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Abstract—Biological sequence alignment is one of the most im-
portant problems in computational biology. Given two sequences
of varying length are aligned such that the alignment score is
maximum. The alignment score is calculated based on the num-
ber of matches, mismatches and gaps in the alignment suggested.
The basic sequence alignment algorithms are Needleman-Wunsch
(NW) algorithm and Smith-Waterman (SW) algorithm, which
find the optimal global and local alignment, respectively. In this
paper, we have accelerated the Needleman-Wunsch by applying
the Recursive Variable Expansion partially, which can be easily
implemented on FPGA. This method extract more parallelism
than other prevalent parallel implementations and we are able
to achieve a speed up of 1.55 times.

Index Terms—Reconfigurable Computing, Parallelization, Pat-
tern Matching, Computational Molecular Biology, Needlman-
Wunsch

I. I NTRODUCTION

Biological sequence alignment is one of the most important
problems in computational biology. A biological sequence
with unknown functionalities is compared to a biological
sequence with known functionalities to infer the functions
of the former sequence. The objective is to find an optimal
alignment between two sequences of different length such
that the alignment score is maximum. The two sequences are
aligned and an alignment score is calculated based on the
number of matches and gaps in the alignment.

The sequence alignment problem is further divided into
global and local alignment. In global alignment, the opti-
mal score and match is found between the two entire se-
quences, whereas in local alignment, the optimal score and
match is found between some longest subsequences of the
two sequences. The basic sequence alignment algorithms are
Needleman-Wunsch (NW) algorithm [1] and Smith-Waterman
(SW) algorithm [2], which find the optimal global and local
alignment, respectively. Both algorithms are based on dynamic
programming, are very similar to each other and both have
time and space complexityO(mn), wherem andn are lengths
of the sequences being aligned. Although this complexity
seems to be desirable, the exponential growth in bio-sequence
databases of known sequences makes this complexity intol-
erable [3], [4]. Therefore as the database size grows larger,
faster algorithms to quickly compare and align the sequences
become important.

One way to avoid such expensive solution is to use heuristic
techniques like FASTA [5] and BLAST [6]. Both compute the

local alignment and are fast and less sensitive than Smith-
Waterman, as the time complexity is reduced at the cost of
accuracy. Therefore an optimal alignment may not always
be found through these techniques. Other way to reduce
the time complexity is to accelerate the Needleman-Wunsch
and Smith-Waterman algorithms through parallel processing.
Researchers have been able to parallelize both algorithms on
parallel machines [7], [8], [9]. However, keeping in view the
growing size of the database, prevalent methods require further
acceleration to match the growth.

There is always a need for a fast method, which can extract
more parallelism than before. A major hurdle in achieving
this is the bound on the maximum parallelization, depending
upon the available hardware or inherent degree of parallelism
available in the algorithms. In this paper, we will accelerate
Needleman-Wunsch by extending the degree of parallelism
available in the algorithm and utilizing the hardware to its
full capacity.

The rest of the paper is organized as follows. In the next
section, we discusses the background and related work for
the parallelization of Biological Sequence Alignment. Ourap-
proach is discussed in Section III, furthermore, the comparison
of the time estimates for our approach and prevalent parallel
techniques is discussed. Finally we conclude the paper in
Section IV.

II. BACKGROUND AND RELATED WORK

A. Background

Let S[1..n] and T[1..m] be two sequences of lengthn and
m for sequence alignment. Theoptimal alignment score F(i,
j) for two subsequencesS[1..i] and T[1..j] is given by the
following recurrence equation.

F (i, j) = max











F (i, j − 1) + g

F (i − 1, j − 1) + x(i, j)

F (i − 1, j) + g

(1)

whereF (0, 0) = 0, F (0, j) = g × j andF (i, 0) = g × i, for
1 ≤ i ≤ n, 1 ≤ j ≤ m. The g is the penalty for inserting
a gap in any of the sequence andx(i, j) is the score for
match/mismatch, depending upon whetherS[i] = T[j] or S[i]
6= T[j].

