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Abstract—Biological sequence alignment is one of the most im-
portant problems in computational biology. Given two sequaces
of varying length are aligned such that the alignment scores
maximum. The alignment score is calculated based on the num-
ber of matches, mismatches and gaps in the alignment suggedt
The basic sequence alignment algorithms are Needleman-Wsaoh
(NW) algorithm and Smith-Waterman (SW) algorithm, which
find the optimal global and local alignment, respectively. h this
paper, we have accelerated the Needleman-Wunsch by applgn
the Recursive Variable Expansion partially, which can be esily
implemented on FPGA. This method extract more parallelism
than other prevalent parallel implementations and we are ale
to achieve a speed up of 1.55 times.

Index Terms—Reconfigurable Computing, Parallelization, Pat-
tern Matching, Computational Molecular Biology, Needlman
Wunsch

|I. INTRODUCTION

local alignment and are fast and less sensitive than Smith-
Waterman, as the time complexity is reduced at the cost of
accuracy. Therefore an optimal alignment may not always
be found through these techniques. Other way to reduce
the time complexity is to accelerate the Needleman-Wunsch
and Smith-Waterman algorithms through parallel processin
Researchers have been able to parallelize both algoritihms o
parallel machines [7], [8], [9]. However, keeping in vieweth
growing size of the database, prevalent methods requitiesiur
acceleration to match the growth.

There is always a need for a fast method, which can extract
more parallelism than before. A major hurdle in achieving
this is the bound on the maximum parallelization, depending
upon the available hardware or inherent degree of parsatteli
available in the algorithms. In this paper, we will accelera
Needleman-Wunsch by extending the degree of parallelism

Biological sequence alignment is one of the most importaavailable in the algorithm and utilizing the hardware to its
problems in computational biology. A biological sequenctll capacity.
with unknown functionalities is compared to a biological The rest of the paper is organized as follows. In the next
sequence with known functionalities to infer the functionsection, we discusses the background and related work for
of the former sequence. The objective is to find an optimtie parallelization of Biological Sequence Alignment. Qi
alignment between two sequences of different length suprpach is discussed in Section lll, furthermore, the coiispar

that the alignment score is maximum. The two sequences
aligned and an alignment score is calculated based on
number of matches and gaps in the alignment.

afdhe time estimates for our approach and prevalent péralle
taehniques is discussed. Finally we conclude the paper in
Section V.

The sequence alignment problem is further divided into

global and local alignment. In global alignment, the opti-

Il. BACKGROUND AND RELATED WORK

mal score and match is found between the two entire s&- Background

quences, whereas in local alignment, the optimal score and gt S[1..n] and T[1..m] be two sequences of lengthand
match is found between some longest subsequences of ih¢,- sequence alignment. Thaptimal alignment score F(i,

two sequences. The basic sequence alignment algorithmsj)arﬁ)r two subsequenceS[L..i] and T[1..j] is given by the
Needleman-Wunsch (NW) algorithm [1] and Smith-Watermafta”OWing recurrence equation.

(SW) algorithm [2], which find the optimal global and local

alignment, respectively. Both algorithms are based on ahyna

programming, are very similar to each other and both have

time and space complexi9(mn) wherem andn are lengths

of the sequences being aligned. Although this complexity

F(ivj_1)+g
F(i,j) =max{ F(i— 1,5 — 1) + 2(i,§) (1)
F(i—l,j)—l—g

seems to be desirable, the exponential growth in bio-sesuemwhere F(0,0) = 0, F(0,5) = g x j and F(i,0) = g x i, for
databases of known sequences makes this complexity intbl< ¢ < n,1 < j < m. The g is the penalty for inserting
erable [3], [4]. Therefore as the database size grows largargap in any of the sequence andi,j) is the score for
faster algorithms to quickly compare and align the sequenaeatch/mismatch, depending upon whetBf = T[j] or S[i]

become important.

# TIl.

One way to avoid such expensive solution is to use heuristicin the remainder of the paper, we will uge= —2 and
techniques like FASTA [5] and BLAST [6]. Both compute ther(i, j) = +1 whenS[i] = T[j], otherwise -1. The recurrence
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Figure 1. Scoring Matrix for an example of Needleman-Wun&fdorithm
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Equation 1 shows the optimal substructure and overlappifigure 2. Data dependence graph for both equations, ditfeseades of
subproblems in the problem, therefore dynamic programmiﬁ@y in circles show the elements which can be executed iallear

