
MODIFIED COLLISION PACKET CLASSIFICATION USING COUNTING
BLOOM FILTER IN TUPLE SPACE

Mahmood Ahmadi and Stephan Wong
Computer Engineering Laboratory

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

{mahmadi, stephan}@ce.et.tudelft.nl

Abstract

Packet classification continues to be an important challenge
in network processing. It requires matching each packet
against a database of rules and forwarding the packet ac-
cording to the highest priority matching rule. Within the
packet classification hash-based algorithms, an algorithm
that is gaining interest is the tuple space search algorithm
that groups the rules into a set of tuple spaces according
to their prefix lengths. An incoming packet can now be
matched to the rules in a group by taking into consider-
ation only those prefixes specified by the tuples. More
importantly, matching of an incoming packet can now be
performed in parallel over all tuples. Within these tuple
spaces, a drawback of utilizing hashing is that certain rules
will be mapped to the same location, also called collision.
The negative effect of such collision is that it will result
in multiple memory accesses and subsequently longer pro-
cessing time. In this paper, we propose to use a pruned
counting Bloom filter to reduce collisions in the tuple space
packet classification algorithm. This approach decreases
the number of collisions and memory accesses in the rule
set hash table in comparison to a traditional hashing sys-
tem. We propose to utilize the pruned counting Bloom fil-
ter to decrease the number of collisions. More specifically,
we investigate several well-known hashing functions and
determine the number of collisions and show that utilizing
the pruned counting Bloom filter the number of collisions
can be further reduced by at least 4% and by at most 32%
for real rule sets.

KEY WORDS
Packet classification, tuple space, hashing, Bloom filter

1 INTRODUCTION

Traditionally, routers forward packets based on the destina-
tion address in the packet. The support of many different
services such as Quality of Service (QoS), Virtual Private
Network (VPN), policy-based routing, traffic shaping, fire-
walls, and network security, increases the importance of
packet classification. In order to provide these services,

the router must categorize the incoming packets according
to different criteria. These criteria are determined based
on one or more fields in the packet header. Packet header
fields include destination and source IP addresses, the pro-
tocol type, and the destination and source port numbers as
depicted in Figure 1. Packet classification can be seen as
the categorization of incoming packets based on their head-
ers according to specific criteria that examine specific fields
within a packet header. The criteria are comprised of a set
of rules that specify the content of specific packet header
fields to result in a match. A packet classifier can be imple-
mented in either software or hardware. Traditionally, hash-
ing is utilized in packet classification to speed up the pro-
cess of determining whether an incoming packet matches a
certain rule (that in turn determine the action to take on the
packet). Furthermore, certain rules only examine specific
fields (sometimes even only the prefix) of the packet head-
ers specified using a tuple. Consequently, rules that exam-
ine the same fields (or the prefix thereof) are combined in
a so-called tuple space with all those rules hashed into a
hash table. Summarizing, the (prefix of) headers of incom-
ing packets are selected based one the tuple (the number
of tuples depends on the rule set) and hashed to determine
whether it matches a rule within that particular tuple space.
A common problem in using hashing is collision, i.e., the
mapping of rules (within a single tuple space) in the hash
table can be to the same hash table location. Consequently,
when an incoming packet is hashed to a hash table entry
containing multiple rules it must be matched to all these
rules resulting in a much longer processing time.

In this paper, we propose to utilize the pruned count-
ing Bloom filter to decrease the number of mentioned colli-
sions. More specifically, we investigate several well-known
hashing functions and determine the number of collisions
and show that utilizing the pruned counting Bloom filter
the number of collisions can be reduced by at least 4% and
by at most 32% for real rule sets.

This paper is organized as follows. Section 2 de-
scribes a summary of related work in this area. Section
3 describes the tuple space algorithms for packet classifica-
tion, the definition of Bloom filter, and their implementa-
tions. Section 4 presents our results. Section 5 presents the

1

Protocol
8 bits 32 bits

Source IP

Transport Layer

Source Port Destination Port Destination IP
32 bits16 bits16 bits

Network Layer

AddressAddress

Figure 1. Most important fields that are used in classification algorithms.

overall conclusions.

