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In this paper, we describe the compiler developed to target the Molen reconfigurable processor
and programming paradigm. The compiler automatically generates optimized binary code for
C applications, based on pragma annotation of the code executed on the reconfigurable hard-
ware. For the IBM PowerPC 405 processor included in the Virtex II Pro platform FPGA, we
implemented code generation, register and stack frame allocation following the PowerPC EABI
(Embedded Application Binary Interface). The PowerPC backend has been extended to generate
the appropriate instructions for the reconfigurable hardware and data transfer, taking into account
the information of the specific hardware implementations and system. Starting with an annotated
C application, a complete design flow has been integrated to generate the executable bitstream
for the reconfigurable processor. The flexible design of the proposed infrastructure allows to con-
sider the special features of the reconfigurable architectures. In order to hide the reconfiguration
latencies, we implemented an instruction scheduling algorithm for the dynamic hardware configu-
ration instructions. The algorithm schedules in advance the hardware configuration instructions,
taking into account the conflicts for the reconfigurable hardware resources (FPGA area) between
the hardware operations. To verify the Molen compiler, we used the multimedia video frame
M-JPEG encoder of which the extended Discrete Cosine Transform(DCT*) function was mapped
on the FPGA. We obtained an overall speedup of 2.5 (about 84 % efficiency over the maximal
theoretical speedup of 2.96). The performance efficiency is achieved using automatically gener-
ated non-optimized DCT* hardware implementation. The instruction scheduling algorithm has
been tested for DCT, Quantization and VLC operations. Based on simulation results, we deter-
mine that, while a simple scheduling produces a significant performance decrease, our proposed

scheduling contributes for up to 16x M-JPEG encoder speedup.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code generation; Compil-
ers; Optimization; C.1.3 [Processor Architectures]: Other Architecture Styles—Adaptable architectures; B.7.1
[Integrated Circuits]: Types and Design Styles—Gate arrays
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1. INTRODUCTION

Reconfigurable computing (RC) is becoming increasingly popular as it bears the promise
of combining the flexibility of software with the performance of hardware. Some concern
can be expressed because the current state of the art of FPGA developement tools assumes
that the developer has a deep understanding of both software and hardware development
before the benefits of this technology can be exploited. This justified concern underlines
the necessity to intensify research and development efforts to support the designer in this
process. The Delft Workbench is an initiative that investigates the integration and devel-
opment of tools supporting the different design phases starting at code profiling, synthesis
and ending at the generation of binary code. The idea is to automate as much as possible
the design exploration and the final development process. This paper addresses an impor-
tant part of the tool chain, namely the construction of the Molen compiler that targets such
a hybrid platform. The compiler allows on the basis of function annotations, the automatic
modification of applications to generate the appropriate binaries.
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The latest commercial FPGA platforms now offer support for partial and dynamic hard-
ware configurations. Nevertheless, one of their main drawback remains large reconfigura-
tion latencies. In order to hide these latencies, compiler support is fundamental to auto-
matically schedule and optimize the compiled application code for efficient reconfigurable
hardware usage. When dealing with reconfigurable hardware, the compiler should also be
aware of the competition for the reconfigurable hardware resources (FPGA area) between
multiple hardware operations during the application execution time. A new type of con-
flict - called in this paper FPGA-area placement conflict - emerges between the hardware
configurations that cannot coexist together on the target FPGA.

The current paper reports on the completed Molen compiler targeting the Molen im-
plementation on the Virtex II Pro platform FPGA. The contributions of the paper can be
summarized as follows :

—A compiler backend targeting the PowerPC processor included in the Molen prototype
has been developed. The theoretical compiler extensions presented in [Moscu Panainte
et al. 2003] have been implemented and adjusted to the target Field-programmable Cus-
tom Computing Machine (FCCM) features. Software/hardware development tools have
been integrated to automate the design flow phases.

—A general instruction scheduling algorithm that minimizes the number of required hard-
ware configurations taking into account both the FPGA-area placement conflicts and the
code profile information for the compiled software application is proposed. More specif-
ically, the algorithm anticipates the hardware configurations in less frequently executed
application points avoiding the FPGA-area placement conflicts.

—The presented compiler has been used for the compilation of the Motion JPEG encoder
application for the Molen reconfigurable processor, with the DCT* function executed on
the reconfigurable hardware. We measured a speedup of 2.5 against a maximal speedup
of 2.96, which represents 84 % performance efficiency using automatically generated
but non-optimized DCT* hardware implementation. The instruction scheduling algo-
rithm contributes for 43 % up to 94 % performance improvement compared to the pure
software execution, while a simple scheduling algorithm produces a significant perfor-
mance decrease.

The paper is organized as follows. In the following section, we present background in-
formation and related work. In Section 3, we describe the Molen compiler required for
the PowerPC processor and the Molen prototype. A formal description of our scheduling
problem and the instruction scheduling algorithm are included in Section 4. The exper-
imental results are discussed in Section 5 and finally, we present conclusions and future
work.

2. BACKGROUND AND RELATED WORK

In this section, we briefly discuss the Molen programming paradigm [Vassiliadis et al.
2003], describe the Molen machine organization that supports it and discuss related work.