In the remainder of the paper, we will useg = −2 and
x(i, j) = +1 whenS[i] = T[j], otherwise -1. The recurrence
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  G A C G G A 

 0 -2 -4 -6 -8 -10 -12 

G -2 1 -1 -3 -5 -7 -9 

A -4 -1 2 0 -2 -4 -6 

T -6 -3 0 1 -1 -2 -4 

C -8 -5 -2 1 0 -2 -4 

G -10 -7 -4 -1 2 1 -2 

G -12 -9 -6 -3 0 3 1 

A -14 -11 -8 -5 -2 1 4 
 

Figure 1. Scoring Matrix for an example of Needleman-WunschAlgorithm

Equation 1 shows the optimal substructure and overlapping
subproblems in the problem, therefore dynamic programming
[10] is applied to get an efficient solution. In dynamic pro-
gramming, a bottom-up approach is used, in which initially
the boundary conditions are computed and thenF is computed
from smaller subsequences to larger ones till it reaches the
entire length of the sequences. An example of Needleman-
Wunsch algorithm is shown in Figure 1, where a matrix is
made and the two sequences are put along the row and column.
The matrix is filled using Equation 1 from the top-left corner
and elements are filled from left to right and from top to
bottom. In the filled matrix the bottom-right element gives the
maximum global alignment score for two sequences. Once
the whole matrix is filled, we start a trace back from the
bottom-right element to one of the three elements from which
alignment score is calculated till it reaches the top-left corner.
In the trace back, when an element is computed from the top
element then there is a gap in the sequence along the row and
similarly when an element is computed from the left element
then there is a gap in the sequence along the column. The
optimal alignment for the example is given below.
GA-CGGA 
||||||| 
GATCGGA 
An operation is primitive, if the time taken by this function

is independent of the operands. As all the operations given
by the Equation 1 are primitive, the computation of optimal
alignment scoreF(i, j) takes constant time, and since there are
m×n elements to be computed, the time complexity for both
the algorithms isO(mn). Likewise, we need to keep the table of
sizem×n to compute theF(i, j) and for trace back, therefore
the space complexity for the algorithms is alsoO(mn).

To parallelize NW algorithm we need to look at their data
dependence graphs as shown in Figure 2. Blank circles are the
elements after the initialization with the boundary conditions.
Any iteration (i, j) cannot be executed until iterations(i-
1, j), (i-1, j-1) and (i, j-1) are not executed first, due to
data dependencies. Therefore we need to change the way the
elements are traversed like starting from the top, elementswith
one shade of gray in a diagonal line can be executed in parallel

(i, j)

(i, j-1)

(i-1, j-1) (i-1, j)

Figure 2. Data dependence graph for both equations, different shades of
gray in circles show the elements which can be executed in parallel

followed by the next diagonal line with different shade of
gray due to dependency constraint. Therefore the degree of
parallelism is constrained to the length of the diagonal line
and the maximum number of processing elements required
will be equal to the length of longest diagonal. The number
of steps required in such implementation isO(n+m) [8].

B. Recursive Variable Expansion

Recursive Variable Expansion(RVE) [11] is a kind of loop
transformation which removes all the data dependencies from
the program and then the program is prone to maximum
parallelism. The basic ideas is that if any statementSi is
dependent on statementTj for some iterationi and j, then
instead we wait forTj to complete and then executeSi, we will
replace all the occurrences of the variable inSi that creates
dependency withTj with the computation of that variable in
Tj. This way there is no need to wait for the statementTj

to complete and statementSi can be executed independently
of Tj . Similarly if Tj is dependent on some other statement,
we will replace the computation of that statement with the
variable to make it independent of that statement. This step
is recursively repeated until the statementSi is not dependent
on any statement rather only inputs or known values, which
essentially means thatSi can be computed with out waiting
for the computation of any other statement. The technique is
very beneficial when most of the operations are associative.
In this way, the whole expanded statement can be computed
in any order by computing the large number of operations in
parallel and efficiently using binary tree structure. The major
draw back of this technique is that the speed up is achieved at
the cost of redundancy, which consumes very large resources.

