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Abstract. The Instruction-Set Extensions problem has been one of the
major topic in the last years and it consists of the addition of a set
of new complex instructions to a given Instruction-Set. This problem
in its general formulation requires an exhaustive search of the design
space to identify the candidate instructions. This search turns into an
exponential complexity of the solution. In this paper we propose an effi-
cient linear complexity algorithm for the automatic generation of convex
Multiple Input Multiple Output (MIMO) instructions, whose convexity
is theoretically guaranteed. The proposed approach is not restricted to
basic-block level and does not impose limitations either on the number
of input and/or output, or on the number of new instructions gener-
ated. Our results show a significant overall application speedup (up to
x2.9 for ADPCM decoder) considering the linear complexity of the pro-
posed solution and which therefore compares well with other state-of-art
algorithms for automatic instruction set extensions.

1 Introduction

The last years have shown an increasing popularity of reconfigurable architec-
tures thanks to the capability to provide high overall performances of execution
of an application, by tuning the architecture towards the specific requirements
of the application. More and more often this is achieved via the automatic ex-
tension of a given Instruction-Set (IS) with new customized instructions for the
specific application.

An example of reconfigurable architecture can be realized by combining a GPP
and a reconfigurable hardware as an FPGA. The execution of an application on
an architecture with a given Instruction-Set usually involves instructions belong-
ing to the Instruction-Set, and implemented in hardware, and many instructions
executed in software, and typically more costly in terms of execution time than
the ones executed in hardware. Roughly speaking the idea is to group clusters of
instructions executed in software in new complex instructions to implement on
the reconfigurable hardware and whose execution time is faster in hardware than
in software. Once these new complex instructions are hardwired, they represent
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an extension of the given Instruction-Set. Additionally, the reconfigurability of
the architecture allows the creation of new complex instructions ad hoc, that is
Application-Specific Instruction-Set Extensions.

In this paper we propose a linear complexity algorithm for the automatic genera-
tionofnewApplication-SpecificInstructionsunderhardwareresourcesconstraints.
The proposed approach targets the Molen organization [1] which allows for a vir-
tually unlimited number of new instructions without limiting the number of in-
put/output values of the function to be executed on the reconfigurable hardware.

A set of convex Multiple Input Multiple Output (MIMO) operations is iden-
tified by a two steps approach. Firstly, the operations are clustered in Maximal
Multiple Input Single Output (MAXMISO) operations, the elementary building
blocks of our approach, and subsequently these MAXMISOs are clustered per
levels as new application-specific instructions. The result is a cluster of opera-
tions with Multiple Input Multiple Output, called MIMO, which is executed on
the reconfigurable hardware and which provides the maximum performance im-
provement under reconfigurable hardware resource constraints. More specifically,
the main contributions of this paper are:

• an overall linear complexity of the proposed solution. The generation of com-
plex instructions is a well known NP problem and its solution requires,
in the worst case, an exhaustive search of the design space which turns
into an exponential complexity of the solution. Our approach heuristically
extends a given Instruction-Set with convex MIMO instructions based on
MAXMISOs clustering in order to exploit the MAXMISO level parallelism.
Single MAXMISOs usually do not provide significant performance improve-
ment. Thus we propose MAXMISOs combination (Section 3.4) in order to
take advantage of the parallelism inherent to the hardware execution and
the Theorem 2 that guarantees the MIMO convexity by construction. The
proposed solution addresses the problem with two linear complexity steps,
MAXMISO clustering and MAXMISO combination, that are linear in the
number of processed elements.

• elimination of the restrictions of the types and number of new instructions (in
contrast with most of the existing approaches). There is no limitation on the
number of input/output values or on the number of new instructions.

• the proposed approach is not restricted to basic-block level analysis and can
be applied directly to large kernels.

The paper is organized as follows. In Section 2, background information and
related works are provided. In Section 3, the context is further formalized and
the theoretical contribution is presented. Section 4 presents the experimental
setup and results. Concluding remarks and an outline of research conducted are
given in Section 5.

2 Background and Related Works

The algorithms for Instruction Set Extensions usually select clusters of op-
erations which can be implemented in hardware as single instructions while
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providing maximal performance improvement. Basically, there are two types
of clusters that can be selected, based on the number of output values: MISO
or MIMO. Accordingly, there are two types of algorithms for Instruction Set
Extensions that are briefly presented in this section.

