
Partially Reconfigurable Point-to-Point
Interconnects in Virtex-II Pro FPGAs

Jae Young Hur, Stephan Wong, and Stamatis Vassiliadis

Computer Engineering Lab., TU Delft, The Netherlands
http://ce.et.tudelft.nl

Abstract. Conventional rigid router-based networks on chip incur cer-
tain overheads due to huge occupied logic resources and topology embed-
ding, i.e., the mapping of a logical network topology to a physical one.
In this paper, we present an implementation of partially reconfigurable
point-to-point (ρ-P2P) interconnects in FPGA to overcome the men-
tioned overheads. In the presented implementation, arbitrary topologies
are realized by changing the ρ-P2P interconnects. In our experiments,
we considered parallel merge sort and Cannon’s matrix multiplication to
generate network traffic to evaluate our implementation. Furthermore,
we have implemented a 2D-mesh packet switched network to serve as a
reference to compare our results with. Our experiment shows that the
utilization of on-demand ρ-P2P interconnects performs 2× better and
occupies 70% less area compared to the reference mesh network. Fur-
thermore, the reconfiguration latency is significantly reduced using the
Xilinx module-based partial reconfiguration technique. Finally, our ex-
periments suggest that higher performance gains can be achieved as the
problem size increases.

1 Introduction

In modern on-chip multi-core systems, the communication latency of the net-
work interconnects is increasingly becoming a significant factor hampering per-
formance. Consequently, network-on-chips (NoCs) as a design paradigm has been
introduced to deal with such latencies and related issues. At the same time, NoCs
provide improved scalability and an increased modularity[1][2][3][4][5]. However,
these multi-core systems still incorporate rigid interconnection networks, i.e.,
mostly utilizing a 2D-mesh as the underlying physical network topology com-
bined with packet routers. More specifically, the interconnection network will be
fixed in the design stage leading to the modification of algorithms to suit the
underlying topology or the embedding of the logical network (intended by the
algorithm) onto the physical interconnection network. In both cases, reduced
performance is the result. The topology embedding techniques are well-studied
[6] and usually require the introduction of a router module to handle network
dilations and congestions. Furthermore, worm-hole flow control for the packet
switched network (PSN) is widely used due to its insensitivity to multi-hop de-
lays. As a result, these systems that still utilize rigid network interconnects have

P.C. Diniz et al. (Eds.): ARC 2007, LNCS 4419, pp. 49–60, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://ce.et.tudelft.nl

50 J.Y. Hur, S. Wong, and S. Vassiliadis

the following limitations. First, the programmer must have intricate knowledge
of the underlying physical network in order to fully exploit it. Second, perfor-
mance is lost due to topology embedding that is likely to increase communication
delays and/or create traffic congestions. Third, a router (with virtual channels)
occupies significant on-chip resources.

Our work is motivated by several key observations. First, different applica-
tions (or algorithms) generate different traffic patterns that require different
topologies to handle them in the best possible manner. Therefore, the ability
to ‘construct’ topologies on-demand (at application start time or even during
run-time) is likely to improve performance. Second, direct point-to-point con-
nections eliminate the communications overheads of utilizing packet switched
networks. Traditionally, P2P networks were not popular due to complex wiring
and scalability issues. However, modern reconfigurable hardware fabrics contain
rich intra-chip wiring resources and additionally provide a capability to change
the interconnections (possibly) in run-time [7]. Figure 1(1) shows a Configurable
Logic Block (CLB) cell in the Virtex-II Pro device indicating that the wiring
resources occupy more than 70% of the cell. The Virtex-II Pro xc2vp30 device
contains 3680 CLBs and abundant wires such as long, hex, double, and direct
lines. Moreover, the interconnect wires do not require logic slices, which are
valuable computational resources. Therefore, we aim to design and implement
a (dynamically) adaptive and scalable interconnection network suited to meet
demands of specific applications. Figure 1(2) depicts our general approach. Our
system adaptively provides demanding interconnection networks that realize the
traffic patterns. The reconfigurable interconnects consist of set of on-chip wiring
resources. The presented ρ-P2P implementation combines the advantages of high
performance of traditional P2P networks and the flexibility of reconfigurable
interconnects.