The Molen programming paradigm [Vassiliadis et al. 2003] is a sequential consistency
paradigm for programming FCCMs possibly including a general-purpose computational
engine(s). The paradigm allows for parallel and concurrent hardware execution and is in-
tended (currently) for single program execution. For a given ISA, a one time architectural
extension (based on the co-processor architectural paradigm) comprising 4 instructions
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Fig. 1. The Molen machine organization

(for the minimal πISA as defined in [Vassiliadis et al. 2003]) suffices to provide an almost
arbitrary number of operations that can be performed on the reconfigurable hardware. The
four basic instructions needed are set, execute, movtx and movfx. By implementing
the first two instructions (set/execute) a hardware implementation can be loaded and exe-
cuted on the reconfigurable processor. The movtx and movfx instructions are needed to
provide the communication between the reconfigurable hardware and the general-purpose
processor (GPP).

The Molen machine organization [Vassiliadis et al. 2001] that supports the Molen pro-
gramming paradigm is described in Figure 1. The two main components in the Molen
machine organization are the ‘Core Processor’, which is a GPP and the ‘Reconfigurable
Processor’ (RP). Instructions are issued to either processors by the ‘Arbiter’ by means of
a partial decoding of the instructions received from the instruction fetch unit. The support
for the SET/EXEC instructions required in the Molen programming paradigm is based on
reconfigurable microcode. The reconfigurable microcode is used to emulate both the con-
figuration of the Custom Computing Unit (CCU) and the execution of implementations
configured on the CCU.

In the last decade, several approaches have been proposed for coupling an FPGA to a
GPP. In the rest of this section, we present the software support for programming such
hybrid architectures and a discussion of how they relate to the research reported in this
paper.

Reconfigurable Architectures Performance: Several reconfigurable architectures have
been proposed in the last decade (see [Sima et al. 2002] for a classification). The reported
performance improvements are mainly based on simulation or estimation (e.g. [Kastrup
et al. 1999] [Rosa et al. 2003]) results. Eventhough some implementations exist [Lee et al.
2000], in most cases the performance is just estimated. In this paper, we present the val-
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idation of the Molen approach based on a real and running implementation of the Molen
reconfigurable processor platform.

Compilers for Reconfigurable architectures: When targeting hybrid architectures to
improve performance, the applications must be partitioned in such a way that certain com-
putation intensive kernels are mapped on the reconfigurable hardware. Such mapping is
not simple as it assumes deep understanding of both software and hardware design. Sev-
eral approaches (e.g. [Campi et al. 2003] [Rosa et al. 2003]) use standard compilers to
compile the applications to FCCMs. As standard compilers do not target reconfigurable
architectures, the kernel computations implemented in hardware are manually replaced
by the appropriate instructions for communication with and controlling the reconfigurable
hardware. This replacement is done manually making it a time-consuming [Stefanov et al.
2004] and error-prone process. Automated tools (compilers) should be used in order to
facilitate the design and development process [Gokhale and Stone 1998] [Kastrup et al.
1999] [Ye et al. 2000]. In the DEFACTO project [Bondalapati et al. 1999], compiler anal-
yses and transformations are involved in HW/SW partitioning, while standard C compilers
are used to generate the machine code for the target GPP. However, the extensions of the
cited compilers mainly aim to generate the instructions for the reconfigurable hardware
and they are not designed to easily support new optimizations that exploit the possibilities
of the reconfigurable hardware. The Molen compiler presented in this paper, is based on a
a flexible and extensible infrastructure that allows to add easily new optimization and anal-
ysis passes that take into account the new features of the reconfigurable target architecture.

Compiler Support for Hiding the Reconfiguration Latency: One of the major draw-
backs of the reconfigurable hardware is the huge reconfiguration latency [Bolotski et al.
1994] [Sima et al. 2002]. Different techniques such as configuration caching and prefetch-
ing (e.g. [Vassiliadis et al. 2001]) have been proposed to reduce the reconfiguration latency.
These hardware techniques should be combined with compiler optimizations that provide
an efficient instruction scheduling to use the available parallelism between different FC-
CMs components in the hardware reconfiguration phase. Nevertheless, many FCCMs do
not expose a specific instruction for hardware reconfiguration (see [Sima et al. 2002] for
FCCMs classification), thus impeding compiler support for hiding reconfiguration latency.

In [Moscu Panainte et al. 2004a], it has been reported that redundant hardware config-
uration produces significant performance decrease due to the huge reconfiguration latency
of current FPGA. In order to prevent this performance loss, inappropriate scheduling of
the hardware configuration instructions (e.g., inside loops) should be avoided. The recent
scheduling algorithm discussed in [Moscu Panainte et al. 2004b] addresses this problem
for the particular case when only one hardware operation has to be scheduled.

However, in order to achieve significant performance improvement for real applications,
more than one operation is usually implemented in hardware. As the available area of the
reconfigurable platforms is limited, the coexistence of all hardware configurations on the
FPGA for all application execution time may be restricted. Moreover, hardware imple-
mentations of these operations can be developed by different IP providers that can impose
a predefined FPGA area allocated for each operation, resulting in FPGA-area placement
conflicts. Two hardware operations have such a FPGA-area placement conflict (or just
conflict in the rest of the paper) if i) their combined reconfigurable hardware area is larger
than the total FPGA area or ii) the intersection of their hardware areas is not empty.