C. Related Work

A lot of work has been done to accelerate the biological
sequence alignment using different hardwares. In additionto
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specific architectures designed for sequence alignment, many
solution for special purpose hardware, SIMD and FPGAs have
been devised.

A particular algorithm can be implement using special
purpose hardware and it also provides result faster, however
they lack the flexibility to run different algorithms required
for biological sequence alignment. Some examples of such
implementation are P-NAC, BISP and SAMBA [12], [13],
[14].

Several implementations for SIMD have been proposed as
MGAP, Kestrel and Fuzion [15], [16], [17]. SIMD contains
general purpose processors (GPP) therefore it is programmable
and is used for a wider range of applications like image
processing and scientific computing. The drawback is that they
are expensive.

Field Programmable Gate Arrays (FPGAs) are good can-
didates for accelerating biological sequence alignment al-
gorithms. FPGAs are programmable using some hardware
description languages like VHDL or Verilog and virtually
any algorithm can be mapped on it. FPGAs can also be
reconfigured during system operation, called Run-Time Re-
configuration (RTR), which makes it suitable if the algorithm
or gap penalty is changed at runtime. Some of the solutions
based on FPGAs are given in [18], [19], [20].

III. O UR APPROACH ANDTIME ESTIMATION

When we apply recursive variable expansion partially on
Equation 1, the recursion tree is shown in Figure 3.F(n, m)
can be written in equation as shown by the leaf nodes in Figure
3.

F (n,m)=max































































































































































i F (n,m−2)−4

ii F (n−1,m−2)−2+x(n,m−1)

iii F (n−1,m−2)−6

iv F (n−2,m−2)−4+x(n−1,m−1)

v F (n−2,m−1)−6

vi F (n−1,m−2)−2+x(n,m)

vii F (n−2,m−2)+x(n−1,m−1)+x(n,m)

viii F (n−2,m−1)−2+x(n,m)

ix F (n−1,m−2)−6

x F (n−2,m−2)−4+x(n−1,m−1)

xi F (n−2,m−1)−6

xii F (n−2,m−1)−2+x(n−1,m)

xiii F (n−2,m)−4

(2)

Equation 2 is now written as the maximum of thirteen
sub-equations. All the terms are independent of each other,
therefore sub-equations can be computed in parallel. Since
finding maximum is associative, then the best way to find is by
making a binary tree from the result of thirteen sub-equation,
which requires four levels as⌈log2 13⌉ = 4. Can we find
F(n,m)better than this? Yes, if we look closely at Equation 2,
uniqueF(i, j) terms are onlyfive. If F(i, j) is present in more
than one sub-equations, we can eliminate some sub-equations
with out the loss of useful information based on the smallest

n-1n-2

m-2

m-1

m

n

iiiiii

iv

v O1O3

O2O4

(a)

m-2 iii ii i

nn-1n-2

m-1 iv O2O4

O3 O1m

(b)

ii

iii

iv

n-1n-2

m-2

m-1

m

n

O1

O2

i

O3

O4

(c)

n-1n-2

m-2

m-1

m

n

iii

iii

O1O3

O2O4

(d)

Figure 4. Matrices to show the elements from whichF(n,m) is computed
(a) O1 is calculated using i, ii, iii, iv and v as given in Equation 4 (b) O2 is
calculated using i, ii, iii and iv as given in Equation 5 (c) O3is calculated
using i, ii, iii and iv as given in Equation 7 (d) O4 is calculated using i, ii
and iii in Equation 6.

value of x(i, j), which in this case is-1. For example,F(n-1,
m-2) is present in equationii, iii, vi, ix . so these sub-equations
can be written as.

ii F (n−1,m−2)−2−1=F (n−1,m−2)−3 (3)

iii F (n−1,m−2)−6

vi F (n−1,m−2)−2−1=F (n−1,m−2)−3

ix F (n−1,m−2)−6

So sub-equationsiii and ix can be simply discarded as they
can never be maximum. There is a tie betweenii and vi, as
we are not certain which may come as maximum. Using this
reduction method for all the sub-equations, Equation 2 can be
reduced to the following equation of seven sub-equations.