Switch box

slices

wires

(1) CLB cell in Virtex-II Pro FPGA
(2) Our design flow

Application

Logical
process / communication mapping

Physical
processor / interconnects configuration

Process Process

Process Process

On-demand
Network
Topology

t

Processor Processor

Processor Processor

On-demand
Interconnection

Network
t

(snapshot from Xilinx FPGA Editor tool)

Fig. 1. Our approach

Partially Reconfigurable Point-to-Point Interconnects 51

In this work, we implement 2D-mesh PSNs and our ρ-P2P interconnects.
We perform a comparative study to re-examine the performance gain and the
area reduction of the ρ-P2P network over the PSN in modern reconfigurable
platforms. We propose to utilize partial reconfiguration techniques to realize the
ρ-P2P networks. The main contributions of this work are:

– An arbitrary topology can be rapidly configured by updating small-sized
partial bitstreams, which is verified by an actual prototyping. The proof-of-
concept experiment in Virtex-II Pro device using the Xilinx module-based
partial reconfiguration technique shows that the actual system performance
gain increases as the problem size increases.

– The experiments show that our ρ-P2P network performs 2× better and oc-
cupies 70% less area compared to a mesh-based PSN for the considered
applications.

The organization of this paper is as follows. In Section 2, related work is
described. System designs and their hardware implementations are described in
Sections 3 and 4. In Section 5, conclusions are drawn.

2 Related Work

The general concept of on-demand reconfigurable networks was introduced in [8].
In this paper, we present ρ-P2P networks to realize on-demand interconnects as
an implementation methodology using modern FPGA technology. Recently, a
number of NoCs have been proposed [1][2][3][4][5]. These networks employ rigid
networks fixed at design time. Additionally, a packet router with virtual chan-
nels occupy significant on-chip logic resources. As an example, 16 routers with
4 virtual channels in [4] occupy 25481 slices, while a common device such as
the xc2vp30 Virtex-II Pro contains in total only 13696 slices. Those networks
route packets over multi-hop routers and consequently we consider a worm-
hole flow control based PSN as a reference. Our approach is different from the
afore-mentioned networks in that the interconnection network consists of di-
rectly connected native on-chip wires. Our ρ-P2P network is different from the
traditional point-to-point network, such as a systolic array, in that the physical
interconnects of our work are reconfigurable. Our work is similar to [9] in that an
on-chip packet processing overhead is discussed. While [9] considers a butterfly
fat tree topology and does not discuss topology embedding, our work presents
a network design to avoid packet processing overheads together with topology
embedding. A partial reconfiguration technique for the NoC design is presented
in [10]. While [10] presents dynamic insertion and removal of switches, our work
presents configurations of physical interconnects. Reconfigurations of buses are
presented in [11] and our work is similar to [11] in that the topology is dynami-
cally changed. However, the buses in [11] are static as they use pre-established
lines, we use only the required wiring resources.

52 J.Y. Hur, S. Wong, and S. Vassiliadis

3 Design and Implementation

3.1 2D-Mesh PSN

We consider a 2D-mesh PSN as a reference network as depicted in Figure 2(1).
The PSN system consists of processing nodes which are interconnected in a rigid
2D-mesh topology. Each node is composed of a processing element (PE), a dual-
ported memory, a network interface, and a router. Each node communicates
utilizing a handshaking protocol. The packet is composed of 3 control flits and a
variable amount of data flits as depicted in Figure 2(2). The first flit is a header
containing the target node address. The second flit is the physical memory ad-
dress of the remote node to store the transmitted data. The trailer indicates the
last flit of a packet. Figure 2(3) depicts how a packet is processed. A flit-based
worm-hole flow control is adopted for more efficient buffer utilization. When a
packet arrives, the switch controller checks the packet header in the buffer. If
the current node address and a target node address are different, the switch
controller forwards the packet to the appropriate port. If current node address
and a target node address are identical, the switch controller checks how many
local memory ports are idle. The switch controller permits up to two packets to
simultaneously access a local dual-ported memory. This feature is useful, pro-
vided that two-operand computations are common in many applications. Figure
2(4) depicts how a 2D-mesh node is organized. The network interface deals with
packet generation, assembly, and memory management. The memory is private
to the PE and the packet size is determined by the PE using trailer signal. In this
way, direct memory access (DMA) of burst data transfers is supported. Each port
entails full-duplex bidirectional links. A buffer is contained in each input port
and the XY routing algorithm is utilized for its simplicity. A buffer accommo-
dates 8 flits, while the individual flit width is 16 bit. The packets are arbitrated
based on the round robin scheduling policy. The processors are wrapped inside
a router in order for the dual-ported memory to simultaneously store the 2 in-
coming packet payloads. Consequently, the system conforms to the non-uniform
memory access (NUMA) model. Our implementation is similar to [3][5] in that
the same flow control and routing scheme are used. However, our PSN system
in this work differs in the following ways. First, variable length burst packets
are directly communicated between distributed memories. Second, dual-ported
embedded memories are utilized to simultaneously accommodate two incoming
packets. Third, a topology embedding (e.g., binary tree traffic embedding using
[12]) has been implemented. A single packet containing Nl elements requires the
following amount of cycles to conduct a source-to-destination communication:

Ll = Nl + #hop · Lh + Poverhead, (1)

where Ll refers to the communication latency in number of cycles to transfer Nl

elements. Lh denotes the header latency per router. The Poverhead refers to the
packetization overhead. #hop refers to the number of intermediate routers.

Partially Reconfigurable Point-to-Point Interconnects 53

Buffer

Switch controller
Arbiter

Buffer

Buffer

Buffer

Router

PE

Memory

Network interface

Worm-hole router
Processing node
(PE, memory, network interface)P

(1) PSN implementation

Buffer

Switch controller

1 52

3
4

1 Header arrives
2 Routing request
3 Routing request for

arbitrated packet
4 Output port is free
5 Packet flows

Arbiter

Router

(3) Packet processing

(2) Packet organization

Target
core

address
DataMemory

address Data Data Trailer

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

(4) 2D-mesh node organization

Fig. 2. The 2D-mesh PSN system organization

3.2 ρ-P2P Network

The proposed ρ-P2P system consists of directly interconnected PEs as depicted
in Figure 3(1). Figure 3(2) shows the device floorplan. PEs are located in a
static region and interconnects in the reconfigurable region are adaptively
(re)configured on demand. The interconnects in the reconfigurable region cor-
respond to the required wiring resources. The bus macro region separates the
reconfigurable region from the static region and consists of symmetrical tri-state
buffer arrays. The left-hand side belongs to the reconfigurable region and the
right-hand side belongs to the static region. The interconnects are enabled or
disabled by controlling the tri-state buffers. Two tri-state buffers constitute a
single-bit wire line. The reconfigurable region and bus macros constitute the
topology component. The topology component is modular and can be replaced
by other topologies. In our experiments, the computational region remains fixed
over time and only the communication region is reconfigurable. Those regions
span whole vertical columns since the Virtex-II Pro device is configured in full
column by column. When the required communication patterns change, the phys-
ical interconnects can be quickly changed. We exploit dynamic and partial re-
configuration techniques [13] of Xilinx FPGAs to adaptively configure ρ-P2P
interconnects. Figure 3(3) depicts the exemplified reconfiguration steps, where
the processors are initially interconnected in a 2D-mesh. After that, the on-
demand topology is (re)configured by updating partial bitstreams only for the
reconfigurable topology component during the respective time t2−t1, t3−t2. The
network topology is implemented as a partially and dynamically reconfigurable

54 J.Y. Hur, S. Wong, and S. Vassiliadis

component of the system. Nl elements requires Nl cycles to conduct a source-
to-destination communication. This approach can be generally applied to the
recent reconfigurable hardware, such as partially reconfigurable Xilinx Virtex
series devices, though we target Virtex-II Pro in this work.

partial
bitstream

partial
bitstream

full
bitstream

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Binary tree Linear array 2D-mesh
t = t1 t = t2 t = t3

2P Pρ −

PE

PE

PE

PE

Xilinx Virtex-II Pro FPGA

bus macro
(2) Device floorplan

2P Pρ −(1) system

PE

PE

PE

2P Pρ −
Interconnects

(topology component)

