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Abstract—The Instruction-Set Extension problem has been one of the
major topics in the last decade and it consists of the addition of a set
of new complex instructions to a given Instruction-Set. This problem in
its general formulation requires an exhaustive search of the design space
to identify the candidate instructions. A tradeoff between complexity
and quality of the solution can be achieved limiting this search to
implementable instructions. In this paper we propose a linear complexity
algorithm for the generation of convex Multiple Input Multiple Output
(MIMO) instructions of variable size based on the notion of spiral. Convex
implementable MIMO clusters of instructions are identified by means of
a spiral search through the levels of a graph. These new instructions
can be directly selected or combined for more complex Instruction-Set
extensions. An important feature of our algorithm is that it is neither
restricted to basic-block level nor it imposes any limitation on the number
of the newly instructions nor on the number of the inputs/outputs of these
instructions.

I. INTRODUCTION

Along the last decade, we have witnessed an increasing popularity
of reconfigurable architectures thanks to the capability to provide
high overall performances of execution of an application, by tuning
the architecture towards the specific requirements of the application.
More and more often this is achieved via the automatic extension of
a given Instruction-Set (IS) with new customized instructions for the
specific application.

An example of reconfigurable architecture can be realized by
combining a GPP and a reconfigurable hardware as an FPGA (see,
for example, [?]). When an application is executed on a traditional
architecture, a certain number of instructions, the ones belonging
to the Instruction-Set, are executed in hardware while the rest of
the instructions are executed in software. A software execution is
typically more costly in terms of execution time than the ones
executed in hardware. When the same application is executed on
a reconfigurable architecture, a remarkable speedup in the execution
of the application can be obtained identifying within the applica-
tion clusters of instructions with peculiar properties which when
implemented as a single complex instruction on the reconfigurable
hardware reduce the total execution time. Once these new complex
instructions are hardwired, they represent an extension of the given
Instruction-Set. Additionally, the reconfigurability of the architecture
allows the creation of new complex instructions ad hoc, that is
Application-Specific Instruction-Set Extensions.

Enumerating all possible clusters of instructions within an ap-
plication exhaustively is not computationally feasible due to the
exponential number of candidates. Although human ingenuity in
manual creation of custom capabilities creates high quality results,
performance and time-to-market requirements as well as the growing
complexity of the design space, can benefit from an automatic design
flow for the generation and use of these new capabilities. Moreover
the selection of multiple custom instructions from a large set of
candidates involves complex tradeoff and can be difficult to be
performed manually.
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In this paper we propose a linear complexity algorithm based on
the notion of spiral for the generation of MIMO instructions. Imple-
mentable MIMO clusters of instructions are identified by means of a
spiral search through the level of a graph. These clusters can directly
undergo a selection process for hardware-software partitioning or
can be clustered with different policies for the generation of more
complex MIMO instructions. Although Instruction-Set extension is
the combination of instruction generation and instruction selection, in
this paper only instruction generation is addressed. Different selection
criteria can be used depending on the target architecture. More
specifically the main contributions of this paper are:

e  an overall linear complexity of the proposed algorithm. The gen-
eration of complex instructions is a well known NP problem and its
solution requires, in the worst case, an exhaustive search of the design
space which turns into an exponential complexity of the solution. Our
algorithm generates implementable MIMO instructions of variable
size suitable for inclusion in a design flow for automatic selection of
MIMO instructions. Our approach requires linear complexity in the
number of processed elements as proven in Section ??.

e  climination of the restrictions of the type and number of new
instructions (in contract with most of the existing approaches): there
is no limitation on the number of input/output values or on the number
of new instructions.

° the proposed approach is not restricted to basic-block level
analysis and can be applied directly to large kernels.

The paper is structured as follows. In Section II, background informa-
tion and related works are provided. In Sections III and ??, the basic
definitions and the algorithm for MIMO instruction generation are
presented respectively. Concluding remarks and an outline of research
conducted are given in Section ??.

II. BACKGROUND AND RELATED WORKS

The algorithms for Instruction Set Extensions usually select clus-
ters of operations which can be implemented in hardware as single
instructions while providing maximal performance improvement.
Basically, there are two types of clusters that can be selected, based
on the number of output values: MISO or MIMO. Accordingly, there
are two types of algorithms for Instruction Set Extensions that are
briefly presented in this section.

Concerning the first category, a representative example is intro-
duced in [?] which addresses the generation of MISO instructions of
maximal size, called MAXMISO. The proposed algorithm exhaus-
tively enumerates all MAXMISOs. Its complexity is linear with the
number of nodes. The reported performance improvement is of some
processor cycles per newly added instruction. The approach presented
in [?] targets the generation of general MISO instructions. The ex-
ponential number of candidate instructions turns into an exponential
complexity of the solution in the general case. As a consequence,
heuristic and additional area constraints are introduced to allow an
efficient generation. The difference between the complexity of the two
approaches is due to the properties of MISOs and MAXMISOs: while
the enumeration of the first is similar to the subgraph enumeration



problem the intersection of MAXMISOs is empty and then once a
MAXMISO is identified, its nodes are removed from the set of nodes
that have to be successively analyzed. In this way the MAXMISOs
are enumerated with linear complexity in the number of nodes.