Concerning the first category, a representative example is introduced in [2]
which addresses the generation of MISO instructions of maximal size, called
MAXMISO. The proposed algorithm exhaustively enumerates all MAXMISOs.
Its complexity is linear with the number of nodes. The reported performance im-
provement is of few processor cycles per newly added instruction. The approach
presented in [3] targets the generation of general MISO instructions. The expo-
nential number of candidate instructions turns into an exponential complexity
of the solution in the general case. As a consequence, heuristic and additional
area constraints are introduced to allow an efficient generation. The difference
between the complexity of the two approaches is due to the properties of MISOs
and MAXMISOs: while the enumeration of the first is similar to the subgraph
enumeration problem (which is exponential) the intersection of MAXMISOs is
empty and then once a MAXMISO is identified, its nodes are removed from the
set of nodes that have to be successively analyzed. In this way the MAXMISOs
are enumerated with linear complexity in the number of nodes.

The algorithms included in the second category are more general and pro-
vide more significant performance improvement. However, they have exponen-
tial complexity. For example, in [4] the identification algorithm detects optimal
convex MIMO subgraphs but the computational complexity is exponential. A
similar approach described in [5] proposes the enumeration of all the instruc-
tions based on the number of inputs, outputs, area and convexity. The selection
problem is not addressed. In [6] the authors target the identification of convex
clusters of operations under given input and output constraints. The clusters
are identified with a ILP based methodology similar to the one proposed in
[7]. The main difference is that in [6] the authors iteratively solve ILP prob-
lems for each basic block, while in [7] the authors have one global ILP problem
for the entire procedure. Additionally, the convexity is addressed differently:
in [6], the convexity is verified at each iteration, while in [7] it is guaranteed
by construction. Other approaches cluster operations by considering the fre-
quency of execution or the occurrence of specific nodes [8,9] or regularity [10].
Still others impose limitation on the number of operands [11,12] and use heuris-
tics to generate sets of custom instructions which therefore can not be globally
optimal.

The algorithm we introduce in this paper combines concepts of both cat-
egories: at first, MAXMISOs are identified as proposed in the first category,
afterward they are combined in convex MIMOs. Our algorithm requires linear
complexity for the MAXMISO enumeration and the MAXMISO combination.
Additionally, the proposed algorithm does not impose any limitations on the
number of input/output values (as in [13,14,11]) or on the number of newly
added instructions.
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Fig. 1. Motivational example: Dataflow subgraph from ADPCM Decoder. a) the
MAXMISO identification and b) the collapsed graph with the convex MIMOs identified
by the algorithm.

3 Theoretical Background

In this section, we begin by introducing a motivational example to informally
outline the main concept of the proposed algorithm and then we present the
theoretical foundation of our approach. Last but not least, we present in detail
the steps of the MIMO clustering algorithm.

3.1 Motivational Example

In Figure 1, we present the dataflow subgraph of the ADPCM application as
implemented in the MediaBench benchmark suite [15]. Our algorithm identifies
the convex MIMO in two steps. Firstly, the graph is partitioned in MAXMISOs
(see Figure 1(a)). Each MAXMISO is then collapsed as a single node in the
reduced graph presented in Figure 1(b). Since single MAXMISO execution in
hardware doesn’t provide significant performance improvement, the main idea
of our algorithm is to combine, per levels, MAXMISOs available at the same
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level in the reduced graph, into a convex MIMO that is executed as a single
instruction in hardware. The combination per level and successively per levels
is the key difference between the solution presented in this paper and the one
we proposed in [7]. Let assume the hardware latency for MAXMISOi to be
li. When k MAXMISOs at the same level are clustered, the execution time
of the cluster in hardware is maxi=1..k li. The performance gain in this case
is

∑
i=1..k(li) − maxi=1..k(li). If successively we cluster per levels, the overall

performance gain increases. Let assume that α1, ..., αh are the levels of the nodes
belonging to a cluster generated combining per levels. The overall performance
gain in this case is:

αh∑

j=α1

(
∑

ij

lij − max
ij

(lij )) (1)