(3) Topology reconfiguration in system

static region: PEs

reconfigurable region: interconnects

user area

Fig. 3. The ρ-P2P system

The layout of static region is identical for each system configuration and
remains unchanged during the interconnects reconfiguration. The small sized
topology components can be reconfigured while processors are in operation
within the static region. The reconfiguration latencies are directly proportional
to corresponding partial bitstream sizes. The bitstream size is determined by re-
quired on-chip resources. In Virtex-II Pro, a bitstream is loaded in a column ba-
sis, with the smallest load unit being a configuration frame of the bitstream. Dif-
ferent network configurations are implemented in VHDL using the bus macros.
Figure 4 depicts the design of a topology component using bus macro region as
an example. Virtex-II Pro xc2vp30 contains abundant (6848) tri-state buffers
which can be used for bus macro designs. As can be observed from Figure 4, the
network topology can be implemented using tri-state buffer configurations. The
interconnects do not require any logic resources such as slices, while the look-up
tables (LUTs) in the bus macro regions are only required for power and ground
signals of tri-state buffers. Since the data is communicated in a point-to-point
fashion without packetization and multi-hop routing overheads, faster communi-
cation can be achieved compared to PSN. The area is also significantly reduced,
provided that the interconnection network can be realized by configuring hard-
wired bus-macros and using on-chip wires. Additionally, the partial bitstream is
automatically generated using the Xilinx modular design flow.

Partially Reconfigurable Point-to-Point Interconnects 55

(1) 3-node binary tree (2) 4-node 2D-mesh

boundary

bus macros

interconnects processors

binary tree

1

2

3

42D-mesh

1

2 3

1 2

3 4

1

2

3
vcc

gnd

open

4 vcc

gnd

Fig. 4. The topology implementation using bus macros

3.3 Configuration Examples

In order to evaluate the presented network, we consider two types of workloads.
The parallel merge sort (binary tree, burst traffic) and the Cannon’s matrix mul-
tiplication (2D-torus, element-wise traffic) have been chosen as network traffics.
Those algorithms are common and the implemented PEs are small in area such
that larger networks can be realized in a single chip.

Parallel Merge Sort: The logical traffic pattern of the parallel merge sort is
as follows. Firstly, sequential sort is performed at the bottom-most nodes. Sec-
ondly, the parent nodes sort elements taken from child nodes until the root node
finishes the task. Sequential and parallel computation require O(n logn), O(n)
steps, respectively, and communication requires O(n) steps, for the problem size
n. Sequential PEs are identical for ρ-P2P and PSN systems. Consider p proces-
sors performing the parallel merge sort of N integers. System cycles are derived
as shown in Equations (2a),(2b), where MS PSN, MS P2P refer to the number of
cycles when the merge sort is operated in the PSN, ρ-P2P, respectively. In PSN
system, the system cycles are calculated by (computation cycles) + (communi-
cation cycles). Consider a complete binary tree with p-processors, αq

2N
p+1 log 2N

p+1
cycles are required for a sequential sort. In PSN, when the sequential PE points
to a remote memory address and commands a message transaction, the network
interface generates a packet containing 2N

p+1 elements. After that, each packet re-
quires (βs

2N
p+1 + #hop · Lh + Poverhead) cycles to move up to upper nodes. When

each packet arrives, the network interface assembles the packets and stores the
elements in local memory. Upper nodes perform a parallel sort, in which each
element requires αs cycle(s) for the parallel computation. (log2(p + 1) − 1) cor-
responds to the level of binary tree. In ρ-P2P system, αpN cycles are required
for the parallel computation for N total elements, in which αp cycles are re-
quired to perform load, compare, forward operations for each element. βpN are
required for communications. In case αp and βp are same, all the communication
cycles βpN are completely hidden by the computation, since communication and
computation can be overlapped.

56 J.Y. Hur, S. Wong, and S. Vassiliadis

MS PSN = αq
2N

p + 1
log

2N

p + 1
+ 2αsN(1 − 2

p + 1
) + βsN(1 − 2

p + 1
)

+ (log2(p + 1) − 1)(#hop · Lh + Poverhead) (2a)

MS P2P = αq
2N

p + 1
log

2N

p + 1
+ αp N (2b)

Cannon’s Matrix Multiplication: The logical 2D-torus traffic pattern of
the Cannon’s matrix multiplication is as follows. Firstly, a scalar multiplication
is performed at each node and secondly, the intermediate result is transferred
to left/upper node. These two steps are repeated until the task is finished. A
sequential computation requires O(m3) steps for the matrix of size m×m. Each
PE is assumed to contain a single multiplier. Consider

