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Abstract. This paper presents an overview regarding the synthesis of
regular expressions targeting FPGAs. It describes current solutions and
a number of open issues. Implementation of regular expressions can be
very challenging when performance is critical. Software implementations
may not be able to satisfy performance requirements and thus dedicated
hardware engines have to be used. In the later case, automatic synthesis
tools are of paramount importance to achieve fast prototyping of regular
expression engines. As a case study, experimental results are presented,
for FPGA implementations of the regular expressions included in the
rule-set of a Network Intrusion Detection System (NIDS), Bleeding Edge,
obtained using a state-of-the-art synthesis approach.

1 Introduction

Regular expressions can be a heavy computational burden in some applications.
For instance, the new generation of Network Intrusion Detection Systems (NIDS)
relies heavily in regular expressions, a case where they represent a considerable
amount of the total computing time [1]. The set of regular expressions used in
those applications grows quickly. Table 1 shows the number of regular expres-
sions in the available Snort [2] [3] and Bleeding Edge [4] rule-sets, all versions
from October 2006, with exception of the November 2006 version of Bleeding
Edge (last row). It is also shown the number of constraint repetitions (i.e., Ex-
actly, AtLeast, and Between quantifiers) presented in the regular expressions of
the rule-sets. As can be seen, the rule-sets include a large number of regular ex-
pressions and also many constraint repetitions. Those numbers are expected to
grow since new rules are being continuously added. As an example, the number
of regular expressions in the Snort 2.4 version has increased about 2.9× during
2006.

Pattern matching using regular expressions is distinct from static pattern
matching, where the input string is matched against other literal strings. In
regular expressions, meta-characters with special meaning are used, and a single
regular expression can represent several strings. Regular expressions augment the
challenges of static pattern matching (e.g., overlapped matching) with other ones,
such as space explosion (regular expressions can represent very large strings in a
very compact form). Hardware solutions for regular expression pattern matching



Table 1. Characteristics of Snort and Bleeding Edge rule-sets with respect to regular
expressions

Rules

Regular Expressions

total
Constraint Repetitions

Exactly AtLeast Between

Snort 2.4 (Oct. 2006) 1,504 286 319 7

Snort 2.3 (Oct. 2006) 1,500 286 319 7

Snort 2.2 (Oct. 2006) 1,493 258 319 7

Snort 2.1 (Oct. 2006) 1,380 248 318 6

Bleeding Edge (Oct. 2006) 310 58 6 6

Bleeding Edge (Nov. 2006) 317 63 6 6

are already being used in order to achieve high performance demands. Since in
most application domains using regular expressions (e.g., data mining, NIDS,
email monitoring and inspection, etc.) periodical updates are required, FPGAs
seem to be the preferable technology to maintain up-to-date and specialized
hardware engines, able to achieve high-performance.

However, synthesis tools to generate the hardware engines from the regular
expressions are required frameworks for fast generation of hardware engines.
An example of a hardware regular expression engine approach targeted by the
synthesis approach presented in [5] is shown in Fig. 1. The design consists of
a character decoder (e.g., receives one character each clock cycle and flags the
correspondent output) that outputs 256 flags (considering 8-bit ASCII codes)
connected to the regular expression engines (one for each regular expression in
the rule-set being synthesized). The synthesis tool can also take advantage of
the sharing of some hardware blocks (e.g., responsible for prefix shared by more
than one regular expression).
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Fig. 1. Block Diagram of the architecture used in [5]



Although several contributions have been made, there are still open issues re-
quiring further research. In addition to a brief explanation of current approaches,
a number of those open issues are discussed in this paper.

This paper is organized as follows. Section 2 describes briefly the most rel-
evant approaches to implement hardware regular expression engines. Section 3
discusses a number of open issues. Section 4 shows experimental results related
to the implementation of hardware engines for the Bleeding Edge regular ex-
pressions. Finally, section 5 draws some conclusions.

2 Implementing Hardware Regular Expression Engines

There are two main approaches to implement regular expressions in hardware:
using NFAs (Non-Deterministic Finite State Automats), or using DFAs (De-
terministic Finite State Automats). The NFAs have been the solution initially
used (see, e.g., the first known approaches to implement regular expressions in
hardware [6] [7] [8]), and their inherent parallelism make them appealing for
hardware implementations. DFAs are simpler and are the preferable model used
in software implementations. Note, however, that DFAs need usually more nodes
than NFAs and suffer from state explosion.