[10] is applied to get an efficient solution. In dynamic pro-

gramming, a bottom-up approach is used, in which initiall

the boundary conditions are computed and tRés computed Yollowed by the next diagonal line with different shade of

o gray due to dependency constraint. Therefore the degree of
from smaller subsequences to larger ones till it reaches erallelism is constrained to the lenath of the diagona lin
entire length of the sequences. An example of Needlemaly . gin 9 X
: . ST . and the maximum number of processing elements required
Wunsch algorithm is shown in Figure 1, where a matrix is. .
will be equal to the length of longest diagonal. The number
made and the two sequences are put along the row and colu ns'te s required in such implementatiorQgn+m) [8]
The matrix is filled using Equation 1 from the top-left corne? ps Teq P '
and elements are filled from left to right and from top to

bottom. In the filled matrix the bottom-right element giveet B. Recursive Variable Expansion

maximum gIoba}I a_tligr)ment score for two sequences. Oncereacursive Variable ExpansidRVE) [11] is a kind of loop
the whole matrix is filled, we start a trace back from thg,nstormation which removes all the data dependencies fro
bottom-right element to one of the three elements from whigh,, program and then the program is prone to maximum
alignment score is calculated till it reaches the top-lefiner. parallelism. The basic ideas is that if any stateméntis

In the trace back, When an glement is computed from the tBQpendent on statemettt; for some iterationi andj, then
element then there is a gap in the sequence along the row ead we wait foff; to complete and then execufg we wil

similarly when an element is computed from the left elemepl 56 )l the occurrences of the variabledinthat creates

the_n therg is a gap in the sequence _along the column. Té}éapendency withl; with the computation of that variable in
optimal alignment for the example is given below.

¢ T;. This way there is no need to wait for the statem&nt
to complete and statemeft can be executed independently
RNERAR of T;. Similarly if T; is dependent on some other statement,
GATCGGA we will replace the computation of that statement with the
An operation is primitive, if the time taken by this functionyariable to make it independent of that statement. This step
is independent of the operands. As all the operations givRfrecursively repeated until the stateméhtis not dependent
by the Equation 1 are primitive, the computation of optimaln any statement rather only inputs or known values, which
alignment scoré=(i, j) takes constant time, and since there aigssentially means thaf; can be computed with out waiting
m x n elements to be computed, the time complexity for botfar the computation of any other statement. The technique is
the algorithms i€©O(mn) Likewise, we need to keep the table of,ery beneficial when most of the operations are associative.
sizem x n to compute the=(i, j) and for trace back, therefore|n this way, the whole expanded statement can be computed
the space complexity for the algorithms is al3¢mn). in any order by computing the large number of operations in
To parallelize NW algorithm we need to look at their datarallel and efficiently using binary tree structure. Thgana
dependence graphs as shown in Figure 2. Blank circles are ¢igw back of this technique is that the speed up is achieved at
elements after the initialization with the boundary coinahs. the cost of redundancy’ which consumes very |arge resaurces
Any iteration (i, j) cannot be executed until iteration(s
1, ), (-1, j-1) and (i, j-1) are not executed first, due to
data dependencies. Therefore we need to change the way%hd¥elated Work
elements are traversed like starting from the top, elemeitits A lot of work has been done to accelerate the biological
one shade of gray in a diagonal line can be executed in paraiequence alignment using different hardwares. In addttion
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specific architectures designed for sequence alignmentyma 2 nt n n2 nl 0 n2 ni n2 ni

solution for special purpose hardware, SIMD and FPGAs hawve| ii | i | i |m2| i | i | i m2| i | i m2| i |

been deVised' m-1| iv m-1| iv 02 |m-1 | iii m-1| i o4
A particular algorithm can be implement using special

purpose hardware and it also provides result faster, haweve

they .Iack _the flexibility to run different algorithms reqed @) (b) © (d)

for biological sequence alignment. Some examples of such

implementation are P-NAC, BISP and SAMBA [12], [13] Figure 4. Matrices to show the elements from whiefm,m)is computed

‘(@) O1 is calculated using i, ii, iii, iv and v as given in Eqoat4 (b) O2 is
[14]- calculated using i, ii, iii and iv as given in Equation 5 (c) @3calculated
Several implementations for SIMD have been proposed @#ng i, i, ii and iv as given in Equation 7 (d) O4 is calc@dtusing i, ii

MGAP, Kestrel and Fuzion [15], [16], [17]. SIMD contains?"d il in Equation &.
general purpose processors (GPP) therefore it is progrétema

and is used for a wider range of applications like imaggjue ofx(i, j), which in this case is1. For exampleF(n-1,
processing and scientific computing. The drawback is thet thm-2)is present in equatioin iii, vi, ix . so these sub-equations

are expensive. can be written as.
Field Programmable Gate Arrays (FPGAs) are good can-

didates for accelerating biological sequence alignment al

gorithms. FPGAs are programmable using some hardware @ Fn-1m=2)-2-1=F(n-1,m-2)-3 ®)
description languages like VHDL or Verilog and virtually iti  F(n—1,m-2)—6
any algorithm can be mapped on it. FPGAs can also be vi F(n—1,m—2)—2—1=F(n—1,m—2)—3

reconfigured during system operation, called Run-Time Re-
configuration (RTR), which makes it suitable if the algomith

or gap penalty is changed at runtime. Some of the solutionsSO sub-equationisi andix can be simply discarded as they
based on FPGAs are given in [18], [19], [20]. can never be maximum. There is a tie betw@eandvi, as

we are not certain which may come as maximum. Using this
reduction method for all the sub-equations, Equation 2 @an b