A compiler approach that considers the restricted case of two consecutive and non-
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conflicting hardware operations is presented in [Tang et al. 2000]. In this approach, the
hardware execution of the first operation is scheduled in parallel with the hardware config-
uration of the second operation. Our approach is more general as it performs scheduling
for any number of hardware operations at procedural level and not only for two consecutive
hardware operations. The performance gain produced by our scheduling algorithm results
from reducing the number of performed hardware configurations.

3. THE MOLEN COMPILER

The Molen compiler comprises the Stanford SUIF2[SUIF2 ] (Stanford University Inter-
mediate Format) Compiler Infrastructure for the frontend and the Harvard Machine SUIF
framework[MachineSUIF ] for developing compiler backends and optimizations. In [Moscu
Panainte et al. 2003], the theoretical compiler extensions target a virtual Molen reconfig-
urable architecture including an x86 processor as a GPP. In this section we present the
implemented compiler backend and extensions required for the Molen hardware imple-
mentation on the Virtex II Pro platform FPGA which includes a PowerPC processor.

PowerPC Backend: The first step is to have a backend C-compiler that generates the
appropriate binaries to be executed on the PowerPC processor integrated on the Virtex II
Pro board. As the current MachineSUIF backends excluded the backend for PowerPC ar-
chitecture, we developed a PowerPC compiler backend and implemented the PowerPC in-
struction generation, register allocation, stack frame allocation and software floating-point
emulation following the PowerPC EABI. Additionally, in order to exploit the opportuni-
ties offered by the reconfigurable hardware, the PowerPC backend has to be extended in
several directions, as described in the rest of this section.

Compiler Extensions for Molen Implementation: The Molen organization previously
presented has been adopted in this paper. We have implemented the minimal instruction
set extension, containing the following:

—SET/EXECUTE instructions are included in the MIR (Medium-level Intermediate Rep-
resentation) and LIR (Low-level Intermediate Representation) of the Molen compiler.
In order not to modify the PowerPC assembler and linker, the compiler generates the
instructions in binary form. For example, for the instruction exec 0x80000C the gener-
ated code is .long 1A000031 where the encoding format (presented in [Kuzmanov and
Vassiliadis 2003]) is recognized by the arbiter.

—MOVTX/MOVFX: The equivalent PowerPC instructions are mtdct/mfdcr. Moreover,
the XRs (exchange registers) are not physical registers but they are mapped at fixed
memory addresses.

In Figure 2, we present the code generated by the Molen compiler for the DCT* function
call executed on the reconfigurable hardware. In order to correctly generate the instructions
for hardware configuration and execution, the compiler needs information about the DCT*
hardware implementation. This information is described in an FPGA Description File,
which contains for the DCT* operation the fields presented in Figure 3. Line 2 defines the
start memory address from where the XRs are mapped. In line 3, the compiler is informed
that there is a hardware implementation for the DCT* operation with the microcode ad-
dresses for SET/EXECUTE instructions defined in lines 4-5. The sync instruction from
Figure 2 is a PowerPC instruction that ensures that all instructions preceding sync in pro-
gram order complete before sync completes. The sequences of sync and nop instruction
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la 3, 12016(1) #load the address of the first param
la 12, 12016(1) #load the address of the second param
mtdcr 0x00000056,3 #send the address of the first parameter
mtdcr 0x00000057,12 #send the address of the second parameter
sync #
nop #synchronization
nop #
nop #
bl main. label0 #instr. required by the arbiter impl.
main. label0:
.long 0x1A000031 #exec 0x8000C
nop #synchronization

Fig. 2. Code generated by the Molen compiler for the reconfigurable DCT* execution

1: NO XRS = 512 # number of available XRs
2: START XR = 0x56 # the memory address of the first XR
3: OP NAME = dct # info about the DCT* operation
4: SET ADDR = 0x39A100 # the address of the DCT* SET microcode
5: EXEC ADDR = 0x80000C # the address of the DCT* EXEC microcode
6: END OP # end of the info about the DCT* operation
................................. # info about other operations

Fig. 3. Example of an FPGA Description File

are used to flush the processor pipeline. The SET instruction is not included in the above
example because it has been scheduled earlier by the Molen compiler scheduling algorithm
presented in the following section.

4. INSTRUCTION SCHEDULING FOR DYNAMIC HARDWARE CONFIGURA-
TIONS

In this section, we propose a general approach for intraprocedural instruction scheduling
of the hardware configuration instructions taking into account the FPGA-area placement
conflicts. It is based on the state-of-art compiler optimization for partial expression redun-
dancy elimination presented in [Cai and Xue 2003]. In order to incorporate the FPGA-area
placement conflicts between the hardware operations, we introduce a new type of data-
flow analysis as described in this section. Additionally, it can switch for one operation
from hardware execution to its software execution when the hardware operation provides
no performance improvement even after the scheduling phase.