Both DFA and NFA based designs have problems when handling some of the
regular expressions existent in NIDS (e.g., Snort), mostly because of the large
amount of some kinds of quantifiers present (Exactly, AtLeast and Between –
referred as constraint repetitions). Quantifiers as the previous ones, specifying
repetitions of thousands of characters, are common (see Fig. 2 for the Bleeding
Edge rule-set), and that is even more prominent in larger rule-sets (e.g., Snort).
Most hardware solutions have to represent each of these characters individually
(i.e., with full unrolling of repetitions) in order to achieve high-performance
demands. From the number of repetitions presented in the new generation of
NIDS rule-sets, it can be concluded that full unrolling is not an acceptable
solution, because of the large hardware resources required.

NFA-Based Implementations

Regular expressions can be implemented using compound blocks. Sidhu and
Prasanna [9] introduced, as far as we know, the NFA based block approach to
implement regular expressions in hardware. They introduced the five fundamen-
tal blocks: Character, Kleene Star, Concatenation of Characters (Static String)
Union and Parenthesis (see Table 2). With these five blocks, any kind of regu-
lar expression defined by a regular language can be built. Note, however, that
designs based on those NFA building blocks implement constraint repetitions
by unrolling the repeated expression and thus may lead to inefficient hardware
engines.

In the paper by Franklin et al. [10], the same blocks introduced by Sidhu and
Prasanna are used. They use a rule-set of Snort and implement all the static-
pattern matching portion with an FPGA. Regular expressions were used as a
tool to represent static strings, and, to the best of our knowledge, none regular
expressions present in the Snort rule-set were implemented.
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Fig. 2. Distribution of constraint repetitions of type: (a) Exactly; (b) AtLeast. Results
are for the Bleeding Edge (Oct. 2006 version) presented in Table 1

Table 2. Block primitives employed in the hardware engines as implemented in [5]

(a) Character (abc. . . ) Static String ( | ) Union ( * ) Kleene Star

( ) Parenthesis ( ˆ ) Caret ( $ ) Dolar [ ] Character Class

( . ) Dot (?) Question Mark ( + ) Plus

{N} Exactly {N,} AtLeast {N,M} Between

Transition to DFAs

Another NIDS application, this time presenting a complete solution for a
“Content-Scanning Module”, is presented by Moscola et al. [11]. In terms of
regular expressions, little is explained in the paper since the focus is on the
complete system. To the best of our knowledge, the expressions implemented
use the same blocks implemented by Sidhu and Prasanna, plus character classes
(there is no mention to constraint repetitions). Their work goes a step further,
and transform the NFAs extracted from the regular expressions into DFAs, to
easily handle context switching (a DFA only has an active state at any time).
They also claim that with the DFA approach, the number of states can be
reduced most of the time, but the rule-sets used did not include Snort, and it is



not explained in the paper what kind of regular expressions are prone to state
reduction and state explosion.

The main focus of the work presented by Lin et al. [12] is area reduction,
through reusing of common blocks. When implementing regular expressions,
there are usually patterns that will be repeated (e.g., “tele” in patterns “tele-
phone” and “television”). They proposed a scheme in order to share the logic of
common prefixes, infixes and suffixes. As input, static patterns from an indus-
trial NIDS application and static patterns and PCRE [13] regular expressions
from Snort are used. While this is a step forward towards the implementation of
more complex regular expressions in hardware, none of those blocks addressed
two of the most used features in recent NIDS rule-sets: Character Classes and
Constraint Repetitions. In addition the new blocks proposed in this scheme are
not so compelling in terms of added performance achieved and/or space savings.

DFAs in an ASIC Implementation

Brodie et al. [14] presented high-throughput finite state machines (FSMs) for
regular expression matching implemented on memory tables rather than logic.
This design option was done because they focused on an ASIC implementation,
where the memory approach is necessary if regular expressions are to be up-
dated. Their design supports both static patterns and arbitrary regular expres-
sions, and can scan multiple bytes per cycle for achieving high throughput. Al-
though techniques for compression and redundancy minimization are employed,
the proposed design architecture is, in terms of resources, prohibitive for FPGA
implementations, and compared to the approach used in [5], it consumes much
more resources.

