
Precise Identification of Memory Faults Using Electrical Simulation

Zaid Al-Ars Said Hamdioui Georgi Gaydadjiev

Laboratory of Computer Engineering, Faculty of EE, Mathematics and CS

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

E-mail: z.al-ars@tudelft.nl

Abstract: Recently, a framework describing the space of

all fault models has been established. Subsequently, it has

been shown that many new faults of that space do exist.

Gradually, The number and complexity of observed mem-

ory fault models has been gradually increasing. As a result,

it has become increasingly difficult to identify the precise

functional fault models that a memory suffers from. This

paper shows that there are two types of possible impreci-

sion in describing faults: underspecification, which leads

to tests with insufficient fault coverage, and overspecifica-

tion, which leads to time-inefficient tests. A general method

is presented to analyze faulty memory behavior based on

electrical simulation and map it precisely onto the corre-

sponding fault models, which makes it possible to generate

time-optimal tests with optimal fault coverage.

Keywords: memory fault models, precise faults, fault

identification, test time, fault coverage.

1 Introduction

With every generation of memory devices, new more com-

plex fabrication technologies and design techniques are be-

ing used. As a result, new types of defect mechanisms are

being introduced into the memory, which in turn cause pre-

viously unknown types of faulty behavior to take place.

Depending on the type of the memory and its field of ap-

plication, it is commercially desirable to have an extremely

low escape rate. This requires memory tests with a high

fault coverage to detect all the faults taking place. How-

ever, these tests should also be as short as possible to keep

the cost of memory testing low.

In order to achieve both memory test requirements of

high fault coverage and short test time, there is a need to

cover exactly the faults taking place in the memory and

removing the test parts that detect both unrealistic faults

and/or other faults not observed in the memory under test.

This requires the precise knowledge of the fault models

exhibited by the memory faulty behavior. This knowledge

can be acquired using defect injection and electrical simu-

lation, then it can be used to generate a corresponding set

of optimal memory tests [Zarrineh98].

Presently, simulation-based memory fault analysis

methods do not apply standard algorithms to identify the

observed faulty behavior [Al-Ars05]. They usually refer

to electrical information (voltages and currents) to identify

the presence of a given type of fault model in an ad hoc

way [Dekker90, Naik93]. This leads to the imprecise spec-

ification of the behavior, causing increased test time and/or

incomplete fault coverage. Considering the fact that a sys-

tematic way of describing all possible memory faults ex-

ist [Al-Ars03], together with the fact that many new faults

have recently been uncovered, a precise method of iden-

tifying the appropriate fault model is essential. This is

true since fault models may suffer from underspecification,

leading to tests with insufficient fault coverage, or may suf-

fer from overspecification, leading to time-inefficient tests.

Previous work have shown that it is possible to give a

precise identification of fault models caused by the initial-

izations of memory cells only, such as state faults and state

coupling faults [Al-Ars07]. This paper provides a general

fault identification method, applicable to all faults involv-

ing both initializations as well as operations. The method

only uses functional information (cell contents and mem-

ory outputs) and does not refer to electrical data to carry

out the identification. This makes the method independent

of the specific electrical implementation of the memory,

making it applicable for both DRAMs and SRAMs.

In Section 2, the paper starts with the definition of fault

models in memories. Section 3 identifies overspecification

and underspecification as the causes of imprecision in fault

modeling. Section 4 presents a method used to perform

the precise fault analysis, using the algorithm discussed in

Section 5. Section 6 ends with the conclusions.

2 Basics of FFMs

Any memory operation sequence expected to result in a

faulty behavior can be represented by the following nota-

tion:

dc1 ... dci
... dcm

Odc1 ... Odcj
... Odcn

(1)

where c: cell address used,

O: type of operation on c, O ∈ {w, r},

d: initialization or written data into c, d ∈ {0, 1},

m: number of initializations, and

n: number of operations.

The initialization part is applied to m cells (denoted as

ci), while the operation part is applied to n cells (denoted

as cj). Note that the value of d in rdcj
of the operation

part represents the expected value of the read operation,

which may be different from the actual value observed at

the output in case of a faulty memory. As an example of the

notation, if an operation sequence is denoted by 0cw1cr1c

then the sequence starts by accessing cell c (which contains

a 0) and writing a 1 into it, then reading the written 1.