In order to illustrate the instruction scheduling algorithm, we present a motivational
example that emphasizes the main features of the proposed algorithm.

Example: The motivational example is presented in Figure 4(b) and it shows the control-
flow graph of a procedure, when op1, op2 and op3 operations are performed on the recon-
figurable hardware. The numbers associated with each edge of the graph represent the
execution frequency of the edge. The FPGA area allocation for the considered hardware
operations is presented in Figure 4(a). As mentioned in Section 2, we observe that op1 and
op2 cannot fit together on the FPGA (thus op1 conflicts with op2) while op2 and op3 have
a common overlapping area (thus op2 conflicts op3).

One first observation is the redundant repetitive execution of SET op1 instruction from
B5 in the loop B4-B5-B6. Additionally, it should be noticed that moving this SET op1
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# SET op1  :   20
# SET op2  :   10+10= 20
# SET op3  :   10+10= 20
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Fig. 4. Motivational example for instruction scheduling of hardware configurations (b) with FPGA-area place-
ment constraints (a)

instruction on (B1, B2) edge will also make redundant the SET op1 instruction from B13.
In the initial simple scheduling, the FPGA is configured for op1 100 times in B5 and 10
times in B13. As a result of our scheduling algorithm, the hardware configuration for op1
will be executed only 20 times. The hardware configuration for op2 from B10 cannot be
moved further then B7, as it will change the hardware configuration for op3 that must be
performed in B7.

The scheduling algorithm can also select a software execution for an operation, when its
reconfigurable hardware execution does not produce the expected performance improve-
ment. In our example from Figure 4(b), there are no redundant configurations for op3, thus
the hardware execution of op3 has to be preceded each time by the hardware configura-
tion. When the hardware configuration consumes all the performance gain produced by
the hardware execution of op3, the scheduler can switch to software execution on the GPP.

4.1 Instruction Scheduling Problem Statement

We represent the control flow graph (CFG) of a procedure as a directed graph G < N,E,w >
where the nodes N represent the basic blocks, the edges E represent the control flow de-
pendencies and the weight function w: E → R+ represents the execution frequency of
each edge. The operations implemented in hardware are included in HW set. We de-
fine DEFop as the set of basic blocks n ∈ N that contain an instruction SET op immedi-
ately followed by EXEC op instruction. A node n ∈ DEFop is called a definition node
for op. In our example from Figure 4, B5 and B13 are definition nodes for op1. An
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FPGA-area placement conflict between two operations op1 and op2 is represented as op1
= op2. The information about these conflicts is provided by a symmetric function f :
HW x HW → {0,1}, where f(op1, op2) = 1 if op1 = op2, and 0 otherwise. We define
Con f lictop = {n ∈ N|∃opi ∈ HW,n ∈ DEFopi ∧ op = opi}. A node n ∈ Con f lictop is
called a conflict node for op. In Figure 4, B10 and B14 are conflict nodes for both op1 and
op3.

In order to simplify this discussion, we make the following assumptions. We assume that
there is a single entry node with no predecessor (pred(entry) = /0, where pred(n)={m ∈ N
| (m,n) ∈ E}) and a single exit node with no successor (succ(n) = /0, where succ(n)={m
∈ N | (n,m) ∈ E}). Also, we assume that a node cannot be simultaneous in DEFop and
Con f lictop (e.g. a node cannot be a definition node for two conflicting operations). In
consequence, when more conflicting operations are included in the same basic node, this
node must be split into a set of nodes, one for each operation. The final assumption is
that only the SET/EXECUTE instructions included in the CFG affect the reconfigurable
hardware.

For each operation op, we consider a set of insertion edges δop ⊆ E. The merit of
δop is measured by the function Wδ = ∑e∈δop w(e). Loosely stated, the objective of our
algorithm is to move upwards the SET instructions from DEFop on less frequently executed
edges δop, in order to reduce the total number of performed SET instructions. A formal
description of this problem is as follows:

PROBLEM Given a directed, weighted graph G < N,E,w > and a set of hardware
operations HW, each defined in DEFop ⊆ N and with conflicts in Con f lictop ⊆ N, find a
set of insertion edges δ ⊆ E for each op ∈ HW which minimizes Wδ under the following
constraints:

—∀ n ∈ DEFop, for all paths from entry to n, there is an insertion edge (u,v) ∈ δ,

—@ k ∈Con f lictop such that k is included in any subpath from v to n

The minimization of Wδ assures that a smaller or equal number of SET instructions will
be performed in the final CFG graph than in the input graph. The first constraint reflects the
requirement that hardware must be first configured (using the SET instruction) on all paths
before the operation can be performed (using the EXECUTE instruction). The second
constraint assures that no conflict operation will change the hardware configuration before
the operation execution.