2 RELATED WORK

The packet classification problem is inherently hard from a
theoretical standpoint[1]. It has been shown that the packet
classification requires eitherO(logNk−1) time and linear
memory, orlog(N) time andO(NK) memory, where N
is the number of rules, and K is the number of fields in
the header used in the rules[1, 7]. Several research groups
proposed a collection of software and hardware solutions
[1, 5, 7, 13]. These solutions are: exhaustive search, de-
cision tree, grid-of-Tries, decomposition and tuple space
search [5, 13, 12].

Many algorithms exist in the packet classification area
and we discuss here only those algorithms that are related
to our work. The Bloom filter recently has been used for
network applications, one interesting effort has been per-
formed by Darmpurikar and Song who used Bloom filters
for packet classification and IP lookup problems [4, 10].
Another work to reduce collisions and access times in the
hash table proposes Fast Hash Table (FHT) architecture
[10] that convert a Bloom filter into a counting Bloom filter
and associate a hash bucket with it. The former work in-
volved a TCAM memory and a crossproducting algorithm
that merges the tuple space with a Bloom filter and later ef-
fort only show simulation results with many hashing func-
tions and memory buckets per item. In our work, we imple-
ment a software packet classifier using a pruned counting
Bloom filter in the traditional tuple space. Our approach
utilizes a pruned counting Bloom filter to organize the rule
set in a tuple space with a minimized number of hashing
functions and collisions. We show related results and im-
plement a classifier software tool.

3 TUPLE SPACE AND BLOOM FILTER
CONCEPT

In this section, we present the concept of the tuple space
classification algorithm and Bloom filters.

3.1 Tuple space classification

A high-level approach for multiple field search employs tu-
ple spaces with a tuple representing information in each
field specified by the rules. Srinivasan, et.al. introduced the
tuple space approach and the collection of tuple search al-
gorithms in [11, 12]. We provide a simplified example rule

Nesting Level

0

1

2

Range−ID

(80,80)

(1024,65535)

(0,65535)

Figure 2. Assigning values for ranges, based on the Nesting
Level and the Range-ID.

classification on five fields in Table 1. Address prefixes
cover 32-bit addresses and port ranges cover 16-bit port
numbers. For address prefix fields, the number of specified
bits is simply the number of non-wildcard bits in the pre-
fix. For the protocol fields, the value is simply a boolean:
′1′ if a protocol is specified,′0′ if a wildcard is specified
[12, 13]. The number of specified bits in a port range are
less straightforward to define. The authors introduced the
concept of nesting levels and Range-IDs to define the tuple
value for port ranges. The nesting level specifies the layer
of the hierarchy and the Range-ID uniquely labels the range
within its layer. In this manner, all port ranges can be con-
verted to a (Nesting level, Range-ID) pair. We present in
the following an example to illustrate Range-IDs. The full
range, in this example (0-65535) always has the id 0. The
two ranges at level 1 namely, (0, 1023) and (1024, 65535)
in our example receive id 0, and 1, respectively. The exam-
ple of mapping a port range to a nesting level and a Range-
ID for Table 1 is depicted in Figure 2.
In the following, we illustrate how a search key is con-
structed from a packet based on a tuple. A search key for
the tuple [8, 24, 2, 0, 1] is constructed by concatenating
the first octet of the packet source address, the first three
octets of the packet destination address, the Range-ID of
the source port, the range at nesting level 2 covering the
packet source port number, the Range-ID of the destination
port range at nesting level 0 covering the packet destination
port number, and the protocol field. Finally, all algorithms
using the tuple space approach involve a search of the tuple
space or a subset of the tuples in the tuple space.