Any difference between the observed and expected

memory behavior can be denoted by the following no-

tation <S/F/R>, referred to as a fault primitive (FP)

[Al-Ars03]. S describes the operation sequence that sen-

sitizes the fault; F describes the value of the faulty cell,

F ∈ {0, 1}; and R describes the logic output level of a read

operation, R ∈ {0, 1,−}. R has a value of 0 or 1 when the

fault is sensitized by a read operation, while the ’–’ is used

when a write operation sensitizes the fault. For example, in

the FP <0cw1c/0/−>, which is a transition fault 1 (TF1),

S = 0cw1c means that cell c is assumed to have the initial

value 0, after which a 1 is written into c. The fault effect

F = 0 indicates that after performing a w1 to c, as indi-

cated by S, c remains in state 0. The output of the read

operation R = − indicates that S does not end with a read

operation. The notation for the FP <0cw1c/0/−> can be

simplified to <0w1/0/−>c or to <0w1/0/−>.

FPs can be classified into different classes, depending

on S. Let #C be the number of different memory cells

initialized (ci) or accessed (cj) in S, and let #O be the

number of operations (w or r) performed in S. For exam-

ple, if S = 0c10c2w1c2 then #C = 2 since two cells (c1

and c2) are present in S, while #O = 1 since only one

operation is performed (w1 to c2).

Depending on #C, FPs can be divided into the follow-

ing classes:

• If #C = 1 then the FP sensitized by the correspond-

ing S is called a single-cell FP.

• If #C > 1 then the FP sensitized by the correspond-

ing S is called a coupling FP. If #C = 2 then it is

described as a two-coupling FP or a two-cell FP. If

#C = 3 then it is described as a 3-coupling FP, etc.

In case an FP is a coupling FP (#C > 1) then one of

the cells in the S should be considered as a victim (v) while

the other cells are considered as aggressors (a). In any FP,

the described faulty behavior is related to a victim while

the aggressors are considered to contribute to the fault.

Depending on #O, FPs can be divided into the follow-

ing classes:

• If #O ≤ 1 then the FP sensitized by the correspond-

ing S is called a static FP.

• If #O > 1 then the FP sensitized by the correspond-

ing S is called a dynamic FP. If #O = 2 then it is

described as a 2-operation dynamic FP. If #O = 3
then it is described as a 3-operation dynamic FP, etc.

Clearly, a hierarchy in S results in a hierarchy in FPs.

Figures 1(a) and (b) represent the two different types of hi-

erarchies in FPs defined according to #C and #O, respec-

tively. As shown in the figure, two-coupling FPs are higher

in the hierarchy than single-cell FPs, and the larger the

number of coupled cells the higher the hierarchical level

a fault primitive has. In the same way, a dynamic FP is

higher in the hierarchy than a static FP, and the larger the

number of operations of a dynamic FP the higher it be-

comes in the hierarchy. A higher hierarchical level involves

more cells and/or more operations, hence has a higher test

cost.

The notion of FPs makes it possible to give a precise

definition of an FFM as understood for memory devices.

This definition is presented next [Al-Ars03].

Definition 1 A functional fault model (FFM) is a non-

empty set of fault primitives (FPs).

For example, the transition fault (TF) FFM consists of

2 FPs: TF = {<0w1/0/−>, <1w0/1/−>}.

3 Imprecision in FPs

As mentioned in Section 1, not all sensitized FPs are nec-

essarily precise in the way they describe the faulty behav-

ior of a memory. In this section, the idea of precise FPs

is defined and the reasons that make some sensitized FPs

imprecise are analyzed.

3.1 Definition of precise FPs

Assume that S has been performed on a defective mem-

ory, which results in sensitizing a given FP. The resulting

FP has the form <S/F/R>, where S is the sequence that

sensitizes the fault. The general representation of S has the

form shown in Equation 1.

(b)(a)

Static

etc.

3-operation dynamic

2-operation dynamic2-coupling

3-coupling

etc.

Single-cell

Figure 1. Hierarchical organization of fault primitive classes defined according to (a) #C and (b) #O.