) . . . reduced to the following equation of seven sub-equations.
When we apply recursive variable expansion partially on

Equation 1, the recursion tree is shown in Figurd=t, m)
can be written in equation as shown by the leaf nodes in Figure

iz F(n—1,m—2)—6

Ill. OUR APPROACH ANDTIME ESTIMATION

% F(n,m—2)—4

3 i F(n—1,m—2)—2+xz(n,m—1)
it F(n—1,m—2)—2+4z(n,m)
F(n,m)=max § iv F

i F(n,m—2)—4

i F(n—1,m—2)—2+x(n,m—1) v Fln=zm-b)-24a(n-1m)

v F(n—2,m—1)—2+xz(n,m)

@
3
S

!

(n—1,m—2)—6

(
(
(
(n—2,m-2)+z(n—1,m-1)+z(n,m)  (4)
(
(
(

vit  F(n—2,m)—4

g
=

(n—2,m—2)—4+z(n—1,m—1)
(n—2,m—1)—6 To find the maximum of seven sub-equations, we need
[log, 7] = 3 levels, which is better than 4 levels as before.

S
!

- m Fln=tim=2)=2+atnm) @ Figure 4(a) show howD1(i.e. F(n, m) for a block of3 x 3
Flrm)=maxq i F(n=2m-2)+z(n—1m—1)+a(nm) elements) is calculated from Equation 4. But this is just one
vidi  F(n—2,m—1)=2+z(n,m) element in thed x 3 block of elements, we can find the rest of
iz F(n—1,m—2)—6 the unknown®?2 (i.e. F(n, m-1)for a block of3 x 3 elements),
- F(n—2,m—2)—d+a(n—1,m—1) 03 (i.e. F(n-1, m)for a block of 3 x 3 elements) and)4

(i.e. F(n-1, m-1)for a block of 3 x 3 elements) using the
similar methods fo©1. The formulas fol02, O3 andO4 after
applying partial Recursive Variable Expansion and eliriora

i F(n—2,m—1)—6

zit  F(n—2,m—1)—2+x(n—1,m)

ziti  F(n—2,m)—4 is given below.
Equation 2 is now written as the maximum of thirteen
sub-equations. All the terms are independent of each other, i F(nm—2)-2
therefore sub-equations can be computed in parallel. Since i F(n—1m—2)+a(n,m—1)

®)
making a binary tree from the result of thirteen sub-equrtio
which requires four levels a$log, 13] = 4. Can we find
F(n,m)better than this? Yes, if we look closely at Equation 2,
uniquekF(i, j) terms are onhfive If F(i, j) is present in more
than one sub-equations, we can eliminate some sub-eggation ~ F(n—1Lm—1)=max qii  F(n-2m-2)tz(n-1,m-1)  (6)
with out the loss of useful information based on the smallest it F(n—2,m—1)—2

(

. . . . . . . . (
finding maximum is associative, then the best way to find is by ~ F(nm-1)=maxq (
(

% F(n—1,m—2)—2
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F(n, m)

F(n, m-1)-2 F(n-1, m-1) F(n-1, m)
F(n,m-2)-4 F(n-1,m-2) F(n-1, m-1)-4 F(n-1, WA mZ)X m-1) F(n-1, nﬁ m-1) F(n-2, m)
-2+ x(n, m-1) -2+x(n, m)  +x(n-1, m-1) -2 +x(n, m) -2 +x(n-1, m) -4
+x(n, m)
F(n-1,m-2)  F(n-2, m2}-4 F(n-2, m-1) n1 m-2)  F(n-2, m-2)-4 F (n-2, m-1)
-6 +x(n-1, m-1) -6 +x(n-1, m-1) -6
Figure 3. Recursion tree for Needleman-Wunsch Algorithm
X | X | XX X)X X x| X x/ parallel technique, then it will take seven diagonal linas a
M X X X / shown in Figure 5. The time estimate to compute seven lines
| v 0 serially one after the other is given in Figure 7, which is 28
4 L L levels. Therefore the speedup we got from our technique is
X X X 28 — 1.55.
X /)(/ /X/
X X IV. CONCLUSION
X /x’ We have presented a new method to parallelize the
X Needleman-Wunsch algorithm which extracts more paraiteli
than the prevalent parallel techniques. By our technique, w
X are able to show that a speed up of 1.55 can be achieved, if a
) _ _ block of size3 x 3 is used, this speed up can be increased if the
Figure 5. Sequence of fill, starting from the top left shadgaase number 1

and moving down diagonally as showing by trailing numbern$ti#e squares
with same number can be executed in parallel.

F(n—1,m)

(@)

[

(
- (
=max (
(

The four unknowns (i.eF(n, m) F(n, m-1) F(n-1, m)and

RVE is applied further to achieve a bigger block size. Future
work will involve the application of RVE on other Sequence
alignment algorithm and with bigger block sizes.
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4=< 7 = 28 levels

=6 x3 =18 levels



