
Optimizing Cache Performance of the Discrete Wavelet Transform
Using a Visualization Tool

Jie Tao1, Asadollah Shahbahrami2 , 3, Ben Juurlink2

Rainer Buchty4, Wolfgang Karl4, and Stamatis Vassiliadis2

1Institut fuer 2Computer Engineering Laboratory 4Institut für Technische
Wissenschaftliches Rechnen Delft University of Technology Informatik Universität
Forschungszentrum Karlsruhe 2628 CD Delft, The Netherlands Karlsruhe (TH) 76128
jie.tao@iwr.fzk.de A.Shahbahrami@TUDelft.nl Karlsruhe, Germany

Abstract

The 2D DWT consists of two 1D DWT in both direc-
tions: horizontal filtering processes the rows followed by
vertical filtering processes the columns. It is well known
that a straightforward implementation of the vertical filter-
ing shows quite different performance with various working
set sizes. The only reasonable explanation for this has to
be the access behavior of the cache memory. As known,
vertical filtering has mapping conflicts in the cache with a
working set size that is power of two. However, it is not
clear how this conflict forms and whether cache problems
exist with other data sizes. Such knowledge is the base for
efficient code optimization. In order to acquire this knowl-
edge and to achieve more accurate optimization potentials,
we apply a cache visualization tool to examine the runtime
cache activities of the vertical implementation. We find that
besides mapping conflicts, vertical filtering also shows a
large number of capacity misses. More specifically, the vi-
sualization tool allows us to detect the parameters related
to the strategies. This guarantees the feasibility of the opti-
mization. Our initial experimental results on several differ-
ent architectures show an up to 215% gain in execution time
compared to an already optimized baseline implementation.

Keywords: Discrete wavelet transform, memory perfor-
mance, visualization tool, code optimization.

1. Introduction
Discrete Wavelet Transform (DWT) tool is one of the

most important multimedia algorithm to process multi-
3This research was supported in part by the Netherlands Organisation for
Scientific Research (NWO). Asadollah Shahbahrami is also with the De-
partment of Electrical Engineering, Faculty of Engineering, The University
of Guilan, Rasht, Iran.

media data. Standards such as MPEG-4 and JPEG2000
are based on the 2D DWT. The 2D DWT is much more
memory-intensive and time consuming transform than other
transforms such as Discrete Cosine Transform (DCT). We
have measured the total execution time consumed by the
DWT using the JasPer software tool kit [2]. The results
show that the DWT consumes on average 46% of the to-
tal encoding time for lossless compression and even 68%
for lossy compression. Results presented by other re-
searchers [4, 8] also show that the DWT consumes a signif-
icant fraction of the total JPEG2000 encoding time. There-
fore, one way to reduce the execution time of the JPEG2000
standard is to optimize the implementation of 2D DWT.

The 2D DWT consists of two 1D DWT in both direc-
tions: horizontal filtering processes the rows followed by
vertical filtering processes the columns. As well-known, a
straightforward implementation of vertical filtering (assum-
ing a row-major layout) generates many cache misses, due
to lack of spatial locality. This can be avoided by inter-
changing the loops. Loop interchange, however, does not
solve all cache and memory problems. This is illustrated in
Figure 1, which depicts the speedup of horizontal filtering
over vertical filtering (with interchanged loops) for the Co-
hen, Daubechies and Feauveau 9/7 transform (CDF-9/7) on
three different platforms: Pentium 3 (P3), Pentium 4 (P4),
and AMD Opteron processors.