If a given S is said to sensitize a fault, then it is de-

sired that each component of S is necessary and that S as

a whole is sufficient to sensitize the fault. In other words,

it is desired that all m initializations and all n operations

contained in S are needed to sensitize the fault, so that if

any of them changes, it would result in a different faulty

behavior or in no faulty behavior at all. On the other hand,

it is desired that S provides a good enough description of

the conditions resulting in the fault, so that if other initial-

izations or operations are performed before S then the fault

would still take place. Based on the discussion above, pre-

cise FPs can be defined as follows.

Definition 2 An FP = <S/F/R> is said to be precise if

1. The FP is not overspecified: this means that all dci
and

Odcj
in S are necessary to sensitize the fault. Over-

specification results in an increased test time.

2. The FP is not underspecified: this means that the dci

and Odcj
in S are sufficient to sensitize the fault. Un-

derspecification results in incomplete fault coverage.

An FP that does not satisfy these conditions is called im-

precise. FPs can be imprecise as a result of their failure

to satisfy Condition 1, Condition 2 or both conditions of

Definition 2.

3.2 Overspecified FPs

An FP is said to be overspecified if some of the initializa-

tions dci
or the operations Odcj

of S are not necessary to

sensitize the fault. Consequently, if FPo is an overspecified

FP then there is always a precise FP (FPp) with initializa-

tions and operations that are all necessary to sensitize the

fault. If FPo only has an overspecified part (and no under-

specified part) and it is characterized by #Oo and #Co,

and if FPp is characterized by #Op and #Cp, then one of

the following relations is true:

1. #Cp < #Co,

2. #Op < #Oo, or

3. #Cp < #Co and #Op < #Oo.

These relations show how using overspecified FPs to

describe the faulty behavior result in constructing ineffi-

cient memory tests. The lower the number of accessed

cells (#C) an FP has, the less complex the memory test

required to detect it. In the same way, the lower the num-

ber of performed operations (#O) an FP has, the shorter

the test required to detect it.

Overspecified FPs are a direct consequence of the hier-

archical organization of FPs (see Figure 1), since an FP of

a given hierarchical level can be covered by other FPs of

a higher hierarchical level. The following example shows

how FPs can be overspecified based on #O.

Example 1 (overspecified in #O) Similar to the pre-

vious example, assume that a defective memory has a

static two-coupling fault that can be described as FP1 =

<1a0v/1/−>. Now assume that, while performing fault

analysis on this defective memory, S = 1a0vw1a has been

performed where not only the state of a is set to 1, but

also a write 1 operation is performed on a. If we assume

that the write 1 operation has no effect on the faulty be-

havior, S will still fail as a result of the state of a, thereby

sensitizing FP2 = <1a0vw1a/1/−>. Again, this FP does

not precisely describe the faulty memory since it sets more

conditions than necessary (requiring a write 1 operation on

a) to sensitize the fault.

From a testing point of view, FP1 can be de-

tected using the march test {⇑(w0); ⇑(r0, w1); ⇓(w0);
⇓(r0, w1)}. FP2, on the other hand, requires an additional

write operation thereby requiring the march test {⇑(w0);
⇑(r0, w1, w1); ⇓(w0); ⇓(r0, w1, w1)}. Here, the over-

specified FP increased the test time by 33%. 2

3.3 Underspecified FPs

An FP is said to be underspecified if some initializations

dci
or operations Odcj

, necessary to sensitize the fault, are

not included in S as conditions to sensitize the fault. Con-

sequently, if FPu is an underspecified FP then there is al-

ways a precise FP (FPp) with initializations and operations

sufficient to sensitize the fault. If FPu only has an under-

specified part (and no overspecified part) and it is charac-

terized by #Ou and #Cu, and if FPp is characterized by

#Op and #Cp, then one of the following relations is true:

1. #Cp > #Cu,

2. #Op > #Ou, or

3. #Cp > #Cu and #Op > #Ou.

FPs can be underspecified due to insufficient initializa-

tions in S. This is true since all cells in a memory hold their

previous states, whether this state is included in S or not.

Therefore, an S that does not include all cell initializations

needed to sensitize a fault can still fail, simply because the

cells happen to be initialized to the states that sensitize the

fault as a result of previously performed memory opera-

tions.