The algorithms included in the second category are more general
and provide more significant performance improvement. However,
they have exponential complexity. For example, in [?] the iden-
tification algorithm detects optimal convex MIMO subgraphs but
the computational complexity is exponential. A similar approach
described in [?] proposes the enumeration of all the instructions
based on the number of inputs, outputs, area and convexity. The
selection problem is not addressed. In [?] the authors target the
identification of convex clusters of operations under given input
and output constraints. The clusters are identified with a ILP based
methodology similar to the one proposed in [?]. The main difference
is that in [?] the authors iteratively solve ILP problems for each basic
block, while in [?] the authors have one global ILP problem for the
entire procedure. Additionally, the convexity is addressed differently:
in [?], the convexity is verified at each iteration, while in [?] it is
guaranteed by construction. Other approaches cluster operations by
considering the frequency of execution or the occurrence of specific
nodes [?], [?] or regularity [?]. Still others impose limitation on the
number of operands [?], [?], [?], [?] and use heuristics to generate sets
of custom instructions which therefore can not be globally optimal.

In this paper, we propose a linear complexity algorithm based
on the notion of spiral. Starting from a directed acyclic graph
representing an application, the nodes are divided per levels and
connected convex MIMO clusters of instructions are identified by
means of a spiral search through the levels of the graph. Theorem
II1.3 and Section ?? guarantee the MIMO convexity by constructions.
Moreover the algorithm has linear complexity in the number of
processed elements, as shown by Remark ??. This algorithm together
with the one presented in [?] define two methods for the generation
of MIMO and MISO instructions of variable size.

III. THEORETICAL BACKGROUND

A. MISO and MIMO graphs

In order to formally present the approach previously presented, we
first introduce the necessary definitions and the theoretical foundation
of our solution. We assume that the input dataflow graph is a DAG
G = (V,E), where V is the set of nodes and E is the set of
edges. The nodes represent primitive operations, more specifically
assembler-like operations, and the edges represent the data depen-
dencies. The nodes can have two inputs at most and their single
output can be input to multiple nodes.

Basically, there are two types of subgraphs that can be identified
inside a graph: Multiple Input Single Output (MISO) and Multiple
Input Multiple Output (MIMO).

Definition IIL1. Let G* C G be a subgraph of G with V* C V set
of nodes and E* C E set of edges. G* is a MISO of root r € V™
provided that ¥ v, € V™ there exists a path1 [vi — 7], and every
path [v; — 1] is entirely contained in G™.

By Definition III.1, a MISO is a connected graph. A MIMO,
defined as the union of m > 1 MISOs can be either connected
or disconnected. Let Garrso and Garraro be the sets of subgraphs
of G containing all MISOs and MIMOs respectively. An exhaustive
enumeration of the MISOs contained in G gives all the necessary
building blocks to generate all possible MIMOs. This faces with the

1A path is a sequence of nodes and edges, where the vertices are all distinct.

exponential order of Garrso, and since Gyrrso C G MImo?Z, of
Gmimo.

A reduction of the number of the building blocks reduces the total
number of MIMOs which it is possible to generate. Anyhow, it can
drastically reduces the overall complexity of the generation process
as well [?], [?]. A trade-off between complexity and quality of the
solution can be achieved considering implementable MIMO graphs,
i.e. MIMO graphs with specific properties which make the graph
suitable for an hardware implementation. One of these properties is
the convexity, as outlined in the next Section III-B.

B. Convex MIMO graphs

Definition IIL.2. A subgraph G* C G is convex if there exists no
path between two nodes of G* which involves a node of G\G™>.

Convexity guarantees a proper and feasible scheduling of the new
instructions which respects the dependencies. Definitions III.1 and
II1.2 imply that every MISO is a connected and convex graph. MIMOs
can be convex or not [?], [?], [?].

Let v € V be a node of GG and let LEV : V' — N be the integer
function which associates a level to each node, defined as follows:

e LEV(v) =0, if v is an input node of G;

e LEV(v) = a > 0, if there are & nodes on the longest path from

v and the level O of the input nodes.

Clearly LEV(-) € [0, 4+00). The maximum level d € N of the nodes
of the graph is called the depth of the graph.

In [?], [?], the authors have presented two theorems for the genera-
tion of convex MIMO graphs based on maximal MISO (MAXMISO)
combinations. These theorems can be resumed as follows.