√
p × √

p processors and
2 symmetric matrices with size M × M . System cycles are derived as shown in
Equations (3a), (3b), where MM PSN, MM P2P refer to the number of cycles
when the matrix multiplication is operated in the PSN, ρ-P2P, respectively. In ρ-
P2P system, there are

√
p phases of computations and M3

p
√

p computation cycles
are required for each phase. PEs require αp cycles to perform multiply, add,
transfer operations for each element. The communication is performed between
directly connected neighbor PEs, or #hop is 1. Totally αp

M3

p cycles are required
for the system cycles. In 2D-mesh PSN system, Lh, Poverhead and worst case

√
p

hops for each packet are required. Additionally, the communication is directly
performed between distributed memories.

MM PSN = αq
M3

p
+

√
p (βs

M2

p
+ #hop · Lh + Poverhead) (3a)

MM P2P = αp
M3

p
(3b)

4 Experimental Results

In this work, 3 experiments have been conducted. First, the system cycles are
analytically derived from Equation (2) and (3) to measure the performance gain
of ρ−P2P over PSN in the reconfigurable hardware. The coefficients are obtained
from the highly optimized hardware implementations. For the parallel merge
sort, αq = 2.6, αs = 2.3, βs = 1 , Lh = 6 , αp = 2 , βp = 2 have been obtained.
For the matrix multiplication, αq = 2, αp = 1, βs = 1 are obtained. αq is 2,
since the PE requires 2 cycles to access a local memory, while αp is 1, since
the data is communicated directly between PEs. We can fairly compare ρ−P2P
and PSN, since the computational latency is same for both systems. Figure
5(1) depicts the system cycles for different problem sizes. As can be observed,
the ρ−P2P network performs on average 2× better (Note: graphs have a log
scale). ρ−P2P is better in performance, since PSN suffers from a multi-hop
communication latency, a packetization overhead while ρ−P2P provides a single-
hop communication. Figure 5(2) shows the performance gain of ρ−P2P over PSN

Partially Reconfigurable Point-to-Point Interconnects 57

in terms of the execution time. As the problem size increases, the performance
gain in the actual amount of cycles also increases. Assuming the systems operate
at 100MHz, the performance gain is obtained by (PSN system cycles - P2P
system cycles)×10ns. Figure 5 depicts the performance gain that can grow up to
120 ms, 1347 ms for the merge sort, matrix multiplication, respectively. It can
be noted that the Virtex-II Pro xc2vp30 device requires 26ms as a whole chip
reconfiguration time [7]. The experiment suggests that partially reconfigured on-
demand interconnects can be more beneficial for large problem sizes, since the
reconfiguration latency is relatively smaller.

(a) Parallel merge sort (b) Cannon’s matrix multiplication

(a) Parallel merge sort (b) Cannon’s matrix multiplication

(1) System cycles

(2) Performance gain

100

1000

10000

100000

1000000

10000000

100000000

256 1024 4096 16384 65536 262144 1048576 4194304

Problem Size (N)

N
um

be
r o

f C
yc

le
s

PSN
P2P

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

10000.000

256 1024 4096 16384 65536 262144 1048576 4194304

Problem Size (M^2)

Pe
rf

or
m

an
ce

 g
ai

n
[m

s]
 a

t 1
00

M
H

z

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

256 1024 4096 16384 65536 262144 1048576 4194304

Problem Size (N)

Pe
rf

or
m

an
ce

 g
ai

n
[m

s]
 a

t 1
00

M
H

z

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

256 1024 4096 16384 65536 262144 1048576 4194304

Problem Size (M^2)

N
um

be
r o

f C
yc

le
s

PSN
P2P

Fig. 5. System cycles and performance gains of ρ-P2P and PSN

Second, PSN and ρ−P2P systems have been implemented in VHDL, placed
and routed using the Xilinx ISE tool, in order to evaluate the system cycle
models in Equations (2),(3). The systems have been implemented for N=512
(merge sort) and M=16 (matrix multiplication). Each PE has been implemented
in an application-specific finite state machine, occupying 1% of area. Virtex-II
Pro xc2vp100-6 has been used as a target device in order to experiment on
larger networks. The implementation results for the merge sort are presented
in Figure 6(1), in which network size, type of network, topology, number of