FPs can also be underspecified due to insufficient oper-

ations in S. This is true since the past history of operations

on a defective memory leaves a trail of voltages in cells and

possibly on bit lines, word lines and data lines. Therefore,

an S that does not include all operations needed to sensi-

tize a fault can still result in a fault, simply because the

needed operations happen to be performed in past history

of the memory. This behavior is strongly related to a spe-

cial type of faults called partial faults, which is analyzed in

more depth in the literature [Al-Ars05].

Underspecified FPs result in constructing memory tests

that are, in general, unable to detect the targeted faulty be-

havior, as can be seen in the following example.

Example 2 Assume that a defective memory has a static

two-coupling fault such that a logic 1 in the aggressor a
forces a logic 1 in the victim v. The S causing this fault

is 1a0v and therefore this fault can be described as FP1

= <1a0v/1/− >. Now assume that, while performing

fault analysis on this defective memory, S = 0v has been

performed in which a was not considered to influence the

faulty behavior. If we assume that c accidentally con-

tains a logic 1, S will still fail thereby sensitizing FP2 =

<0v/1/−>. Yet this FP does not precisely describe the

faulty memory since it sets fewer conditions than neces-

sary (not requiring a to contain 1) to sensitize the fault.

From a testing point of view, detecting FP1 requires us-

ing the march test {⇑(w0); ⇑(r0, w1); ⇓(w0); ⇓(r0, w1)}.

On the other hand, the underspecified FP2 can be detected

using the march test {⇑(w0); ⇑(r1)}, which is clearly un-

able to detect FP1. 2

4 Fault analysis method

This section discusses a method that enables performing

precise fault analysis (i.e., enables identification of precise

FPs) using defect injection and electrical simulation. Iden-

tification of precise FPs is important to generate precise

FFMs and, eventually, to derive optimal memory tests. The

method, shown in Figure 2, has four steps.

First, all possible combinations of relevant operations

sequences (S) should be generated in Step 1. Since it is

typical for a memory to have millions of cells and since

there are infinitely many possible performed operations,

it is not practically feasible, nor realistic, to perform all

Ss. Instead, in Step 1, the fault analysis will be per-

formed for a given neighborhood consisting of k relevant

cells ({c1, ..., ck}) and for a given number of operations

(#O). This restriction is realistic because it has been

shown [Al-Ars03] that a defect only influences a few cells,

and Ss with only a few initializations and operations are

needed to sensitize the faults caused by a defect. Ss gener-

ated in this step should be fully initialized (i.e., all relevant

cells should be initialized to a given value). As an exam-

ple, assume that only one cell v is considered relevant and

that we limit #O to 1, then the possible Ss are: 0v, 0vr0v,

0vw0v, 0vw1v, 1v, 1vr1v , 1vw0v and 1vw1v .

In Step 2, the total faulty behavior of the memory should

be analyzed by applying all Ss generated in Step 1 to

the memory. Each failing S is used to identify an FP

= <S/F/R>, a process that results in a number of FPs

where S has a full initialization of all relevant cells (such

FPs are referred to as full FPs). As an example, apply-

ing the fully initialized Ss generated in Step 1 on a de-

fective memory might result in the following full FPs:

<0vr0v/1/1> and <0vw0v/1/−>. Note that the term

full FPs refers to the fact that all FPs resulting from Step 2

have all accessed cell initialized.

The resulting full FPs are taken as input for Step 3

which generates all possible FPs where S has a reduced

initialization part (referred to as reduced FPs). In this step,

a new set of FPs is generated with all possible permutations

of initializations of S in each full FP. This set of FPs will

serve in Step 4 to inspect whether initialization are actually

necessary in the FP description. As an example, the full FP

= <0vw0v/1/−> from Step 2 generates the reduced FP

<w0v/1/−> where the initialization 0v is removed.

Finally, all FPs (full and reduced) are presented to Step

4, where an algorithm is used to identify the precise FPs.

In Section 5, algorithms used in Step 4 to identify precise

FPs are discussed in detail. The following example shows

with full

initializations
precise FPs

Identify
Generate FPs

with reduced

initializations

Apply

Step 1 Step 2 Step 3 Step 4

Give #O
FPs

Reduced

FPs

Full

FPs

Precise

1{c , ..., c }
Give

k
Generate Ss

Ss Ss

Figure 2. Fault analysis method to generate precise FPs.

how to apply Steps 1, 2 and 3 of the fault analysis method

shown in Figure 2. Examples of Step 4 are given in Sec-

tion 5.