3.2 Counting Bloom filter

A Bloom filter is a simple space efficient randomized data
structure for representing a set in order to support mem-
bership queries. Bloom filters allow false positives, but the
space savings often outweigh this drawback when the prob-
ability of an error is made sufficiently low. Burton Bloom
introduced Bloom filters in the 1970s [2].

A set S = x1, x2, ..., xn of n elements is repre-

Rules Destination IP (address mask) Source IP (address mask) Port No. Protocol No. Tuple space
R1 192.168.190.69 (255.255.255.255) 192.168.80.11 (255.255.255.0) * * [32,32,0,0]
R2 192.168.3.0 (255.255.255.0) 192.168.200.157 (255.255.255.255) eq www tcp [24,32,2,1]
R3 192.168.198.4 (255.255.255.255) 192.168.160.0 (255.255.255.0) gt 1023 udp [32,32,1,1]
R4 193.164.0.0 (255.255.0.0) 193.0.0.0 (255.0.0.0) eq www udp [16,8,2,1]
R5 192.168.0.0 (255.255.0.0) 192.0.0.0 (255.0.0.0) eq www tcp [16,8,2,1]
R6 0.0.0.0 (0.0.0.0) 0.0.0.0 (0.0.0.0) * * [0,0,0,0]

Table 1. Simpilified example of rule classification.

sented by an arrayv of m bits that are initially all set to
0. A set ofk independent hash functions,h1, h2, ...hk each
with range1, 2, ..., m, are used to set the bits at positions
h1(x), h2(x), ..., hk(x), for all x in setS. For each element
x ∈ S, the bits at positionhi(x) are set to 1 for1 ≤ i ≤ k.
A location can be set to 1 multiple times, but only the first
change has an effect. To check if an itemy is in S, we
check whether allhi(y) are set to 1. If not, then clearlyy
is not a member ofS. If all hi(y) are set to 1 theny is in
S. For example, imagine that enough keys are inserted that
all bits inv have been set; in this case, every search will be
successful whether or not the key was actually inserted [6].
An example of Bloom filter is depicted in Figure 3.

0 0 0 0 0 0 0 0 0 00 0

0 1 0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0 1 0

0

1 1

11

2
0

3
0
1
2

0
2
0
1
0

R2

R1 R2 R3

R1
R2

R3 R4

R4

1 R3

Address

1
2
3
4
5
6
7

8
9

10
11
12

R1

R2

R3

(A)

R4

R1 R2

P1 P2

R4

R1

 (B)

Figure 3. (A) An example of a Bloom filter (B) The hash
table structure using counting Bloom filter for four rules.

Figure 3(A) depicts a Bloom filter structure and two rules
R1 andR2, starting with an array containing all ’0’s. Each
item of rule setRi is hashedk times usingk hash function
and the related bits are set to 1. To check whether element
Ri is in the set hash itk times using the same hash func-
tions and check the corresponding bits. Based on Figure
3(A), elementP1 cannot be in the set since a zero is found
at one of the bits locations andP2 can be in the set since
all positions contain ones.

A variant of the Bloom filter is the counting Bloom
filter [10] in which each bit of the filter is replaced by a
counter. The insertion of an item results in incrementing
the counter indexed by the corresponding hashing function.
Therefore, a counter in this filter essentially represent the
number of items hashed to its location. Figure 3(B) de-
picts hashing four rules to a hash table based on a count-
ing Bloom filter. The counter of the array show the num-
ber of elements in the related bucket. We computek hash
functionsh1(), ..., hk() over an input item and increment
the relatedk counters. Subsequently, we store the item in
the lists associated with each ofk buckets hence a single
item is storedk times in memory. In this approach, we
need to maintain up tok copies of each item requiringk
times more memory compared to a traditional hash table.

However, in a Bloom hash table only one copy is accessed
while the other(k − 1) copies of item are never accessed.
Therefore, the memory requirement can be minimized in
the mentioned structure, resulting in the pruned counting
Bloom hash table. The pruned Bloom hash table for Figure
3(B) is depicted in Figure 4.