DFAs with Microcontrollers

In Baker et al. [15], and as with the previous paper, a memory based ap-
proach is used. The idea is to make possible to update the regular expressions
in the rule-set faster. Using memory, the regular expressions can be trivially
updated (e.g., software-like), since the design in the FPGA does not need to be
recompiled. The scope is an NIDS application. Also, static patterns and part
of Snort regular expressions are both supported. They address the problem of
constraint repetitions. To prevent state explosion due to the unrolling of cer-
tain regular expressions, the wildcards (*, +) and the constraint repetitions are
handled separately by the microcontrollers, while the simpler patterns are done
using DFAs implemented in glue logic. Their approach seems to have the same
drawback as the one previously referred: it may require too much overhead when
implemented in FPGAs. Basing the approach on microcontroller architectures,
they inherit the same problem as the software counterpart – NFA to DFA con-
version, because NFA execution is too complex when performed with sequential
machines. It is also stated that this approach does not fully support overlapped
matching.

Extended NFAs

Bispo et al. [5] use the same principle from [9] (NFAs in one-hot encoding and
accepting one character per cycle), and includes some of the optimizations pre-



viously used: the central decoding of [16], and the prefix sharing of [12]. To save
area, efficient blocks for constraint repetitions were introduced, sharing of other
regular expressions components (see the Static Strings and Character Classes
blocks in Fig. 1) was used, and the Xilinx SRL16 primitives were employed.

This approach also presented a synthesis methodology to automatically gen-
erate the hardware engines. It relies on transforming the regular expressions into
a set of block primitives. The primitives used to generate hardware engines are
summarized in the Table 2.

Implementations for the blocks referred in the last line of Table 2 have been
introduced in [5]. Those implementations deal with constraint repetitions of
single-cycle blocks (see the AtLeast implementation on Example 1) and imple-
mentations of repetitions for multi-cycle blocks without unrolling were identified
as an open issue.

Note also that this work has been one of the first to show a fully implemen-
tation of a Snort rule-set using FPGAs.

Example 1. Single Character AtLeast Implementation
Fig. 3 shows the single character AtLeast Block proposed in [5]. It flags a

match after detecting N or more equal characters. The output remains active
until the first mismatch. Doing this, there is no need to store previous states.
Even if new signals arrive, indicating subsequent matches, the output will not
be affected. The AtLeast block can be implemented using only a counter (up to
N ) that keeps track of the number of matches.

 

Fig. 3. AtLeast Block

Summary

As a brief summary, Table 3 shows the main characteristics of the previously
introduced approaches. Although it is difficult to compare the approaches in
terms of the performance achieved, in [5] a metric has been used. However, the
metric fully depends on the number of characters in the regular expressions
(this has been coined from comparisons with implementations of static strings)
and that measure may not be the best one due to the quantifiers present in
regular expressions. Unfortunately, a metric, such as the number of characters
being scanned per second, is not always possible to be used, because different
technologies are usually employed.

Concerning the hardware synthesis of the regular expressions, the tool pre-
sented in [5] uses a syntax tree-based approach to generate the structure of the



Table 3. State-of-the-art summary

Authors Main Contributions Target: RegExp
/ Static Patterns

Sidhu et al. [9] Introduction of NFA block approach. RegExp

Franklin et al. [10] Pattern Matching using regular expressions.
Sharing of common prefixes.

Static Patterns

Lin et al. [12] Sharing of prefixes, infixes and suffixes. RegExp

Brodie et al. [14] DFAs in memory tables for ASIC implemen-
tations.
Multiple input bytes per cycle with high
throughput.

RegExp

Baker et al. [15] Micro-controllers for constraint repetitions.
DFAs in FSMs with memory tables.

RegExp

Bispo et al. [5] Extended NFA block approach RegExpr

hardware engines. That structure uses building blocks to implement the regular
expression primitives. A structural-RTL VHDL code with components described
in behavioral-RTL VHDL code is generated and logic synthesis, mapping, place
and routing is then performed to create the bitstreams to program the target
FPGA.

3 Open Issues

This section presents a number of open issues requiring research efforts in order
to improve the hardware synthesis of regular expressions.

Overlapped Matching

One of the known problems is overlapped matching. Overlapped matches
require new matching evaluations in every position of the input string. Consid-
ering as input the string “abc”, and overlapped matches is used, matching tests
of “abc”, “bc” and “c” are performed. For a string with N characters, there
will be N strings tested. Hence, overlapped matching is usually very inefficient
in software, since all possible strings need to be tested. An approach such as the
one presented by [9], takes advantage of the natural hardware concurrency and
executes all overlapped matching cases concurrently without penalties. The rea-
son behind this is because at each clock cycle, every block in the design sees the
same character. In the end of the cycle, the character can be discarded, because
all blocks have tested the mentioned character in every possible string position.
This is the major reason why it has been difficult to propose a generic block for
constraint repetitions.