Theorem IIL.3. Let G(V, E) be a DAG and let vi,v2 € V be two
nodes of G. Let LEV(v1) > LEV(v2) be the levels of vi and v
respectively. Let A = vy U va. If

LEV(v1) — LEV(v2) € {0,1} D

then A is a convex MIMO. Moreover

(a) A is disconnected if the difference is 0.

(b) Any combination of nodes at the same level or at two consecutive
levels is a convex MIMO.

Section III-C and ?? show in detail how the algorithm generates
convex MIMO graphs with linear complexity in the number of
processed elements.

C. The spiral search

The algorithm we propose is based on the notion of spiral. We
now briefly describe what is a spiral. The easiest spiral line is the
one studied by Archimedes, which has his name: the Archimedean
Spiral®. This spiral is generated when a point P moves with constant
speed v on a line which, in turn, rotates around one of his points
O with constant angular velocity w. The point O is called center of
the spiral. The distance T,; between two consecutive turns is called
turn distance.

Let LEVy,...LEV4 be the levels of the nodes of a graph G and let
O be a node of G with LEV(O) = i.

Definition IIL4. If O is a seed node’, a spiral search is a clustering
search which looks for nodes to cluster starting from the level of the

2G1\41$O = {G* C G, s.it. Noyt = 1} C {G* C G, s.t. Noyt >
1} = Gumrimo-

3G* has to be a proper subgraph of G. A graph itself is always convex.

4Achimedes, ”On Spirals”, 225 BC.

5 A seed node is a node selected as initial node in the generation of a cluster.



Figure 1.  The spiral search. If O € L; is a seed node, the levels are
analyzed following the order of intersection between the spiral and the levels:
1, 2,3, ...

seed and following a spiral path S with center the seed, every time
the spiral intersects a level, the nodes of that level (some or all) are
analyzed and the ones which respect a predefined property® P are
included in the cluster.

Figure ?? depicts a spiral search, with turn distance equals to
one level, in which the levels are analyzed following the order of
intersection between the spiral and the levels.

IV. THE SPIRAL SEARCH ALGORITHM

In order to formally describe our algorithm, we first define some
sets. Let ag be a node of G = (V, E) with LEV(az) = o € [0,d]. It
is possible to define the following sets:

{meV |LEV(im)=a—1A ifa>1
PRED' (az) = 3 (m,ar) € E}
ifa=0
{meV|LEV(im)=a+1A ifa<d-1
succ/(az) = 3 (az,m) € E}
ifa=d

@
Let A be a cluster of nodes of G with h < LEV(n) < k for every
node n € A. We have the following:

{meV\Va |3 [n—>m]A

suCc* (A) = h < LEV(m) < k + 1} ifk<d-1
- {meV\Va |3 [n—m]A W h=d
h < LEV(m) < k} -
{m e V\V4 |LEV(m)=h—1A .
PRED'(A) = 3 (mn) € B} =t
T )] {meV\Va|LEV(m)=hA h=0
3 (m,n) € E} -
3

The algorithm proposed in this paper generate each convex MIMO
through multiple steps by means of a spiral search through the levels
of the graph. We now describe in detail all the steps necessary for
the generation of the cluster as well as the theoretical proof of the
cluster convexity at each step. We set Ty equals to 1 level.

STEP 1. Let a7 be a node of G = (V, E)) chosen as a seed node
(center of the spiral) with LEV(az) = 7 € [0,d]. Let C = {az}.
C’ = C U PRED’(az) is a convex MIMO. This holds for o > 1 as a
consequence of Theorem II1.3 and for & = 0 since a node is trivially
a convex graph. This step corresponds to intersection 1 in Figure ??.

STEP 2. Let us consider sSUCC’(PRED'(a;)) and let Ny, (n) be the
number of inputs of a node n and let Nrn, (n) be the number of
inputs coming from a set C' of a node n. For each node n and each

This property can be local, i.e. related to the single level, as well as it can
be global, i.e. related to all levels.

set C' the following inequality can be satisfied’:
2% Nrn(n) > Nin(n). 4)

This can be reformulated by saying that the number of inputs of n
coming from the set C has to be greater than or equal to at least half
the total inputs of n. We define the following set:

{ C’ U {n € succ/(PRED(az)) | (2?) holds} if n exists
C/

otherwise.

)
If there exists n such that (??) holds, by Theorem IIL.3, C” = C’ U
{n} is a convex MIMO. This step corresponds to intersection 2 in
Figure ??.