Figure 1 shows that for some image sizes, vertical filter-
ing is significantly slower than horizontal filtering, while for
other image sizes there is a slight difference. This scenario
has been explained by the mapping conflicts in the cache
memory [8,12]. This explanation, however, is merely based
on a static analysis of the source code without any runtime
information. This analysis can neither exhibit the concrete
conflict nor cover all cache problems. For example, it is not
known how the conflict is caused and whether other issues,
e.g. capacity problem, exist which are also responsible for

Figure 1. Speedup of horizontal filtering over
vertical filtering for CDF-9/7 transform on
three different platforms, P3, P4, and AMD
Opteron processors, for various image sizes.

the cache inefficiency of the vertical filtering.
In order to exactly understand the access pattern and the

runtime cache behavior of the DWT implementation and to
detect potential further optimizations, we apply the visual-
ization tool YACO [9]. YACO is specifically designed and
implemented for understanding and optimizing the cache
access behavior of sequential as well as parallel applica-
tions. Using this tool, we examined the runtime data oper-
ations of the DWT and found that besides the well-known
cache conflict capacity miss is also a primary reason for the
poor performance of vertical filtering. Moreover, we de-
tected the cause for the conflict misses.

Based on this finding, we first created an optimized ver-
sion using loop tiling, an efficient strategy for tackling ca-
pacity miss. This optimization scheme enables reused data
to be maintained in the cache by reducing the size of the
working set in a single loop. Again based on the presented
access pattern, we then achieved two optimized versions
for tackling conflict misses, one using loop fission and the
other with array padding. Loop fission removes the conflict
misses by distributing the overmapping data into several in-
dividual loops, while array padding changes the mapping
behavior of data structures by inserting buffers between
them or inside a single data array.

Our optimizations differ from existing approaches in that
the deployed schemes and their related parameters such as
tiling and padding size are selected according to the ac-
cess pattern and the runtime cache behavior of the program.
Hence, they exactly address the problem and are therefore
more efficient.

The optimizations were tested on several target architec-
tures, including P3, P4, AMD Opteron, and Intel Itanium
II. In most cases we achieved a performance gain of more
than a factor of two. The best performance is obtained on
the Opteron processor, where an improvement of a factor of
3.15 in execution time has been attained.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief explanation of the DWT and the

CDF-9/7 implementation of the vertical filtering. This is
followed by a description of some related work in the area
of DWT optimization in Section 3. In Section 4 the visual-
ization tool is introduced, followed by a detailed description
of how this tool is applied to find the bottlenecks, the reason
for them and the strategies for tackling the problems in Sec-
tion 5. Initial experimental results are presented in Section
6. The paper concludes in Section 7 with a short summary.

2. Background

In this section we describe the DWT and the implemen-
tation of vertical filtering using loop interchange.

2.1. Discrete Wavelet Transform (DWT)

As mentioned, several image standards use 2D DWT to
compress image data. The DWT transforms the wavelet by
sampling it discretely. With this algorithm, the wavelet rep-
resentation of a discrete signal X consisting of N samples
is computed by convolving X with the low-pass and high-
pass filters and down-sampling the output signal by a factor
of 2. This process decomposes the original image into two
sub-bands: the lower and the higher band [13], each con-
taining N/2 samples.

A 2D DWT is performed by first performing an 1D DWT
on each row (horizontal filtering) of the image followed by
an 1D DWT on each column (vertical filtering). The hor-
izontal filtering filters whole rows of an image and stores
the intermediate coefficients in an output matrix. Then, the
vertical filtering filters these intermediate results and stores
the final results in the input matrix in the order expected by
the quantization step.

2.2. Vertical Filtering

Vertical filtering processes the matrix in column order.
The original implementation of vertical filtering computes
each column entirely before advancing to the next column.
This approach, however, results in excessive cache misses
because it is unable to exploit spatial locality, since the
cache blocks corresponding to the first rows will have been
replaced when the algorithm advances to the next column.
In order to improve spatial locality we have applied loop
interchange, a well-known compiler technique. Figure 2
depicts the C implementation of vertical filtering using the
CDF-9/7 transform for an N × M image with loop inter-
change.