4.2 Instruction Scheduling Algorithm

The problem of removing redundant hardware configurations is similar to the well-known
problem of removing redundant expressions. As hardware configurations do not cause any
exception, we can use an aggressive speculative scheduling for the hardware configurations
in order to anticipate them on less executed paths and thus, to make redundant the hardware
configurations from frequently executed paths. We introduce the scheduling algorithm that
solves the problem defined in the previous section in three steps. In the first step, the
subgraphs where the hardware configurations can be anticipated are constructed. Next,
a minimum s-t cut algorithm is applied to find the optimal insertion edges δop for each
hardware operation. Finally, a switch from hardware to software execution is introduced
for the cases when the expense of hardware configurations in the newly inserted nodes still
exceeds the performance gain of hardware execution.
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Fig. 5. Set of PANT and AVAL values for the input graph from Figure 4

4.2.1 Step 1: The Anticipation Subgraph. Constructing the anticipation graph is a key
step in our algorithm. The main goal is to eliminate from the initial graph the edges that
cannot propagate upwards the hardware configurations due to hardware conflicts. This step
contains two uni-directional data-flow analyses (for partial anticipability and availability)
and one pass for constructing the anticipation subgraph by removal of non-essential edges.

Partial Anticipability A hardware configuration for operation op is partially anticipated
in a point m if there is at least one path from m to the exit node that contains a definition
node for op and none of the paths from m to the first such definition node contains a conflict
node for op.

A confluence conflict node n is a node with two successors s1 and s2 such that op1 is
partially anticipated at the entry point of s1, op2 is partially anticipated at the entry point
of s2 and op1 = op2. Due to hardware conflicts, op1 and op2 cannot be both anticipated
in the confluence conflict node n. We consider a restricted partial anticipability analysis
where the confluence conflict nodes limit the partial anticipability for both op1 and op2.
This is a backward data-flow problem, where the data-flow equations for a basic block i
are defined as follows:

PANTin(i) = Gen(i)∪ (PANTout(i)−Kill(i))
PANTout(i) =

U

j∈Succ(i)
PANTin( j)

PANTout(exit) = /0
In the first equation, GEN(i) is the set of hardware operations generated in the basic
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block i. A hardware operation op1 is generated in a basic block i if i ∈ DEFop . The set
Kill(i) includes all hardware operations that are in conflict with the operations generated in
the basic block i. A hardware operation op ∈ PANTin(i) is partially anticipated at the entry
of a basic block i if it is generated in i or if it is partially anticipated at the exit of i and it is
not killed in i.

The second equation differs from standard data-flow equations involved in iterative data-
flow analysis where the join operator is

S

or
T

. The operator
U

is a conditional reunion
that excludes the conflicting hardware operations and defined as follows:

A
U

B = {x ∈ A
S

B| 6 ∃y ∈ A
S

B,x = y}
This operator is used to stop the partial anticipability of the operations with hardware

conflicts at confluence points. A hardware operation op ∈ PANTout(i) is partially antici-
pated at the exit of a basic block i if it is partially anticipated at the entry of any successor
of i and i is not a conflict confluence node for op. In Figure 5, we present the values for
PANT for the input graph presented in Figure 4. For the basic blocks where these values
are missing, there are implicitly assumed as /0.

Availability We use the standard forward data-flow analysis for availability described
by the set of data-flow equations:

AVALout(i) = Gen(i)∪ (AVALin(i)−Kill(i))
AVALin(i) =

T

j∈Pred(i)
AVALout( j)

AVALin(entry) = /0
This analysis is used to eliminate the hardware configurations when they are already

available. The values for AVAL for our example graph are presented in Figure 5.
Constructing the Anticipation Graph Based on the previously presented data-flow

analysis results, for each operation op ∈ HW, we eliminate from the initial graph the
nodes which are not essential as follows. We call an edge (u,v) an essential edge for
op if Ess(u,v) = (u,v) ∈ E ∧ op /∈ AVALout(u)∧ op ∈ PANTin(v). The reduced graph
Grd contains the nodes Nrd = {n ∈ N|∃m ∈ N,Ess(n,m)∨Ess(m,n)} and the edges Erd =
{(u,v)∈ E|Ess(u,v)}. The reduced graph may contain a set of disconnected subgraphs. In
order to connect them, we introduce a new pseudo entry node (called s) and a pseudo exit
node (called t) and the edges Est = {(s,n)|n has no predecessor in Nrd}

S

{(n, t)|n has no
successor in Nrd} with infinite execution frequency. For our example from Figure 4, the
anticipation graphs are presented in Figure 6.

4.2.2 Step 2: Minimum s-t Cut. In this step, the set of insertion edges from our prob-
lem definition is determined by applying a minimum s-t cut algorithm. The purpose of
the min cut algorithm is to select the less frequently executed edges from the anticipation
graph on all paths to the definition nodes. In consequence, the min cut algorithm assures
the minimization requirement and the first constraint from our problem definition, while
the construction of the anticipation graph secures the second constraint.