Multi-Character Constraint Repetitions

The constraint repetitions e1{N} (Exactly), e1{N,} (AtLeast) and e1{N,M}
(Between), where e1 represents a generic regular expression, can be implemented



in hardware or software, using NFAs or DFAs. However, their non-unrolled hard-
ware implementation with high throughput, overlapped matching and with all
the blocks of the engines processing each character in one clock cycle still is an
open issue.

For instance, the approach in [5] solves this problem when constraint repeti-
tions are applied to regular expressions (e1 ) of the form single Character, single
Dot or single Character Class. However, when e1 is a more complex regular ex-
pression, unrolling has been used also as a way to enforce overlapped matching.
As an example, a possible implementation of a constraint repetition evaluat-
ing e1{N} including overlapped matching and without requiring a single-cycle
implementation is discussed in Example 2.

Example 2. Constraint Repetitions with Overlapped Matching
Consider the regular expression (aba){2}. If the input string is “ababaaba”,

with overlapped matching it is equivalent to test as input the set “ababaaba”,
“babaaba”, “abaaba”. . . Thus, a match of the sub-string “abaaba” should be
flagged.

Note that when full unrolling the repetitions, all the states are explicitly avail-
able and overlapped matching is accomplished. However, applying full unrolling
to all the constraint repetitions may require large amounts of FPGA resources.
The approach presented in [5] implements, without full unrolling, repetitions of
only one character (it should be noted that most constraint repetitions found in
NIDS rule-sets are of this kind).

Fig. 4 presents an implementation with overlapped matching for the regular
expression (aba){N}. In this case, the 2-bit counter “001” counts sequences of
the pattern “001” (the string matching for “aba” only happens after two clock
cycles of un-matching) until it reaches N. For every ‘1’ in the input without
being in this sequence the counter is initialized to 1 (overlapped matching) and
it is cleared in the other cases. In this way, overlapped matching is accomplished.
However, this solution only deals with e1 expressions (e1{N}) matching always
the same number of characters per repetition (3 in this example), and a solution
for the other cases needs further work.

Hardware Block
to match
“aba”

log2N 
counter
“001”

a b c

Match

From ASCII decoder

o

 

Fig. 4. Block diagram of a possible implementation of the regular expression (aba){N}
with overlapped matching and without unrolling



There is a trade-off between full unrolling and the use of hardware blocks
of this kind. The special counters used only make sense for values of N above a
certain limit. This is a feature that should be part of a synthesis tool for regular
expressions.

Multi-Character Input

There are two ways to improve throughput: higher clock frequency, and
higher number of characters scanned per cycle. Higher clock frequency can only
be achieved through improved hardware designs or FPGA technology upgrades.
Increasing the number of characters scanned on each cycle is, whenever possible,
an interesting option to improve performance. However, if overlapped matching is
supported, that will lead to undesirable area overhead. This happens because all
possible offsets must be taken into account [16]. In the paper by [16] it is not clear
if it is advantageous to use a multi-character scheme in a one-hot encoding archi-
tecture, because when increasing the number of characters scanned per cycle, the
number of implemented patterns decreases (due to the needed overhead). This
is a problem, because current rule-sets (e.g., Snort) contain thousands of regular
expressions. When scanning is done one character per cycle, all characters are
position independent (since the blocks only see one character at a time: it does
not matter in what position it has arrived). When unrolling is used, all states
are explicitly implemented, and it is easier to accomplish overlapped matching
with multi-character input. Due to the large hardware resources needed, these
kind of approaches are now looking for techniques for space-saving [14].

Large Unions

In the NFA approach, one aspect of regular expressions that can have a
negative impact in the clock frequency is the Union (same as the logic operator
OR). In regular expressions unions of many elements can be used. Also, when
sharing common parts of regular expressions union operations are used. With
designs working strictly at one character per clock cycle, any union needs to
perform its operation during a single clock cycle. The more elements a union
has, the slower it may become (when using an LUT-based FPGA). If an union in
a regular expression is responsible to a decrease in clock frequency, the synthesis
tool should split the regular expression into two or more equivalent ones, using
each one a subset of the unions.