2
0

3
0
1
2

0
2
0
1
0

R1

R4

R1

R3

1
R3

R2

8

10

R2

R4

Address
1
2
3
4
5
6
7

9

11
12

Figure 4. The hash table structure using pruned counting
Bloom filter.

An alternative to the pruned counting Bloom filter, inser-
tion and deletion of redundant items are preformed simul-
taneously. In this method, the memory requirement is equal
to n, i.e., the number of elements in the hash table. In the
meantime, it involves more computations in the hash ta-
ble construction time relative to the previous method. It
must be noted that during the pruned Bloom filter hash ta-
ble creation, the counter values are not changed thereby,
after pruning, the counter does not express the number of
items in the list and is greater than or equal to the number
of items in each bucket[10].

3.3 Implementation

In this section, we present the architecture of a packet clas-
sifier and the resulting Bloom filter implementation in tu-
ple space. For testing the system, we use different rule set
databases and packet traces that have been used by the Ap-
plied Research Laboratory in Washington University in St.
Louis [9]. The specification of rule databases and packet
traces is shown in Table 2. Table 2 includes seven rule
sets database and packet traces. The rule sets FW1, ACL1,
IPC1are extracted from real rule sets and other generated
by the classbench benchmark. More details on classbench,
rule sets database, and packet traces can be found in [9].

3.3.1 The packet classifier architecture

In this paper, we merge the pruned Bloom filter and tu-
ple space for packet classification to decrease the number
of collisions and memory accesses in rules hash table. The

two main parts of our architecture are: rules hash table con-
structor and packet search. The architecture is depicted in
Figure 5.

Rule
Database

Determining
tuple

Bloom hashing

B1

m

1

2

tuples
Hash tables for different

Hash
key

Packet trace

T
up

le
 s

pe
cf

ic
at

io
n

(
m

 tu
pl

e)
m keys

Bloom search

Packet matcher

Making
Hash key

Action

Rules

R
ul

e
ha

sh
 ta

bl
e

 c
on

st
ru

ct
or

P
ac

ke
t s

ea
rc

h

Figure 5. The architecture of classifier using pruned Bloom
filter and tuple space.

Rule hash table constructor: This component reads the
rules from a rule set database and extracts the rule specifi-
cation to determine the related tuple that the rule belongs
to. After determining the tuple, the rule should be hashed,
the next procedure is making a hash key using the Bloom
filter and finally store the rules in the hash table. In this
process, different hash tables with unequal size are created,
since each hash table correspond to a single tuple and each
tuple included different rules and tuple specifications. Usu-
ally more than half of the rules belong to two tuples, and
this is depicted on the right side of Figure 5. In this fig-
ure,m is the number of tuples andB shows the size of the
buckets.
Packet search:This component of the classifier processes
the incoming packets to find matching rules in the hash ta-
bles corresponding to tuples. Therefore, for each incoming
packet, a hash key is extracted based on each tuple specifi-
cation. Subsequently, m hash keys are used to access the m
hash tables (after hashing) to determine whether matching
rules can be found. The accessing of the hash table can be
performed in a serial or parallel manner. Finally, the ac-
tual packet is checked against the found rules in the packet
matcher. For each packet, the number of hashing opera-
tions are equal to the number of tuples in the system or the
number of distinct hash tables, thus the number of access in
sequential search process per packet is equal to the number
of tuples.

4 RESULTS

In this section, we present the results of several experi-
ments utilizing the proposed architecture for different rule
set databases. In the classifier architecture, an important
element entails the hashing functions that are used by the
Bloom filter. We utilize seven hashing function in this ar-