One of the important advantages of using a min cut algorithm is to avoid moving up-
wards SET instructions on edges inside loops. In our implementation, we used Edmonds-
Karp minimum s-t cut algorithm. For the three hardware operations from Figure 4, their
minimum cuts are presented in Figure 6. We notice that for op3 (depicted in Figure 6 (c)),
the SET instruction from B7 can propagate further then B2 (on edge (B1, B2)). The min-
imum cut algorithm chooses the edge (B2, B3) as its execution frequency is smaller (10
versus 20 for (B1,B2)).
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Fig. 6. The anticipation graph for op1 (a), op2 (b) and op3 (c) from Figure 4

4.2.3 Step 3: Selection of Software/Hardware Execution. When, even after our schedul-
ing, the hardware configuration and execution is more expensive than the pure software ex-
ecution, the scheduling algorithm can switch for this operation from hardware execution to
software execution. In this case, all the SET instructions for this operation are eliminated
and its EXECUTE instructions are replaced by standard calls to the associated software
function. In our example from Figure 4, op3 may be in this case if one hardware configu-
ration and one hardware execution is more expensive than one software execution. For the
rest of the hardware operations, all associated SET instructions will be removed and new
equivalent SET instructions will be introduced on the corresponding insertion edges. For
example, in Figure 4, the SET op1 instructions from B5 and B13 will be replaced by a new
SET op1 instruction on the (B1, B2) edge as a result of the min-cut algorithm from Figure
6 (a).

This step requires additional information about hardware/software execution/configuration
time to be provided in the FPGA description file. As the selection of the software execu-
tion for one hardware operation significantly reduces the number of FPGA-area placement
conflicts, our future work will address algorithms for the optimal selection of HW/SW
execution.

5. EXPERIMENTAL RESULTS

The target FCCM of our experiments is the Molen prototype implemented on the Virtex II
Pro platform FPGA of Xilinx described in [Kuzmanov and Vassiliadis 2003]. In this im-
plementation, the GPP is the IBM PowerPC 405 processor at 250 MHz immersed into the
FPGA fabric. The application domain of these experiments is video data compressing. We
consider a real-life application namely Motion JPEG (M-JPEG) encoder which compresses
sequences of video frames applying JPEG compression to each frame. The M-JPEG im-
plementation is based on the public domain implementation described in ”PVRG-JPEG
CODEC 1.1”, Portable Video Research Group, Stanford University.

The experimental validation comprises two steps. We first validate the Molen compiler
by presenting a complete design flow experiment and measuring the performance improve-
ment for the Molen implemention. The second part assesses the performance impact of the
proposed scheduling algorithm for the hardware configuration instructions.
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Fig. 7. The design flow

5.1 Molen Compiler Validation

In this subsection, we report the performance improvements of the Molen implementation
on the Virtex II Pro for the multimedia video frame M-JPEG encoder. The instruction
scheduling algorithm presented in Section 4 is not included in this experiment.

Design Flow: The design flow used in our experiments is depicted in Figure 7. In the tar-
get application written in C, the software developer introduces pragma annotations for the
functions implemented on the reconfigurable hardware. These functions are translated to
Matlab and processed by the COMPAAN[Kienhuis et al. 2000]/LAURA[Zissulescu et al.
2003] toolchain to automatically generate the VHDL code. The commercial tools can then
be used to synthesize and map the VHDL code on the target FPGA. The application is
compiled with the Molen compiler and the executable is loaded and executed on the target
Molen FCCM.

M-JPEG, Software and Hardware Implementations: The most demanding function
in M-JPEG application is 2D DCT extended with preshift and bound transforms (named
in this paper as DCT*). In consequence, DCT* is the first function candidate for hard-
ware implementation. The only modification of the M-JPEG application that indicates the
reconfigurable DCT* execution is the introduction of the pragma annotation as presented
in Figure 7. The hardware implementation for execution of the DCT* function on the
reconfigurable hardware is described in [Stefanov et al. 2004]. The VHDL code is au-
tomatically extracted from the DCT* application code using COMPAAN[Kienhuis et al.
2000]/LAURA[Zissulescu et al. 2003] tools. The Xilinx IP core for DCT and the ISE
Foundation [ISE ] are used to synthesize and map the VHDL code on the FPGA. After
the whole application is compiled with the Molen compiler, in the final step we use the
GNU assembler and linker and the C libraries included in the Embedded Development Kit
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Name # frames Resolution Format Color/BW
[pixels]

tennis 8 48x48 YUV color
barbara 1 48x48 YUV color
artemis 1 48x48 YUV color

Table I. M-JPEG video sequences

tennis [0-7] barbara artemis
MIN MAX

M-JPEG 33,671,821 33,779,813 34,014,157 34,107,893
Pure DCT* 1,242,017 1,242,017 1,242,017 1,242,017

Software DCT* 22,356,306 22,356,306 22,356,306 22,356,306
Execution cumulated

(a) Maximal 66.18% 66.39% 65.73% 65.55%
improvement

Execution on M-JPEG 13,443,269 13,512,981 13,764,509 13,839,757
Molen DCT* HW 4,125 4,125 4,125 4,125

prototype DCT* HW + 102,589 102,589 102,589 102,589
(b) Format conv.

Practical 2.50 2.51 2.47 2.46
speedup

Comparison Theoretical 2.96 2.98 2.92 2.90
(c) speedup

Efficiency 84.17% 84.65% 84.70% 84.91%

Table II. M-JPEG execution cycles and comparisons

(EDK) [EDK ] from Xilinx to generate the application binary files.
Performance Measurements: The current Molen implementation is a prototype ver-

sion, which imposes the following constraints:

—the memory size for text and data sections is currently limited to maximum 64K. In
order for the M-JPEG executable to fulfill these limitations, we rewrote the original
application preserving only the essential features for compressing sequences of video
frames. Moreover, these limitations also restrict the size of the input video frames to
48x48 pixels. The input video-frames used in these experiments are presented in Table
I.

