basis for contemporary GPGPUs execution models [11]. In
barrel processing, an instruction from a different hardware ex-
ecution context is launched at each clock cycle in an interleaved
manner. Consequently, there is no interlock or bypass asso-
ciated with the barrel processing, thanks to the non-blocking
feature of the execution model. Despite its advantages, strict
interleaved multithreading has the drawback of requiring large
on-chip execution contexts to hide latency, which can be im-
proved in some ways. One such improvement is to allow mul-
tiple independent instructions to be issued into pipeline from
the same execution context. In GPU cores, that is to allow
multiple independent instructions from the same warp to be is-
sued back-to-back (instead of the strict barrel execution model
in which consecutively issued instructions are from different
warps). Such execution is also adopted by some contempo-
rary GPUs[24]. We call this extension “relaxed barrel execu-
tion model”. The intention of the relaxed barrel processing in
GPUs is to exploit ILP inside the thread, in order to reduce the
minimal number of independent hardware execution contexts
(active warps) required to hide pipeline latency.

In the case of relaxed barrel execution, there can be two
choices to make our proposed Elastic Pipeline still work. First,
we can still allow elasticity in the pipeline backend, which
means that the consecutively issued instructions from the same
warp commit out of the program order. This flexibility comes
at the cost of the pipeline being unable to support precise
exception handling. This can be resolved by adding a re-
order buffer (ROB), however at extra hardware cost. A second
choice is to forbid out-of-order writeback for instructions from
the same warp. In order to make elastic pipeline still effec-
tive in reducing pipeline stalls, it is the responsibility of the
scheduling logic not to execute any more instruction from the
same warp, if current shared memory instruction will cause
any bank conflict. This can be easily integrated into our bank-
conflict aware warp scheduling technique.

Although only the effect of elastic pipeline for on-chip ex-
plicitly managed shared memory is evaluated in this paper,
we believe the first level hardware cache can also benefit from
our proposal. The reason is that the heavily-banked hardware
cache also suffers from the dynamically varied cache access
delay due to unbalanced bank accesses, which is similar to
the shared memory case. We leave the evaluation of elastic
pipeline for L1 cache as future work.

For out-of-order processors, the pipeline elasticity realized
by our elastic pipeline proposal in this paper is actually en-
abled by the out-of-order engine. The OoO engine provides
a small instruction window, which handles the variation of
execution latency similar to a dataflow machine. The associ-
ated reorder buffer enforces the in-order instruction commit-
ment. For architectures based on in-order pipelines, our elastic
pipeline can be applied for a wide range of designs adopting
barrel processing and SIMD data path, besides GPUs. The
reason is that the on-chip bank conflict problem exists gener-
ally in such architectures. Furthermore, although we target
the varied execution latencies caused by shared memory bank
conflicts in this paper, elastic pipeline can also be applied to
cope with on-chip execution latency variation due to other
shared resource conflicts (e.g., accelerator (such as FPU) ac-

cess, interconnect buffers allocation, miss status holding reg-
isters (MSHRs) allocation, etc.). In such cases, pipeline elas-
ticity can be exploited to tolerate the resource conflicts and
maximize the SIMD datapath throughput.

7. RELATED WORK
Bank conflict is an important problem in vector proces-

sors and it has been studied intensively in the literature. To
cope with bank conflicts of vector access across stride fami-
lies, several techniques have been proposed, including the use
of buffers[7], dynamic memory schemes[8, 9, 14, 15], mem-
ory modules clustering[7], and intra-stream out-of-order ac-
cess[23], just to name a few. Some of the existing techniques
may be complementary to our elastic pipeline proposal, how-
ever subject to certain limitations. For example, one possible
solution based on existing techniques is to add buffers in front
of each shared memory bank to create a small access window.
Subsequently, out-of-order scheduling techniques may be ap-
plied to resolve the bank conflicts, within such window. Simi-
lar techniques have been successfully used in other scenarios,
such as the DRAM memory controller scheduling[21]. How-
ever, in the context of GPU fine-grain multithreaded SIMD
processing, this technique is not applicable, because distributed
our-of-order accesses in parallel shared memory banks create
diverged execution orders for threads inside a warp/subwarp,
effectively breaking the subwarp boundaries in the SIMD dat-
apath. This often leads to conflicts in the register file banks
at the writeback stage, which stall the pipeline in the end. In
this case, the problem of shared memory bank conflicts is not
resolved but just postponed to later pipeline stages.

Regarding bank conflicts in GPU shared memories, there
have been some programming practices to avoid or relieve the
conflict degree, by changing the data layout at source code
level (e.g., zero-padding for data structures in shared mem-
ory)[16, 18]. While such optimizations are widely used in
practice, they put nontrivial burden on programmers, since
detailed knowledge of the shared memory hardware is needed,
and sometimes major modifications to the source code are re-
quired. Besides, they also create portability issues when the
code is deployed on platforms with different shared memory
configurations. Moreover, static code optimizations are unable
to relieve bank conflicts for conflict patterns which cannot be
determined statically (such as the AES and Reduction ker-
nels). Recently we see some work in automating such manual
optimizations[10, 26]. Such high-level optimizations from the
software side are complementary to our elastic pipeline pro-
posal, albeit with the limitation mentioned above.

Current GPGPUs computing platforms suffer significantly
from the relatively low bandwidth between the host CPU and
the accelerator GPU attached to the CPU through system
bus[16]. The research and development efforts can be classi-
fied into two categories: 1) to improve the efficiency of the
CPU-GPU communication based on existing loosely-coupled
system bus configuration[12]; and 2) to integrate the CPU and
GPU into the same die[1, 3]. Our work addresses the problem
of GPU on-chip shared memory bank conflicts. While our elas-
tic pipeline design does not assume any particular CPU-GPU
coupling configuration, the work on CPU-GPU communica-
tion optimization is orthogonal to our proposal.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we analyzed the shared memory bank conflict



problem, and identified how the bank conflicts are translated
into pipeline performance degradation. Based on this observa-
tion, we proposed a novel elastic pipeline design that minimizes
the negative impact of on-chip memory conflicts on system
throughput, by decoupling bank conflicts from pipeline stalls.
Simulation results show that our elastic pipeline with the co-
designed bank-conflict aware warp scheduling significantly re-
duces the pipeline stalls by up to 64.0% and improves overall
performance by up to 20.7%, with trivial hardware overhead.

In future work, we will evaluate the effect of our proposed
elastic pipeline design on GPU cores with on-chip hardware
caches. Besides, we also want to improve the accuracy of bank
conflict degree prediction for irregular shared memory access
patterns, which is desirable for improved warp scheduling ef-
ficiency. Since the core elastic pipeline design also interacts
with the off-chip DRAM access, we would also like to inves-
tigate potential joint optimizations to improve the efficiency
of both on-chip core pipeline and off-chip DRAM bandwidth,
for memory intensive applications constrained by on-chip bank
conflicts and off-chip bandwidth.
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