58 J.Y. Hur, S. Wong, and S. Vassiliadis

nodes, system cycles, system area, clock frequency and system execution time
are shown. The sequential merge sort requires 11981(≈ 2.6×512× log2512) cycles
in the implementation. To implement a PSN, the binary tree is embedded in 2D-
mesh using the algorithm of [12]. The binary tree P2P system reduces on average
67% area and 37% of execution time compared to PSN. In Figure 6(1), PSN and
ρ−P2P for the same network size can be fairly compared, since an actual number
of PEs which participate in the computation is the same. Figure 6(2) shows the
comparison of PSN and ρ−P2P for the matrix multiplication. The sequential
matrix multiplication requires 12546(≈ 3 × 163) cycles. Embedded hardwired
18 × 18 bit multiplier, an adder and a simple control unit are implemented
for each PE, which is identical for ρ-P2P and 2D-mesh PSN systems. 2D-torus
P2P performs Cannon’s matrix multiplication with a single-hop communication.
Each PE performs an integer multiplication in a single cycle. In ρ−P2P, 94.6%
of an execution time is reduced, since in PSN with 16×16 PEs, in the worst
case 16 hops are required to transfer packets, while single cycle per each hop is
required. Additionally, 82% of area is reduced, since complex router modules are
eliminated.

(1) Merge sort (N=512)

Max.
#slices reduction(%) Freq. (MHz) [us] reduction(%)

Sequential - 1 11981 491 - 125.5 95.4 -
PSN 2D-mesh 4 6429 2821 117.3 54.8
P2P Binary tree 3 6154 1102 123.5 49.8
PSN 2D-mesh 9 4276 6828 116.4 36.7
P2P Binary tree 7 3338 2316 122.1 27.3
PSN 2D-mesh 16 3415 15533 113.3 30.1
P2P Binary tree 15 2063 4851 115.8 17.8
PSN 2D-mesh 36 3094 33915 111.1 27.8
P2P Binary tree 31 1623 9852 113.7 14.3
PSN 2D-mesh 64 2873 64057 105.5 27.2
P2P Binary tree 63 1247 19791 111.4 11.2

69.1

Area

9.0

25.6

40.9

48.7

58.9

Execution time

60.9

66.1

68.8

71.0

Size Network #nodes #cyclesTopology

1

2

3

5

4

Max.
#slices reduction(%) Freq. (MHz) [us] reduction(%)

Sequential - 1 12546 124 - 125.9 99.7 -
PSN 2D-mesh 256 300 44094 100.2 3.0
P2P 2D-torus 256 16 7837 99.4 0.2

82.2 94.6

Area Execution time Network #nodes #cyclesTopology

(2) Matrix multiplication (M=16, p=256)

Fig. 6. Implementation results

Third, intended as a proof-of-concept, the run-time reconfiguration of the
interconnects has been realized on the Virtex-II Pro xc2vp30 in the Digilent
XUP-V2P prototyping board[14]. Figure 7 demonstrates the procedure of the
partial run-time reconfiguration. The 2D-mesh and the binary tree intercon-
nects have been reconfigured using Xilinx module-based partial reconfiguration

Partially Reconfigurable Point-to-Point Interconnects 59

technique [13] in a boundary scan mode. Actual network interconnects in Fig-
ure 7(2) and (4) correspond to the topology components depicted in Figure 3.
The small sized topology components can be reconfigured while processors are
in operation. As an example, we reconfigure the binary tree interconnects by
updating partial bitstream (Figure 7(4)). The layout of static region (Figure
7(1)) is identical for each system configuration and remains unchanged during
the interconnects reconfiguration. In this experiment, the partial bitstream size
in number of frames is 79 out of 1757, indicating that 4.4% of the reconfiguration
latency is required compared to the full reconfiguration. It can be observed that
the reconfiguration latency is significantly reduced by utilizing the partial bit-
stream. Furthermore, 162 LUTs (out of 27396) of logic resources and 240 TBUFs
(out of 6848) primitives were used for bus macros. Regarding wiring resources,
231 switch boxes (out of 4592) are used for the binary tree partial bitstream.
The experiment clearly shows that the occupied logic resources are significantly
reduced by utilizing ρ-P2P interconnects.