—dynamic reconfiguration is not supported (yet) on the Molen prototype. In consequence,
we could not measure the impact on performance of repetitive hardware configurations.

In addition, the performance measurements have been performed given the following
additional conditions:

—the input/output operations are extremely expensive for the current Molen prototype,
due to the standard serial connection implemented by UART at 38400 bps between the
Molen prototype and the external environment; this limitation can be removed by the
implementation of faster I/O system. We therefore did not include the I/O operation
impact in our measurements as they are not relevant for the RC paradigm.

—the DCT* hardware implementation requires a different format for the input data than
the software implementation. Consequently, an additional data format conversion is
performed in software before and after the DCT* execution on reconfigurable hardware.
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—taking into account that the target PowerPC processor included in the Virtex-II Pro plat-
form does not provide hardware floating-point support and that the required floating-
point software emulation is extremely expensive, the integer DCT is used for both soft-
ware and hardware implementation to allow a fair comparison.

The execution cycles for M-JPEG encoder and comparisons are presented in Table II.
As we considered a sequence of 8 video frames for tennis input sequence, we present
only the minimal and maximal values for each measurement in order to avoid redundant
information.

Pure Software Execution: As a point of reference, we present in Table II(a), the results
of our measurements performed on the PowerPC processor from the Virtex II Pro platform,
without DCT* hardware acceleration. In row 1, the number of cycles used for executing
the whole M-JPEG application is given. In row 2, the cycles consumed by one execution of
the DCT* function are given and the next row contains the total number of cycles spent in
DCT*. From these numbers, we can conclude that 66% of the total execution time is spent
in the DCT* function, given the input set. This 66% represents the maximum (theoretical)
improvement that can be obtained by hardware acceleration of the DCT* function. The
corresponding theoretical speedup - using Amdahl’s law - is presented in Table II(c), row
2. The ratio of the measured speedup to this theoretical speedup is referred in this paper as
the performance efficiency.

Execution on the Molen prototype: In Table II(b), we present the number of cycles for
the M-JPEG execution on the Molen prototype. From row 1 we can conclude that an over-
all speedup of 2.5 (Table II(c), row 1) is achieved. The DCT* execution on the reconfig-
urable hardware takes 4125 cycles (row 2) which is around 300 times less than the software
based execution on the PowerPC processor (Table II(a), row 2). However, due to the data
format conversion required by the DCT* hardware implementation, the overall number of
cycles for one DCT* execution becomes 102,589 (Table II(b), row 3), resulting in a 10 fold
speedup for DCT* and a 2.5 speedup globally. The performance efficiency is about 84% as
presented in Table II(c), last column. It is noted that this efficiency is achieved even though
i) the hardware implementation has been automatically but non-optimally obtained (using
COMPAAN[Kienhuis et al. 2000]/LAURA[Zissulescu et al. 2003] tools) and ii) additional
software data conversion diminished the DCT* speedup in hardware. From these measure-
ments, we can conclude that even non-optimized implementation can be used to achieve
considerable performance improvements. In addition, taking into account that only one
function (DCT*) is executed on the reconfigurable hardware, we consider that an overall
M-JPEG speedup of 2.5x from the theoretical speedup of 2.96 x confirm the viability of
the presented approach.

5.2 Instruction Scheduling Impact on Performance

The presented instruction scheduling algorithm has been implemented as a MachSUIF pass
[MachineSUIF ] within the Molen compiler. The overall time-complexity of the scheduling
algorithm is mainly determined by the two data-flow analyses and the min s-t cut algorithm.
For the data-flow analyses, the time complexity in the worst-case is O(|N|x(b+2)), where
b is the maximum number of back edges on any acyclic path in the graph G. The time
complexity of the Edmonds-Karp algorithm is O(|N|x|E|2), thus the proposed scheduling
algorithm has an overall polynomial time complexity. The compilation time spent in the
scheduling phase for the considered applications is negligible (around 1 s) compared to the
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HW Execution SW Execution
Op EXEC Area SET One call %Total

Name [cycle] [slice] [cycle] [cycle] M-JPEG

DCT 416 848 431771 44396 80 %
Quant 73 397 202073 1494 3 %
VLC 272 193 98237 6921 12.5 %

Table III. HW/SW features for the operations that candidate for hardware implementation
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Fig. 8. Comparison of estimated performance for our scheduling algorithm for M-JPEG benchmark

overall compilation time.
The input sequence for the multimedia benchmark M-JPEG encoder in this case study

contains 30 color frames from ”tennis” in YUV format with a resolution of 256x256 pixels.
The operations performed on the FPGA are DCT (2-D Discrete Cosine Transform which is
different from DCT* with preshift and bound transforms), Quantization and VLC (Variable
Length Coding), which are the main kernels in the considered application. The Xilinx IP
cores for DCT [Pillai 2002], Quantization [Pillai 2003a] and VLC [Pillai 2003b] are used
for hardware implementations. Due to the limitation of the Molen prototype (e.g. lack of
support for dynamic reconfiguration and reduced image size), the results presented in this
subsection are not measured on the real board as in the previous experiment, but they are
based on simulation using the PowerPC simulator from Simics [Magnusson et al. 2002].