chitecture [8]. The specification of hashing functions are
presented in Table 2. The table includes the name, the
minimum required clock cycle and the number of gener-
ated collisions for different rule set databases. In Table 3,
we can observe that four hashing functions with acceptable
execution time and collision are (DJB, SDBM, JS, ELF)
and (DJB, SDBM, APH, DEK), respectively. The hash-
ing function execution time is measured as the number of
clock cycles that the function runs. The number of clock
cycles in Table 3 have been obtained after consecutive runs
and then selecting the minimum number of clock cycles for
each function. To provide greater precision for timing mea-
surements, many processors also contain a timer that oper-
ates at the clock cycle level[3]. We compute the number
of collisions for different bucket sizes and several hashing
functions including two groups of four hash functions in the
Bloom filter. The results are presented in Tables 4 and 5.
In Tables 4 and 5, Bloom-k denotes a Bloom filter with k
hashing functions. The data of each column with the bucket
size set to 1 shows the number of collisions and the remain-
ing columns show the number of overflow items. Based on
Tables 4 and 5, we can observe that using a pruned count-
ing Bloom filter decreases the number of collisions when
the number of hashing functions is 2, in this case number
of collisions reduced by 32%. For real rule sets, the number
of collisions is reduced by at least 4% for Bloom-4 and rule
set IPC1 and by 32% for Bloom-2 and rule set IPC1. The
worst case involves Bloom-4 and FW-100. In this case, the
number of tuples is 26 and number of rules is 92 with more
than 50% of rules grouped in two tuples. Consequently,
the other tuples encompass a low number of rules. In other
words, the rate of randomization by the Bloom filter is de-
creased when a tuple has a low number of rules. In Tables 4
and 5, we can observe that the Bloom-2 results in the lowest
number of collisions. The decreasing number of collisions
causes a decrease in the number of accesses per packet. Ad-
ditionally, we calculated the average number of accesses
per packet for different rules databases and packet traces.
These results are presented in Table 6. In general, hash-
ing systems create collisions. In here, we use overflow area
and chaining techniques for collision solving. Utilizing an
overflow area, i.e, a shared memory area storing all collid-
ing rules, requires again a linear search through this area,
and is therefore no longer considered. In the chaining tech-
nique, each colliding rule is stored in a dynamic memory
cell that is pointed to by the related bucket. In the follow-
ing, we only present the results of the chaining technique
(see Table 6). We can observe in Table 6 that the number
of accesses per packet converge to the number of tuples in
the rule sets database. In the pruned counting Bloom filter,
the number of accesses per packet is minimized when the
number of functions in the pruned counting Bloom filter
is 2. In this case for rule sets databases FW1-1k, FW1-
5k, FW1-10k and FW1, the number of accesses per packet
using Bloom-2 decreases by 19% in comparison to the tra-
ditional hashing system. Note that the results have been
generated for rule set with corresponding packet trace. In

Rule Database FW1-100 FW1-1k FW1-5k FW1-10k FW1 ACL1 IPC1
Number of rules 92 971 4653 9311 266 752 1550
Number of tuples 26 42 52 57 36 44 179

Packet trace FW1-100 FW1-1k FW1-5k FW1-10k FW1 ACL1 IPC1
Number of Packets 920 8050 46700 93250 2830 8140 17020

Table 2. Rule set database and packet trace specification.

Function Rules APH DJBH SDBM DEK ELF JS CRC One-at-time
FW1-1k 288 308 290 301 301 290 299 288
FW1-5k 1669 1688 1645 1701 1698 1691 1697 1709
FW1-10k 3424 3439 3357 3403 3341 3419 3347 3411

Minimum clock cycle 824 396 460 492 612 448 2864 867

Table 3. Different hashing functions specification used in pruned counting Bloom implementation.

Bloom-4 Bloom-3 Bloom-2 Traditional hashing
Bucket Size Bucket Size Bucket Size Bucket Size

Rule Set 1 2 3 1 2 3 1 2 3 1 2 3

FW1-100 28 (+27%) 4 0 21 (-5%) 2 0 19 (-14%) 1 0 22 6 2
FW1-1k 271 (-7%) 49 3 226 (-23%) 25 0 202 (-31%) 27 0 292 101 27
FW1-5k 1615 (-2%) 215 5 1353 (-18%) 127 5 1211 (-27%) 96 4 1651 475 112
FW1-10k 3260 (-1%) 480 13 2710 (-18%) 229 3 2373 (-28%) 177 3 3305 912 209