 Dynamically
reconfigurable interconnects Bus macro

(2) 2D-mesh
 interconnects

(4) Binary tree
 interconnects(1) Static region (3) System with 2D-mesh (5) System with binary tree

Static regionBus macro

Fig. 7. Partial run-time reconfiguration

5 Conclusions

In this work, we proposed the partially reconfigurable interconnects on demand.
Our ρ-P2P networks have been implemented and evaluated by comparing them
with the 2D-mesh PSNs. We showed that the ρ-P2P network provides a better
performance and reduced area by avoiding the use of complex routers. We also
showed that the bitstream size is significantly reduced using partial reconfigu-
ration of interconnects. Finally, our experiment projects adequate performance
benefits to offset the reconfiguration latency as the problem size increases. There-
fore, systems facilitating processors directly interconnected with the proposed
reconfigurable interconnects can be suitable for our general approach.

60 J.Y. Hur, S. Wong, and S. Vassiliadis

Acknowledgement. This work was supported by the Dutch Science Foundation
(STW) in the context of the Architecture, Programming, and Exploration of
Networks-on-Chip based Embedded System Platforms (ARTEMISIA), project
number LES.6389.

References

1. W. J. Dally and T. Brian, “Route Packets, Not Wires: On-Chip Interconnection
Networks,” Proceedings of 38th International Conference on Design Automation
Conference (DAC’01), pp. 684–689, Jun 2001.

2. T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices of
Network-on-chip,” ACM Computing Surveys, vol. 38, no. 1, pp. 1–51, Mar 2006.

3. F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “HERMES: an Infrastruc-
ture for Low Area Overhead Packet-switching Netwoks on Chip,” Integration, the
VLSI Journal, vol. 38, no. 1, pp. 69–93, Oct 2004.

4. A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual Channels in Networks
on Chip: Implementation and Evaluation on Hermes NoC,” Proceedings of 18th
Symposium on Integrated Circuits and Systems Design (SBCCI’05), pp. 178–183,
Sep 2005.

5. A. Mello, L. Möller, N. Calazans, and F. Moraes, “MultiNoC: A Multiprocessing
System Enabled by a Network on Chip,” Proceedings of International Conference
on Design, Automation and Test in Europe (DATE’05), pp. 234–239, Mar 2005.

6. F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays ·
Trees · Hypercubes. Morgan Kaufmann Publishers, Inc., 1992.

7. Virtex-II Pro Handbook, http://www.xilinx.com.
8. S. Vassiliadis and I. Sourdis, “FLUX Networks: Interconnects on Demand,” Pro-

ceedings of International Conference on Computer Systems Architectures Mod-
elling and Simulation (IC-SAMOS’06), pp. 160–167, Jul 2006.

9. N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson, M.
Wrighton, and A. DeHon, “Packet Switched vs Time Multiplexed FPGA Over-
lay Networks,” Proceedings of IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’06), pp. 205–216, Apr 2006.

10. T. Pionteck, R. Koch, and C. Albrecht, “Applying Partial Reconfiguration to
Networks-on-Chips,” Proceedings of 16th International Conference on Field Pro-
grammable Logic and Applications (FPL’06), pp. 155–160, Aug 2006.

11. M. Huebner, M. Ullmann, L. Braun, A. Klausmann, and J. Becker, “Scalable
Application-Dependent Network on Chip Adaptivity for Dynamical Reconfigurable
Real-Time Systems,” Proceedings of 14th International Conference on Field Pro-
grammable Logic and Applications (FPL’04), pp. 1037–1041, Aug 2004.

12. S.-K. Lee and H.-A. Choi, “Embedding of Complete Binary Tree into Meshes with
Row-Column Routing,” IEEE Transactions on Parallel and Distributed Systems,
vol.7, no.5, pp. 493–497, May 1996.

13. “Two Flows for Partial Reconfiguration: Module Based or Difference Based,” Xilinx
Application Note, xapp 290, Sep 2004.

14. Digilent, Inc., http://www.digilentinc.com/XUPV2P.

	Introduction
	Related Work
	Design and Implementation
	2D-Mesh PSN
	-P2P Network
	Configuration Examples

	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