We present in Table III the characteristics of DCT, Quantization and VLC hardware and
software executions. Based on the characteristics of the XC2VP20 chip, for which a com-
plete configuration of 9280 slices takes about 20 ms, we estimated the configuration time
for each operation (Table III, column 4) in terms of PowerPC processor cycles. Comparing
the values from Table III (column 4 and 5), we notice that the hardware configuration alone
is about 10 times more expensive than the complete software execution. Using Amdhal’s
law, we determine that the simple scheduling for DCT will slowdown the M-JPEG bench-
mark up to 10x. For this reason, we compare the performance of our scheduling algorithm
to the pure software approach rather than the inefficient simple scheduling.

The estimated performance for the M-JPEG application for different possible conflicts
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between the three hardware operations are presented in Figure 8. The considered conflicts
are to be expected for different FPGA area sizes or predefined FPGA area allocations.
The standard unit of this comparison is the pure software execution (SW) when the M-
JPEG benchmark is completely performed on the GPP alone. The performance of our
instruction scheduling algorithm for the real Xilinx hardware implementations is denoted
as REAL. As recently some hardware approaches [Blodget et al. 2004] have been proposed
for reducing the hardware configuration time, we also analyze the impact of our scheduling
algorithm when the hardware configuration is accelerated by a factor of 20x1 compared to
the current values from Table III, column 4. The performance of our instruction scheduling
algorithm combined with this faster hardware configuration is presented in Figure 8 as
FAST. For completeness, we also present the IDEAL case when the hardware configuration
is performed in zero cycles.

We notice that for the ”no conflict” case, the performance improvement is about 94 %
(equivalent to a 16x speedup) for both REAL and FAST scheduling and very close to the
IDEAL performance. In this case, the instruction scheduling algorithm moves the hardware
configurations for all three operations at the procedure entry point. In consequence, there is
only one hardware configuration for each hardware operation, thus the difference between
REAL and FAST is negligible.

For the rest of the ”conflict” cases, the scheduler for REAL will switch from hardware
execution to software execution for the conflicting operations. For example, when there
is a DCT - Quantization conflict, the scheduler will move both DCT and Quantization
operation in software, while the third non conflicting operation VLC remains in hardware;
its hardware configuration needs to be performed only once, at the procedure entry point.

For the FAST scheduling, even when one operation has a conflict, it may remain in
hardware, thanks to the 20x faster hardware configuration. For the case with DCT - Quan-
tization - VLC conflicts, both DCT and VLC are performed in hardware and produce a
performance improvement of 43 % as the fast hardware configuration does not consume
all performance gain of the hardware execution. The scheduler selects the software execu-
tion for Quantization, in order to prevent a performance decrease produced by its hardware
configuration and execution (16 % for Quantization). Therefore, the performance improve-
ment for simple scheduling (all operations executed on the reconfigurable hardware) and
20x faster reconfigurations is 27 % while our scheduling algorithm contributes to a perfor-
mance improvement between 43 % and 94 % when compared to a pure software .

In consequence, we notice that for the non-conflict case, our algorithm capitalizes the
maximum performance gain that can be obtained by hardware execution of the considered
operations. Finally, the results presented in Figure 8 emphasize the important performance
impact of our scheduling algorithm even for the future faster FPGAs.

6. CONCLUSIONS

In this paper, we presented the implemented compiler support for the Molen prototype on
the Virtex II platform FPGA. The compiler allows the automatic modification of the ap-
plication source code based on pragma annotation and using the extensions following the
Molen Programming Paradigm. We have also introduced a general scheduling algorithm
for hardware configuration instructions. This algorithm takes into account specific fea-
tures of the reconfigurable hardware such as the FPGA-area placement conflicts and the

1 The factor has been chosen arbitrarily. Mutatis mutandis, similar observations will then hold.
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reconfiguration latencies of each hardware operation. Based on the characteristics of the
compiled application, the scheduling reduces the number of performed hardware config-
urations preserving the application semantics. It combines advanced compiler techniques
with powerful graph theory algorithms.

The results of our case studies show that the performance is dramatically improved by
using our scheduling algorithm, and this improvement will hold for future faster FPGA
platforms. The experiment also evaluated the effectively realized speedup of reconfigurable
hardware execution of the DCT* function of the M-JPEG application. The generated code
was executed on the Molen prototype and showed a 2.5 speedup. This speedup consumed
84% of the total achievable speedup which amounts to 2.9. Taking into account that hardly
any optimization was performed and only one function ran on the reconfigurable fabric, a
significant performance improvement was nevertheless observed.

Further research on the compiler will address optimizations for dynamic configurations
and parallel execution on the reconfigurable hardware. Another issue is to improve the
scheduling algorithm by extending the data-flow analysis to propagate a conflicting oper-
ation beyond the confluence conflict points. We also investigate the integration of FPGA
area allocation in our scheduling.
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