Although the clustering algorithm is detailed in the following sections, we can
roughly underline the main clustering steps. Starting from a node v belonging
to level m, the algorithm grows a convex cluster of nodes C taking v as a seed.
At first, an initial cluster C′ composed by v and its predecessors at level m − 1
is grown. C′ is further extended with the successors at level m of the nodes of
C′\{v}. By Theorem 2, this extension C′′ is convex. Once C′′ is generated, the
algorithm iteratively extends at each iterations C′′ with nodes having all inputs
coming from nodes belonging to the cluster generated in the previous iteration.
When the cluster is no more extendable, its nodes are removed from the nodes
to analyze and the algorithm restarts a new cluster from a node v′. The final
clusters C1, .., Cl built in this way are convex MIMOs (see Section 3.4). For
the graph presented in Figure 1(a) the algorithm identifies the convex clusters
C1 = {MM1, MM2} and C2 = {MM3, MM6}.

MAXMISO clustering is limited by the size of the reconfigurable hardware.
This means that the algorithm stops the generation of convex MIMO as soon as
there is no more available area in the FPGA.

3.2 MISO Properties and MAXMISO-Clustering

In order to formally express the problem previously presented, we first introduce
the necessary definitions and the theoretical foundation of our solution. We as-
sume that the input dataflow graph is a DAG G = (V, E), where V is the set of
nodes and E is the set of edges. The nodes represent primitive operations, more
specifically assembler-like operations, and the edges represent the data depen-
dencies. The nodes can have two inputs at most and their single output can be
input to multiple nodes.

Let ℘(G) be the power set of G1 and let n be the order of V . The order of
℘(G) is 2n. Basically, there are two types of subgraphs that can be identified:
MISOs and MIMOs. Let GMISO and GMIMO be the subsets of ℘(G) containing
all MISOs and MIMOs respectively. The following chain of inclusions is valid:

GMISO ⊂ GMIMO ⊂ ℘(G). (2)
1 ℘(G) is the set of all subgraphs of G, including the empty graph ∅ and G.
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Definition 1. Let G∗ ⊆ G be a subgraph of G with V ∗ ⊆ V set of nodes and
E∗ ⊆ E set of edges. G∗ is a MISO of root r ∈ V ∗ provided that ∀ vi ∈ V ∗ there
exists a path2 [vi → r], and every path [vi → r] is entirely contained in G∗.

By Definition 1, A MISO is a connected graph. A MIMO, defined as the union
of m ≥ 1 MISOs can be either connected or disconnected.

Definition 2. A subgraph G∗ � G is convex if there exists no path between
two nodes of G∗ which involves a node of G\G∗3.

Convexity guarantees a proper and feasible scheduling of the new instructions
which respects the dependencies. Definitions 1 and 2 imply that every MISO is
a connected and convex graph. MIMOs can be convex or not. For example the
subgraph G∗ = {MM1, MM6} in Figure 1(b) is not a convex graph.

Nevertheless the following property holds.

Theorem 1. Let G∗ � G be a convex subgraph of G. Then there exists k ∈ N

such that G∗ =
⋃k

i=1 MISOi.

Proof. Let G∗ be a MISO. Then k = 1 and MISO1 = G∗. Let G∗ be a MIMO.
Every node has single output and therefore each node is trivially a MISO. This
concludes the proof since every (sub)graph can be decomposed as the union of
its nodes. �

The previous theorem implies that an exhaustive enumeration of the MISOs
contained in G gives all the necessary building blocks to generate all possible
convex MIMOs. This faces with the exponential order of GMISO and, by (2),
of GMIMO . A reduction of the number of the building blocks reduces the total
number of convex MIMOs which it is possible to generate. Anyhow, it reduces
the overall complexity of the generation process as well. A trade-off between
complexity and quality of the solution can be achieved considering MISO graphs
of maximal size.

Let ⊂ be the usual subset inclusion and ℘(G) the power set of G. The couple
(℘(G), ⊂) is an ordered set and an element Gι ∈ ℘(G) is said to be maximal
if, for all Gi ∈ ℘(G), Gι �⊂ Gi. A maximal MISO (MAXMISO) is a maximal
element of (GMISO , ⊂). A MAXMISO can formally be defined as follows.