Area Reduction

Area reduction in regular expressions is essential. When unrolling all the
repetitions in a normal set of Snort regular expressions, up to 500,000 characters
are needed to represent in the FPGA (due to the high repetition bounds). The
proposed solution was to use special blocks that count the repetitions, instead
of representing all the possible states. In repetitions such as AtLeast, a large
amount of resources can be saved this way [5]. In repetitions like Exactly, where
states are important to the output, they are compactly represented by shift
registers implemented with Xilinx SRL16s primitives. Using prefix sharing also
saves substantially hardware resources (∼12% less area for a version of the Snort
2.4 rule-set).



There is still work to be done to see if the infix-sufix sharing used by [12] can
be supported by the approach presented in [5]. This is currently an open issue.

Hardware Virtualization

Another interesting issue would be the use of dynamic reconfiguration in or-
der to accomplish hardware virtualization. This can be of paramount importance
since the NIDS rule-sets are continuously increasing. Hardware virtualization can
be exploited by temporal partitioning of the hardware engines executed by time-
sharing the target device. At a first glance, temporal partitioning seems not easy
to be applied, especially maintaining the one character per cycle processing rate.

Comparing Approaches

A metric often used for area, is the used resources by number of implemented
characters. This makes sense for Static Pattern Matching, where all the elements
are characters, but not for Regular Expressions. The expressions can be very
different in terms of the structures they need (e.g., one expression may rely
heavily on character classes and other on constraint repetitions), and many
of the structures they need are independent of the number of characters that
appear in the regular expression. A fair metric for regular expressions would be
to compare results against fixed sets of regular expressions.

4 Experimental Results

This section illustrates the complexity of the regular expression hardware en-
gines to implement rule-sets of current versions of NIDS. Table 4 shows the
results obtained for the hardware engines responsible to implement the rule-set
of the Bleeding Edge IDS (with characteristics presented in Fig. 2) with a Xilinx
Virtex2 6000, speed grade -6, FPGA. The results were obtained after synthesis,
mapping, place and route (Xilinx ISE 8.1 has been used) of the generated VHDL
using the synthesis tool previously presented in [5]. The tool receives the reg-
ular expressions in the PCRE format and generates the VHDL-RTL (Register
Transfer Level) code for the hardware engines.

The VHDL specifications generated consist of about 279,519 and 1,373,095
lines of code (including the character decoder module) for the version using
counters and the version using full unrolling for the constraint repetitions, re-
spectively.

As can be seen, a large number of FPGA resources is needed to implement the
regular expressions of the Bleeding Edge rule-set used in this paper. The number
of slices almost doubled when constraint repetition are unrolled (third column
of Table 4) and surprisingly the maximum clock frequency achieved decreases.
This is partially justified by the increase in the number of FFs and routing
interconnections, when using unrolling instead of the SRL16 primitives. These
preliminary results indicate that using the approach presented in [5], which uses
building blocks for constraint repetition fully optimized with FPGA primitives,
the full unrolling option might not be an interesting design decision.

The maximum clock frequencies of the designs permit to achieve a throughput
of 170 and 102 Mega chars per second with the use of counters and with fully



Table 4. Results when implementing the regular expressions of the Bleeding Edge
rule-set (October 2006 version)

non-unrolled (counter-
based) Constraint
Repetitions

fully unrolled Con-
straint Repetitions

Lines of VHDL 279,519 1,373,095

Execution time (RegExpr synthesis +
Logic Synthesis + P&R)

∼ 1 hour and 24 min. ∼ 1 hour and 47 min.

#4-input LUTs 2,364 10,761

#FFs 12,533 29,290

#Slices 12,497 24,953

Maximum Frequency (MHz) 170.882 102.543

Maximum Throughput (Mchars/s) 170 102

unrolling, respectively. Note, however, that the experimental results obtained do
not take fully advantage of further optimizations that can be exploited such as
the use of timing constraints.

Although a large number of FPGA resources are needed, the Bleeding Edge
rule-set is relatively small and includes less Constraint Repetitions when com-
pared with some heavier Snort rule-sets (see Table 1 for a comparison).

5 Conclusions

This paper introduced current solutions and a number of open issues related
to the implementation of regular expressions on FPGAs. A special focus on
approaches that can be systematically used to generate dedicated hardware reg-
ular expression engines, able to achieve high performance demands, has been
addressed. One of the most challenging applications of hardware regular expres-
sion engines are the emergent Network Intrusion Detection Systems (NIDS). In
order to show the complexity of the hardware engines needed to implement the
regular expressions included in current NIDS, this paper includes experimental
results for the Bleeding Edge regular expressions rule-set.

Ongoing work focuses on research efforts to circumvent some of the major
limitations identified in this paper.
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