In this work we consider the CDF-9/7 transform, be-
cause this filter is included in Part 1 of the JPEG2000 stan-
dard [10]. However, the proposed techniques can be ap-
plied to other filters as well, as an example Daubechies’
transform with four coefficients. The CDF-9/7 transform
has 9 low-pass filter coefficients and 7 high-pass filter coef-
ficients, both filters are symmetric. Array low and high in

void CDF_97_vertical() {
int i, j, ii;
float low[] ={0.6029, 0.2669, -0.07822, -0.0169, 0.0267};
float high[]={-0.5913, -0.0575, 0.09127, 1.1150};
for (i=0, ii=4; ii<N-4; i++, ii +=2)

for(j=0; j<M; j++) {
in_image[i][j] = ou_image[ii-4][j] * low[4] + ou_image[ii-3][j] * low[3]

+ ou_image[ii-2][j] * low[2] + ou_image[ii-1][j] * low[1]
+ ou_image[ii][j] * low[0] + ou_image[ii+1][j] * low[1]
+ ou_image[ii+2][j] * low[2] + ou_image[ii+3][j] * low[3]
+ ou_image[ii+4][j] * low[4];

in_image[i+ N/2][j] = ou_image[ii-4][j] * high[2] + ou_image[ii-3][j] * high[1]
+ ou_image[ii-2][j] * high[0] + ou_image[ii-1][j] * high[3]
+ ou_image[ii][j] * high[0] + ou_image[ii+1][j] * high[1]
+ ou_image[ii+2][j] * high[2];

}

Figure 2. C implementation of vertical filtering using the CDF-9/7 transform. Note that the loops have
been interchanged w.r.t. the straightforward implementation.

the code shown in Figure 2 store these values. The exper-
imental results that have been presented in [11, 12] clearly
show that the implementations with interchanged loops are
much more efficient than the straightforward implementa-
tions. For this reason we will compare the performance of
our improved implementations to the performance attained
by the algorithms after loop interchange.

As illustrated in Figure 1, however, performance prob-
lem still exists with the vertical filtering. This motivated us
to apply the visualization tool to acquire a deeper insight
into the runtime cache access behavior of this code.

3. Related Work
Meerwald et al. [8] have proposed two techniques to im-

prove cache utilization, called row extension and aggrega-
tion. Row extension adds some dummy elements to each
row so that the image width is no longer a power of two
but co-prime with the number of cache sets. Aggregation
filters a number of adjacent columns consecutively before
moving to the next row, instead of performing vertical fil-
tering column by column. If the number of columns filtered
consecutively is equal to the image width, aggregation is
identical to loop interchange. However, if the length of the
filters is larger than the number of cache ways, aggregation
does not eliminate all conflict misses. In other words, it
does not remove the conflicts that may exist between the
input coefficients needed to compute one output coefficient.

Chaver et al. [5] also considered the memory hierarchy
issue and made a further step towards understanding the
cache problem exactly. They detected that the main prob-
lem of the DWT is caused by the discrepancies between the
memory access pattern of horizontal and vertical filtering.
The main bottleneck of the DWT is caused by the verti-
cal filtering. They proposed combining aggregation with
a line-based approach [6], which starts vertical filtering as
soon as a sufficient number of lines (determined by the fil-

ter lengths) has been filtered horizontally. This approach
reduces the amount of memory required. In addition, they
considered different layouts. They chose images with a
width equal to a power of two and measured performance on
a P4 (as well as a P3). The experimental results show, how-
ever, that this approach does not eliminate all cache conflict
misses.

Adams [1] also observed that processing in the vertical
direction can be extremely inefficient, due to the large stride
accesses in memory. Adams noted that many misses occur
during vertical filtering when the image width is power of
two. He proposed two optimization techniques, called mod-
ified split/join (MSJ) and pipelined filtering (PF). The MSJ
method affects the way in which split/join operations are
performed in the lifting-based implementation. It tries to
reduce the number of read and write operations compared
to the traditional method. In the PF technique the computa-
tion for all lifting operations are simultaneously performed
as soon as the necessary data dependencies are satisfied.