Definition 3. A MISO G∗(V ∗, E∗) ⊂ G(V, E) is a MAXMISO if ∀vi ∈ V \V ∗,
G+(V ∗ ∪ {vi}, E+) is not a MISO.

We know from the set-theory that each element of GMISO is either maximal (a
MAXMISO) or there exists a maximal element containing it. [2] observed that
if A, B ∈ GMISO are two MAXMISOs, then A ∩ B = ∅. Since every node is
trivially a MISO, the following equality holds:

G =
⋃

i∈I

MAXMISOi, I ⊂ N. (3)

2 A path is a sequence of nodes and edges, where the vertices are all distinct.
3 G∗ has to be a proper subgraph of G. A graph itself is always convex.
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Fig. 2. The collapsing function f : G → Ĝ. GMM = {MM1, MM2, MM3} where
MM1 = {v1, v3}, MM2 = {v4}, MM3 = {v2, v5}. Then MM1 �→ a1, MM2 �→ a3 and
MM3 �→ a2. In this case we have GMISO = {v1, v2, v3, v4, v5, MM1, MM3} and clearly
GMM � GMISO.

The empty intersection of two MAXMISOs implies that the MAXMISOs of a
graph can be enumerated with linear complexity in the number of its nodes.

3.3 Convex MIMOs Generation

Let GMM ⊂ GMISO be the set of all MAXMISOs of G. Let f : GMM ⊂ G → Ĝ
be the function that collapses the MAXMISOs of G in nodes of the graph Ĝ,
(Fig. 2): MMi ∈ GMM ⊂ G �→ ai ∈ Ĝ.

By definition f is a surjective function. Two MAXMISOs cannot overlap and
then f is also injective and therefore bijective. Let f−1 be the inverse function of
f . f−1 : Ĝ → GMM is the function such that maps ai ∈ Ĝ into MMi ∈ GMM ⊂
G. f and f−1 are called the collapsing and un-collapsing function and Ĝ is
called the MAXMISO-collapsed graph.

Let v ∈ V be a node of G and let Lev : V → N be the integer function defined
as follows:

– Lev(v) = 0, if v is an input node of G;
– Lev(v) = α > 0, if there are α nodes on the longest path from v and the

level 0 of the input nodes.

Clearly Lev(·) ∈ [0, +∞) and the maximum level d ∈ N of its nodes is called
the depth of the graph.

Definition 4. The level of MAXMISOi ∈ G is defined as follows:
Lev(MAXMISOi) = Lev(f(MAXMISOi)).

Theorem 2. Let G be a DAG and A1, A2 ⊂ G two MAXMISOs4. Let Lev(A1) ≥
Lev(A2) be the levels of A1 and A2 respectively. Let C = A1 ∪ A2. If

Lev(A1) − Lev(A2) ∈ {0, 1} (4)

then C is a convex MIMO. Moreover C is disconnected if the difference is 0.5

4 Clearly A1 ∩ A2 = ∅.
5

Lev(A1) − Lev(A2) = 0 is a particular case studied in [7].
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Proof. Let G be decomposed as union of MAXMISOs and let f be the collapsing
function. Let a1, a2 and c be the images through f of A1, A2 and C respectively.
f transforms equation (4) in Lev(a1) − Lev(a2) ∈ {0, 1}. In both cases, by
contradiction, if c = a1 ∪ a2 is not convex, there exists at least one path from a1
to a2 involving a node ak different from a1 and a2. Then

Lev(a2) < Lev(ak) < Lev(a1). (5)

Since by hypothesis Lev(a1) − Lev(a2) ∈ {0, 1}, it follows that Lev(ak) /∈ N

which contradicts the hypothesis Lev(·) ∈ N. As a result c is a convex MIMO
and then considering the un-collapsing function f−1, f−1(c) = C = A1 ∪ A2 is
a convex MIMO graph. In particular, if the difference is 0, c is disconnected. By
contradiction if c is connected there exists a path from a1 to a2. Then Lev(a1) �=
Lev(a2) which contradicts the assumption Lev(a1) − Lev(a2) = 0. As a result
c is disconnected and therefore C = f−1(c) is disconnected. �
Corollary 1. Any combination of MAXMISOs at the same level or at two con-
secutive levels is a convex MIMO.