F (n,m)=max















































i F (n,m−2)−4

ii F (n−1,m−2)−2+x(n,m−1)

iii F (n−1,m−2)−2+x(n,m)

iv F (n−2,m−2)+x(n−1,m−1)+x(n,m)

v F (n−2,m−1)−2+x(n−1,m)

vi F (n−2,m−1)−2+x(n,m)

vii F (n−2,m)−4

(4)

To find the maximum of seven sub-equations, we need
⌈log2 7⌉ = 3 levels, which is better than 4 levels as before.
Figure 4(a) show howO1(i.e. F(n, m) for a block of 3 × 3
elements) is calculated from Equation 4. But this is just one
element in the3×3 block of elements, we can find the rest of
the unknownsO2 (i.e. F(n, m-1)for a block of3×3 elements),
O3 (i.e. F(n-1, m) for a block of 3 × 3 elements) andO4
(i.e. F(n-1, m-1) for a block of 3 × 3 elements) using the
similar methods forO1.The formulas forO2, O3 andO4 after
applying partial Recursive Variable Expansion and elimination
is given below.

F (n,m−1)=max



















i F (n,m−2)−2

ii F (n−1,m−2)+x(n,m−1)

iii F (n−2,m−2)−2+x(n−1,m−1)

iv F (n−2,m−1)−4

(5)

F (n−1,m−1)=max











i F (n−1,m−2)−2

ii F (n−2,m−2)+x(n−1,m−1)

iii F (n−2,m−1)−2

(6)
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Figure 3. Recursion tree for Needleman-Wunsch Algorithm
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Figure 5. Sequence of fill, starting from the top left shaded square number 1
and moving down diagonally as showing by trailing numbers. All the squares
with same number can be executed in parallel.

F (n−1,m)=max



















i F (n−1,m−2)−4

ii F (n−2,m−2)−2+x(n−1,m−1)

iii F (n−2,m−1)+x(n−1,m)

iv F (n−2,m)−2

(7)

The four unknowns (i.e.F(n, m), F(n, m-1), F(n-1, m)and
F(n-1, m-1)) as shown in Figure 4 only depends on top and
left elements of the3×3 block, which we assume are already
computed, therefore they can be computed in parallel. The
sequence to fill a matrix in Needleman-Wunsch is shown in
Figure 5. This sequence ensures that once a block is computed,
all the terms in Equations 5, 5, 6 and 7 are already computed
in the previous iteration.

A. Time Estimation

The four unknownsF(n, m), F(n, m-1), F(n-1, m)andF(n-1,
m-1) in 3×3 block can be computed in parallel as there is no
dependency among them, therefore the total time to compute
all of them will be equal to the time taken by the unknown
which has maximum number of sub-equations and which has
maximum number of terms to be computed, which in this
case isF(n,m). A detailed time-estimation is given in Figure
6, which is the time to compute 3 blocks serially one after the
other. If the matrix is filled to same extent with the prevalent

parallel technique, then it will take seven diagonal lines as
shown in Figure 5. The time estimate to compute seven lines
serially one after the other is given in Figure 7, which is 28
levels. Therefore the speedup we got from our technique is
28
18 = 1.55.

IV. CONCLUSION

We have presented a new method to parallelize the
Needleman-Wunsch algorithm which extracts more parallelism
than the prevalent parallel techniques. By our technique, we
are able to show that a speed up of 1.55 can be achieved, if a
block of size3×3 is used, this speed up can be increased if the
RVE is applied further to achieve a bigger block size. Future
work will involve the application of RVE on other Sequence
alignment algorithm and with bigger block sizes.
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