FW1 76 (-5%) 8 0 64 (-20%) 4 0 58 (-28%) 3 0 80 19 7
ACL1 254 (-6%) 40 1 209 (-23%) 19 0 187 (-31%) 15 0 271 76 19
IPC1 476 (-7.5%) 61 4 402 (-22%) 36 2 354 (-31%) 28 1 515 148 40

Table 4. The number of collisions and overflows in pruned counting Bloom filter with DJB, SDBM, APH, DEK hashing
functions compared with traditional hashing system.

Bloom-4 Bloom-3 Bloom-2 Traditional hashing
Bucket Size Bucket Size Bucket Size Bucket Size

Rule Set 1 2 3 1 2 3 1 2 3 1 2 3

FW1-100 28 (+27%) 3 0 26 (+18%) 2 0 22 (0%) 3 0 22 7 2
FW1-1k 271 (-8%) 44 2 217 (-26%) 26 0 203, (-31%) 24 2 294 95 28
FW1-5k 1635 (-4%) 237 2 1358 (-20%) 129 5 1188 (-30%) 78 4 1705 454 80
FW1-10k 3287 (-1.4%) 499 14 2710 (-19%) 247 2 2396 (-28%) 195 3 3335 921 211

FW1 76 (-5%) 10 0 64 (-20%) 5 0 58 (-28%) 3 0 80 19 7
ACL1 253 (-7%) 39 2 207 (-24 %) 22 1 187 (-31%) 15 0 271 76 19
IPC1 495 (-4%) 63 2 413 (-20%) 27 0 349 (-32%) 28 1 515 148 40

Table 5. The number of collisions and overflows in pruned counting Bloom filter with DJB, SDBM, JS, ELF hashing functions
compared with traditional hashing system.

Bloom-4 Bloom-3 Bloom-2 Traditional hashing
Bucket Size Bucket Size Bucket Size Bucket Size

Rule Set & packet
trace

1 2 3 1 2 3 1 2 3 1 2 3

FW1-100 26.5 26 26 26.6 26 26 26 26 26 26.8 26 26
FW1-1k 44.4 42 42 42 42 42 42 42 42 47.5 43 42
FW1-5k 55 52 52 54 52 52 52 52 52 64 59.6 58
FW1-10k 58.5 55 55 58 55 55 55 55 55 68 62.5 61
FW1 36 36 36 36 36 36 36 36 36 44.6 43 42
ACL1 44.5 44 44 44.2 44 44 44 44 44 45.6 44.2 44
IPC1 182 179 179 180 179 179 180 179.5 179 188 181 179.6

Table 6. The average number of access per packet for related packet trace using chaining in pruned counting Bloom filter
compared with traditional hashing system.

Bloom-4 Bloom-3 Bloom-2 Traditional hashing
Bucket Size Bucket Size Bucket Size Bucket Size

Rule Set 1 2 1 2 1 2 1 2

Action time H M H M H M H M H M H M H M H M
FW1-100 520 729 515 385 467 666 463 396 451 533 449 389 492 559 491 399
FW1-1k 547 1016 547 568 481 678 482 396 472 487 487 362 532 741 539 531
FW1-5k 558 985 548 542 497 686 495 421 485 585 490 389 562 1394 568 1107
FW1-10k 565 1146 569 471 515 467 505 412 493 655 497 446 569 1438 575 1098

FW1 526 935 523 403 471 657 463 379 468 461 456 321 508 1517 515 1229
ACL1 545 636 529 304 471 285 463 279 443 330 451 246 499 477 498 342
IPC1 549 835 552 406 500 570 485 338 475 431 431 311 563 583 557 405

Table 7. The average number of clock cycle per packet in each tuple for different rule sets and packet trace using chaining.

our implementation, we have implemented our architecture
sequentially. In other words, the hash key calculation in
the Bloom filter and traditional hashing computed by se-
quential code. Hence, we expect the sequential search time
for Bloom filter to be more than traditional hashing. The
results of searching packet time within tuple are presented
in Table 7. In this table, each column includes two other
sub-column with labels H an M, the H column represent
the hashing function execution time and the M column rep-
resent the memory access time both in clock cycles. Based
on Table 7, we can observe that the growth of the num-
ber of hashing functions in the Bloom filter increases the
hashing time and decreases memory access time. The best
results are generated when the number of hashing functions
in Bloom filter are 2. In this case the number of required
clock cycles decline for all rule sets.