Proof. Let C = A1 ∪ ... ∪ Ak ⊂ G be the union of k ≥ 3 MAXMISOs of G. Two
scenarios are possible: Lev(Ai) = ι ∀i, or Lev(Ai) ∈ {ι, ι+1}. In both cases, let
c = f(C) = a1 ∪ ... ∪ ak

6 be the image through f of the MAXMISOs-union. By
contradiction if c is not convex, there exists al least a path between two nodes
that is not included in c. This contradicts the previous Theorem 2. Then c is a
convex MIMO as well as C = f−1(c). �

3.4 The Algorithm

Each convex MIMO is identified in two steps: first of all a cluster of nodes is
grown within Ĝ, the MAXMISO-collapsed graph, and afterward the cluster is
further extended with additional nodes.
1st step. Let aι be a node of Ĝ = (V̂ , Ê) with lev(aι) = α ∈ [0, d] and let
C = {aι}. Let us define the following sets:

pred
′(aι) =

�
{m ∈ V̂ | lev(m) = α − 1 ∧ ∃ (m, aι) ∈ Ê}
∅

if α ≥ 1
if α = 0

succ
′(aι) =

�
{m ∈ V̂ | lev(m) = α + 1 ∧ ∃ (aι, m) ∈ Ê}
∅

if α ≤ d − 1
if α = d

succ(aι) =

�
{m ∈ V̂ | ∃ [aι → m] ∧ lev(m) > lev(aι)}
∅

if α ≤ d − 1
if α = d.

(6)

C′ = C ∪ pred
′(aι) is a convex MIMO. This holds for α ≥ 1 as a consequence

of Theorem 2 and for α = 0 since a node is trivially a convex graph.
Let us consider succ

′(pred
′(aι)) and let NIn(n) be the number of inputs of a

node n and let NInC (n) be the number of inputs coming from a set C of a node
n. For each node n and each set C the following inequality can be satisfied:

2 ∗ NInC (n) ≥ NIn(n). (7)
6 f(A ∪ B) = f(A) ∪ f(B).
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Fig. 3. Example of an application of the algorithm. a) C = {5}, b) C′ = {5} ∪
{1, 2, 3, 4}, c) C′′ = {1, .., 6}, d) C′′′ = {1, .., 8}.

This can be reformulated by saying that the number of inputs of n coming from
the set C has to be greater than or equal to at least half the total inputs of n.
We define the following set:

C′′ =

�
C′ ∪ {n ∈ succ

′(pred
′(aι)) | (7) holds}

C′
if n exists
otherwise.

(8)

If there exists n such that (7) holds, by Theorem 2, C′′ = C′ ∪ {n} is a convex
MIMO.
2nd step. Let us define the following set:

succ(C′′) =
⋃

m∈C ′′

succ(m). (9)

For each m ∈ succ(C′′) such that

NIn(m) = NInC′′ (m), (10)

C′′ ∪ {m} is a convex MIMO. This follows from (10). If the total number
of inputs of m is equal to the number of inputs coming from C′′, it follows
that it doesn’t subsist the possibility of having a path between a node of C′′

and m which includes a node not belonging to C′′ ∪ {m}. As a consequence
C′′′ = C′′ ∪ {m ∈ succ(C′′) | NInC (m) = NIn(m)} is a convex MIMO. In
Figure 3, we present an example that shows the way by which the algorithm
generates the convex MIMO C′′′.

In summary, the steps required to generate the set of convex MIMOs are the
following:
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– Step a: MAXMISO identification: using an algorithm similar to the one
presented in [2]

– Step b: Construction of the reduced graph: each MAXMISO is collapsed on
one node

– Step c: HW/SW estimation: evaluate the HW/SW execution latency for each
MAXMISO

– Step d: Until the area constraint is violated, choose a node of Ĝ, generate
C′′′ and remove the nodes of C′′′ from the node to further analyze.

Remark 1. By Step d, it follows that the convex MIMOs are generated linearly
with the number of node of Ĝ. Additionally, the inequality (7) is introduced to
limit the total number of inputs of C′′. The node which is selected to be the
seed to grow C′′′ is chosen as the one with smallest latency in hardware. In
case many nodes have the same latency, at present we select randomly the seed
starting from the lowest levels.