Example 3 As input to Step 1, a set of relevant cells

({c1, ..., ck}) and the number of operations (#O) should

be given. If the cells are chosen to be {a1, a2, v}
and #O = 0 then Step 1 results in the following 8

Ss: 0a10a20v, 0a10a21v, 0a11a20v, 0a11a21v, 1a10a20v,

1a10a21v, 1a11a20v, and 1a11a21v.

Step 2 applies these 8 Ss to the memory under in-

vestigation and represents the failing Ss of them as

FPs. We assume that the following FPf is sensitized

<0a10a21v/0/−>, which is called a full FPf since it con-

tains all initializations of relevant cells. This full FPf is

taken by Step 3 to generate the FPrs with reduced ini-

tializations. Step 3 gives the following 3 reduced FPrs:

<1v/0/−>, <0a11v/0/−>, and <0a21v/0/−>. All re-

sulting 4 FPs (3 FPrs from Step 3 and the full FPf from

Step 2) are forwarded to Step 4 to inspect which FPs

of them are precise. Later in the paper these 4 FPs are

used, therefore we denote them here as FP1 = <1v/0/−>,

FP2 = <0a11v/0/−>, FP3 = <0a21v/0/−>, and FP4 =

<0a10a21v/0/−>. 2

5 Precise identification algorithm

The general notation of S in Equation 1 can be reformu-

lated as:

S = dvda1 ...dai
...da(m−1)

Odc1 ...Odcj
...Odcn

where the cells (cj) in the operation part of S can be taken

as the victim as well as an aggressor. Since this S may end

with a read operation performed on the victim, it results in

a fault described by FP = <S/F/R> where R ∈ {0, 1,−}.

The problem is to establish whether FP is precise. In order

to give an algorithm to do this, we need the following def-

inition.

Definition 3 Given any general sensitizing operation se-

quence Sm, with an initialization part involving m cells

(0 ≤ k ≤ m), a memory permutation of S is defined as

an S′ with the same operation part as S, and an extended

initialization part in which the remaining (k −m) relevant

memory cells are initialized to a given value.

S′ = dc1 ...dci
...dcm

dcm+1 ...dck
Odc1 ... Odcj

...Odcn

In order to show the necessity of a given initialization

dci
in S (0 ≤ i ≤ m), the following procedure should be

performed. First, the memory behavior should be inspected

when the initialization data di for cell ci is inverted to di.

If the data inversion results in proper behavior, then the ini-

tialization dci
is necessary. However, if the fault remains

then this does not yet mean that dci
is unnecessary, since

it is possible that dci
does contribute to the faulty behavior

in collaboration with other initializations in S. Therefore,

dci
is only considered unnecessary if for all (2k−m) mem-

ory permutations of S, using dci
still results in a faulty

behavior. This means that dci
is considered necessary if

there is at least one memory permutation of S that results

in no faulty behavior when dci
is replaced by dci

in S. This

procedure should be performed (m−1) times for each ini-

tialization in S.

In order to show that none of the (k − m) relevant cells

(not included in S) influence the FP, the following should

be done. All memory permutations of S should be per-

formed and the memory behavior is inspected. If any mem-

ory permutation of S results in no faulty behavior, then

there is a necessary initialization not included in S. This

means that the initializations in S are only considered suf-

ficient if none of the memory permutations of S changes

the faulty behavior.

Showing that all the operations are necessary to sensi-

tize the fault is done as follows. All possible proper subsets

of the operations included in S (there are (2n−1) of them)

should be applied to the memory. If any of these operation

subsets shows the same faulty behavior as S under all pos-

sible memory permutations, then some operations in S are

unnecessary. The operations in S are considered all nec-

essary only if all operation subsets show a different faulty

behavior (different F and/or different R) for at least one

memory permutation.

The following algorithm gives three conditions which

the faulty behavior of the memory should satisfy in order

for FP to be precise. In the algorithm, k is the number of

relevant cells in the memory, m is the number of initializa-

tions in S, while n is the number of operations (#O) in the

S.

Algorithm 1 If performing S results in sensitizing FP =

<S/F/R>, then FP is precise if:

1. Check operations are necessary: For each of the

(2n − 1) Ss given by every possible proper sub-

set of the operations performed in S, there is at

least one memory permutation that results in FP′ =

<S′/F ′/R′> such that F ′ 6= F and/or R′ 6= R.