5 OVERALL CONCLUSIONS

In this paper, we presented an introduction to a packet clas-
sification problem and one classification algorithm, i.e., tu-
ple search. Subsequently, we presented the Bloom filter
and a modified version of the Bloom filter as part of a
packet classification algorithm using the tuple space. We
implemented the Bloom filter using a class of hashing func-
tions and traditional hashing system as part of software
packet classifier.

Our implementation shows that using a pruned count-
ing Bloom filter in a packet classification system can de-
crease the number of collisions and accesses per packet
relative to a traditional hashing system. In the best case for
two hashing functions, the number of collisions and mem-
ory accesses was reduced by 32% and 19%, respectively.

References

[1] F. Baboescu, S. Singh, and G. Varghese. Packet Clas-
sification for Core Routers: Is There an Alternative to
CAMs? InProc. 22’th Int’l Conf. IEEE INFOCOM,
pages 53–63, March-April 2003.

[2] B. H. Bloom. Space /Time Trade-offs in Hash Cod-
ing with Allowable Errors.J. Communication of the
ACM, 13(7):422–426, July 1970.

[3] R. E. Bryant and D. R. O’Hallaron. Computer
Systems: A Programmer’s Perspective (Hardcover).
Prentice Hall, 1st edition, August 2002.

[4] S. Dharmapurikar, H. Song, J. Turner, and J. Lock-
wood. Fast Packet Classification Using Bloom Fil-
ters. Technical Report 27, Department of Computer
Science And Engineering, Washington University in
St. Louis, May 2006.

[5] P. Gupta and N. McKeown. Algorithms for Packet
Classification.J. IEEE Network, 15(2):24–32, March-
April 2001.

[6] S. Kumar and P. Crowley. Segmented Hash: An
Efficient Hash Table Implementation for High Per-
formance Networking Subsystems. InProc. Symp.
on Architecture for Networking and Communications
Systems (ANCS05), pages 91–103, October 2005.

[7] T. V. Lakshman and D. Stiliadis. High-speed Policy-
based Packet Forwarding using Efficient Multi-
dimensional Range Matching. InProc. Conf. on Ap-
plications, Technologies, Architectures, and Proto-
cols for Computer Communication (ACM/SIGCOM),
pages 203–214, 1998.

[8] A. Partow. General Purpose Hash Function Algo-
rithms. http:// www.partow.net/ programming/ hash-
functions/index.html.

[9] H. Song. Evaluation of Packet Classifica-
tion Algorithms. http:// www.arl.wustl.edu/
hs1/PClassEval.html, 2006.

[10] H. Song, J. Turner, S. Dharmapurikar, and J. Lock-
wood. Fast Hash Table Lookup Using Extended
Bloom Filter: An Aid to Network Processing. In
Proc. Conf. on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications,
pages 181–192, August 2005.

[11] V. Srinivasan. A Packet Classification and Filter Man-
agement System. InProc. Int’l IEEE Conf. INFO-
COM, pages 1464–1473, 2001.

[12] V. Srinivasan, S. Suri, and G. Varghese. Packet Clas-
sification using Tuple Space Search. InProc. Conf. on
Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, pages 135–146,
1999.

[13] D. E. Taylor. Models, Algorithms, and Architec-
tures for Scalable Packet Classification. PhD the-
sis, Department of Computer Science and Engineer-
ing Washington University, August 2004.