4 Results

To evaluate the speedup achievedby the proposed approach, a dedicated tool chain
is built and the algorithm is applied on a set of four well-known kernels and bench-
marks applications. The above described algorithm is part of a larger automatic
tool chain that aims to support the hardware designer in the design process. The
tool chain for the experiments has been alreadydescribed in our previous paper [7].

The software execution time for each MAXMISO is computed as the sum of
the latencies of its operations. The hardware execution time is estimated through
behavioral synthesis of the MAXMISO’s VHDL models and then converting the
reported delay into PowerPC cycles. We consider implementation of our ap-
proach on the Molen prototype that is built on Xilinx’s Virtex-II Pro Platform
FPGA. Since the PowerPC processor does not provide floating-point instruc-
tions, the floating-point operations in the benchmark suite kernels are converted
into the proper integer arithmetic. The DCT, IDCT, and ADPCM decoder ker-
nels have been unrolled by a factor of 8/16 in order to increase the selection space
of our algorithm. In the current MOLEN prototype, the access to the Exchange
Registers (used for GPP-FPGA communication) (XRs) for the input/output val-
ues is significantly slower compared to the GPP register. As this is a limitation
only in the current prototype and taking into account that other approaches on
Instruction-Set Extension do not consider register accesses, for a fair comparison
we report two set of results: with and without XR accesses. For our experiments,
we consider a set of three well-known MediaBench [15] benchmarks and MJPEG
encoder application. In Figure 4, we present the overall application speedup for
FPGAs of various sizes compared to the pure software execution.7 For ADPCM
and SAD we only presented a small set of FPGAs since a further increase of the
FPGA size does not provide additional improvement. The speedup estimation is
7 The occupied area is not shown, since it is almost equal to the available area on the

FPGAs.
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Fig. 4. Overall speedup for different FPGA sizes of a) ADPCM Decoder/MPEG2
Encoder, and b) MJPEG Encoder/MPEG2 Decoder

based on Amdahl’s law, using the profiling results and the computed speedup for
the kernels. The achieved speedup varies from x1.2 up to x2.9 for the ADPCM
Decoder and different FPGA sizes. For the other benchmarks, the speedup is
limited due to the shape of the dataflow graphs of the application.

An expected observation is that the impact on performance of the MM-Level
algorithm increases with the size of the available FPGA area. This is explained
by the fact that more MAXMISOs can be combined for hardware execution on
the FPGAs. Additionally, we notice that for some applications/kernels (MPEG2
Encoder/SAD) the estimated speedup does not depend on the FPGA size. This
is due to the fact that SAD kernel contains only one MAXMISO which fits on all
FPGAs. A second observation is that the impact of the XR accesses on the overall
speedup is higher for the ADPCM decoder compared to the SAD/DCT/IDCT
kernels. This is due to the larger number of input/output values of the selected
MAXMISOs and high XR access latency. A last observation is about the shape
of the graph. The algorithm we propose in this paper is designed to work prop-
erly with graph having a large depth. The benchmarks we proposed to test our
algorithm are usually represented by wide graphs with a small depth which lim-
its the extension of C′′ in C′′′. Promising benchmarks to test our algorithm are,
for example, the cryptographic benchmarks which usually are applications rep-
resented by graph with a large depth but at present they are not ready to test
the algorithm.

It is important to note at this point that even though the overall speedup is
limited, the overall complexity of our solution is linear in the number of processed
elements8. Moreover, we emphasize that our approach does not impose limita-
tions on the number of operands and on the number of new instructions.

5 Conclusions

In this paper, we have introduced an algorithm which combines clusters of MAX-
MISO for execution as new application-specific instructions on the reconfigurable

8 More specifically, the number of processed elements is at most n+m, where n is the
order of G and m is the number of MAXMISOs in G.
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hardware. One of the main features of our approach is the linear overall com-
plexity. Additionally, the proposed algorithm is general: new instructions have no
limitation on their types and numbers and the algorithm is applied beyond basic
block level. The used SW model in the experiments is simplified and does not
reflect the available processor optimizations (pipelines, cache hits, etc). Besides
we do not consider also the possible penalties like branch miss-predictions, cache
misses, etc. Even though the generated VHDL is not optimized, we consider our
results reliable and promising for future studies. A more general MAXMISO-
clustering and operation-clustering concern a task for our future research plan.
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