2. Check initializations are necessary: For each

initialization in S, the following should be in-

spected. If the initialization is inverted then at

least one of the 2k−m memory permutations given

by S′ = dvda1 ...dai
...da(m−1)

dam
...da(k−1)

Odc1

...Odcj
...Odcn

, where (dm, ..., dk−1) ∈ {0, 1}k−m,

results in FP′ = <S′/F ′/R′> such that F ′ 6= F
and/or R′ 6= R.

3. Check initializations are sufficient: Perform-

ing all possible 2k−m memory permutations for

S given by S′ = dvda1 ...da(m−1)
dam

...da(k−1)

Odc1 ...Odcj
...Odcn

, where (dm, ..., dk−1) ∈
{0, 1}k−m, always results in <S′/F/R>.

The following example illustrates how Algorithm 1 can

be applied to check for precise FPs. The example uses a

defect within a single memory cell, which means that the

faulty behavior does not depend on other memory cells.

Example 4 The example is based on the faulty behav-

ior resulting from a defect injected within a DRAM cell,

as shown in Figure 3. The faulty behavior resulting from

this defect can be considered restricted to the defective cell

only. Assume that Rdef has a high enough value to dis-

connect the cell from the bit line. This means that write

operations fail to set the state of the cell, and that read op-

erations detect the precharge state of bit lines rather that

the state of the cell.

WL

def

BT

R
C

Figure 3. Model of a DRAM cell isolated by a defect from the bit line.

Assume that the cell is initialized to 0, and that it is con-

nected to the true bit line which is precharged to the high

voltage level. As a result, the following FPs would be sen-

sitized: FP1 = <0vw1v/0/−>, FP2 = <0vr0v/0/1>, and

FP3 = <0vw0vr0v/0/1>. Since the initialization of the

cell does not result in a fault, FP1 and FP2 are considered

precise. On the other hand, FP3 is not precise because the

operation subset S = 0vr0v results in the same faulty be-

havior as FP3. 2

6 Conclusions

This paper presented a new fault analysis method to pre-

cisely map the faulty behavior of a memory observed dur-

ing defect injection and electrical simulation to a set of FPs.

The method performs all relevant sensitizing operation se-

quences on the memory and identifies whether the resulting

FPs are precise. The resulting precise FPs are not under-

specified, which means that they are sufficient to sensitizes

the fault. At the same time, the resulting precise FPs are

not overspecified, which means that they are necessary to

sensitize the fault and contain no redundancies. Identifying

the set of precise FPs for a memory leads to deriving mem-

ory tests with high fault coverage and optimal test time.

References

[Al-Ars03] Z. Al-Ars and A.J. van de Goor, “Static and Dynamic

Behavior of Memory Cell Array Spot Defects in Embedded

DRAMs,” in IEEE Trans. on Comp., vol. 52, no. 3, 2003,

pp. 293-309.

[Al-Ars05] Z. Al-Ars, DRAM Fault Analysis and Test Gener-

ation, PhD thesis, Delft Univ. of Technology, Delft, the

Netherlands, 2005, http://ce.et.tudelft.nl/˜zaid/

[Al-Ars07] Z. Al-Ars and S. Hamdioui, “Automatic Analysis of

Memory Faulty Behavior in Defective Memories,” in Proc.

IEEE Int’l Conf. on Design and Technology of Integrated

Systems in Nanoscale Era, 2007.

[Dekker90] R. Dekker, F. Beenker and L. Thijssen, “A Realistic

Fault Model and Test Algorithms for Static Random Access

Memories,” IEEE Trans. on CAD of Integrated Circuits and

Systems, vol. 9, no. 6, 1990, pp. 567–572.

[Naik93] S. Naik, F. Agricola and W. Maly, “Failure Analysis of

High Density CMOS SRAMs,” in IEEE Design and Test of

Computers, vol. 10, no. 2, 1993, pp. 13–23.

[Zarrineh98] K. Zarrineh, S.J. Upadhyaya and S. Chakravarty,

“A New Framework for Generating Optimal March Tests

for Memory Arrays,” in Proc. IEEE Int’l Test Conf., 1998,

pp. 73–82.