STEP 3. For each m € succ*(C") such that
NIn(m) = Nlncl/ (m)7 (6)

C" U {m} is a convex MIMO. This follows from (2??). If the total
number of inputs of m is equal to the number of inputs coming from
C", it follows that it does not subsist the possibility of having a path
between a node of C” and m which includes a node not belonging
to C” U {m}. As a consequence

C" =C" U {mesucc™(C") | Ning (m) = Nin(m)} (7

C// —

is a convex MIMO. This step corresponds to intersection 3 in Figure
29

The algorithm analyzes the nodes of the graph following a spiral
search through the levels of the graphs. As described in Section III-C
and depicted in Figure ??, the levels are analyzed following the order
of intersection which depends on the turn distance. Since Tq = 1,
the next intersections to analyze would be 4 and then 5, i.e. level ¢
and level ¢ — 1, to look for nodes such that Equation ?? holds. We
have the following:

Theorem IV.1. [Intersections 4 and 5 do not provide any node p ¢
C"" such that C"" U {p} is convex and Nrn(p) = Nrn,, (m).

Proof: Let us consider intersection 4. By contradiction let p be
a node such that C"” U {p} is convex with p belonging to level i.
Two scenarios are possible: there exists at least a path between p and
one node at level 7 + 1 or between one node at level ¢ — 1 and p.
The first case is not possible as the nodes at level 7 4+ 1 belongs to
C"" if and only if they have all inputs coming from C”’. If p exists,
it means that there exists at least one node in C’” at level i + 1
with one input not coming from C”'. In the second case all nodes p
such that C"” U {p} is convex and Nrn(p) = Nin,, (p) have been
already included during STEP 2. Therefore no additional node can
be further included in the cluster.

Let us consider intersection 5. Clearly no node at level 7 — 1 can
have all inputs such that N, (p) = Nrn,, (p) since the inputs of p
come from levels lower than or equal to ¢ — 2. [ ]

Following similar arguments, it is possible to show, see Figure ??,
that all the intersections in the region bounded by the two half-lines
s1 and s2 do not contain nodes suitable for an inclusion in the convex
cluster.

STEP 4. By Theorem ?? and by the properties of the spiral search, the
next level to analyze is level ¢ — 2. In general we have the following:

Remark IV.2. If the level analyzed in STEP 3 is i + 3 and the
center of the spiral is on level i, the next level to analyze is the level
symmetric respect to the center of the spiral decreased by one:

LEVEL=4¢— [+ 8) -4 —-1=i—(F—-1. 8)
"This inequality holds also for different type of analysis, where the

granularity of the analysis can be fine-grained as well as coarse-grained (see
Remark ??).



If this level does not exist, we consider the lower analyzed so far.

The algorithm repeats STEP 1-3 till the final connected convex
MIMO cluster is generated. Additionally, in STEP 1 we now consider
C = C" and, as a consequence, we do not consider C/ =
C' U PRED'(az) but C' = C' U PRED'(C"").

In Figure ??, we present an example that shows the way by which
the algorithm generates the convex MIMO cluster.

Remark IV.3. The algorithm generates at each step a convex
MIMO cluster. One of the main qualities of this algorithm is its
adaptability. As it has been shown in the previous steps the convexity
of the cluster is independent by the choice of the seed. This means
that depending on the application and/or on the target, the seed node
can be selected as a node with specific properties like area or power
consumption below a certain threshold previously defined or with a
limited number of inputs/outputs, etc.

Remark IV4. The limitation on the number of inputs/outputs of
the nodes of the graph to analyze introduced in Section IlI-A can be
removed depending on the level of abstraction on which the algorithm
has to operate. As it has been shown during the previous steps,
restrictions on the number of Inputs/Outputs never represent a point
of discussion. This means that the algorithm works properly with
a fine-grained as well as a coarse-grained level of analysis, where
nodes can have a different number of inputs and/or outputs, provided
that the graph to analyze is a directed acyclic graph.

Remark IV.5. The algorithm can be adapted to different needs.
Future work will address the description of the parameters that
can be introduced to adapt the algorithm to specific limitations
like limited number of inputs/outputs, maximum delay and limited
hardware resources like the area. Additionally, every time a cluster
is generated, its nodes are removed from the node to further analyze.
This implies that the algorithm has linear complexity in the number
of the nodes analyzed.

V. CONCLUSIONS

In this paper, we have presented an algorithm for the gener-
ation of convex and connected Multiple Input Multiple Output
(MIMO) instructions. Implementable MIMO clusters of instructions
are identified by means of a spiral search through the level of a
graph. These clusters can directly undergo a selection process for
hardware/software partitioning or can be clustered with different
policies for the generation of more complex MIMO instructions.
The algorithm has linear complexity with the number of processed
elements and the cluster convexity is guaranteed by construction,
as shown in the paper. Additionally, the algorithm can include a
certain number of parameters, for the limitation of the size and
shape of the final cluster. In our future work, we intend to provide
experimental results to show the qualities of the algorithm, here
just proved theoretically, and we aim to design and test additional
algorithms for the generation of (convex) MIMO instructions.
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