In summary, existing research work has targeted on the
cache problem of the DWT (primarily the conflict misses),
achieved statistics on cache misses, and tried different op-
timizations with the goal of improving the data locality.
However, these researchers could not completely solve the
cache inefficiency with DWT. This is because of the fol-
lowing reasons. First, the cache miss statistics only give
an overview of the global cache performance and hence do
not expose the actual problem. Second, optimizations are
based on assumptions or static analysis without any knowl-
edge of the runtime cache behavior, and hence cannot fully
remove conflict misses. Finally, optimization strategies are
not specifically chosen. For achieving optimal optimiza-
tion, however, suitable techniques have to be appropriately
deployed because each scheme is only efficient for a certain
kind of cache misses.

Therefore, we perform optimizations based on the

knowledge about cache miss reason and the runtime access
feature. Our work differs from previous work in the fol-
lowing ways. First, we detect all possible cache misses.
Second, we acquire the knowledge of cache miss charac-
teristics like the reason for each kind of miss. Third, we
locate the concrete object to optimize. Finally, the optimiza-
tion scheme is specifically selected for tackling the detected
miss type.

4. YACO: A Cache Visualization Tool

YACO [9] is developed for exhibiting the runtime cache
accesses. It is specially designed with the goal of efficiently
helping the users in their task of cache optimization. It pro-
vides a variety of graphical views to display the various as-
pects of the cache access behavior. The presentation is at a
high level with respect to user-visible data structures. More
specifically, YACO shows the cache miss reason, which al-
lows the user to detect optimization strategies.

Following the conventional optimization process, YACO
uses a top-down approach to direct the user step-by-step to
detect the problem and the solution. Users first acquire an
overview about the cache access behavior shown by the ob-
served program. Based on this overview, users can deter-
mine whether an optimization is essential. In the next step,
the access hot spots, i.e., the data structures and code re-
gions which are responsible for the poor cache performance,
can be located with the help of both YACO’s view about the
miss statistics on variables and its three dimensional view
showing the miss behavior of individual functions. After
that, the reason for the cache miss and the access pattern of
data structures can be detected. This information also al-
lows the user to decide an appropriate optimization scheme
and related parameters, or to design novel algorithms to
eliminate the detected cache problem. The impact of the op-
timization can be observed with YACO after running the op-
timized code. This process can be repeated until an accept-
able cache performance is achieved. Some views and this
step-by-step analysis process will be shown and explained
in the following section by examining the cache behavior of
the DWT algorithm.

5. Analyzing the Cache Problem

In order to remove the effects of conflict misses for de-
tecting other cache problems, we applied a data set size,
randomly chosen as 160 × 160, which is not a power of 2.
The target cache is a 4-way set associative one with a line
size of 64 bytes and a total capacity of 4KB.

For detecting the cache problems with the vertical fil-
tering, we fist examined YACO’s Variable Miss Overview,
which gives an overview of cache misses with the main data
structures of a program or a function. As illustrated in Fig-
ure 3, this view displays the miss statistics on each data

structure in four bars. They represent from left to right the
total misses, cold (compulsory) misses, conflict misses, and
capacity misses, where the total misses is the sum of the
other three classifications. Absolute numbers of the misses
are depicted at the left bottom corner, while the meaning of
each column is explained at the right bottom corner.

Figure 3. Variable Miss Overview: 4KB-
cache.

The figure clearly show that for the two primary data
structures in the vertical filtering, ou_image introduces
a significant number of cache misses, 80% more than
in_image. In addition, it can be seen that all misses with
in_image are compulsory misses caused by the first refer-
ences. This kind of miss can be reduced using prefetching.

Having found the optimization solution for in_image,
we now focus on the matrix ou_image. For this data struc-
ture, in addition to compulsory misses, the limited cache
capacity is another primary reason for the misses. For tack-
ling capacity miss, a common approach is loop tiling. This
technique reduces cache misses by decreasing the number
of iterations within the innermost loop so that the data can
be reused by the outer loops. For this, however, we need
to know the tiling size, i.e., the number of iterations in the
innermost loop. This parameter decides the data size within
a loop and the data size determines whether the execution
introduces capacity misses.

For acquiring this parameter we further examine
YACO’s Variable Trace and Cache Set view, which present
the access pattern and the runtime cache updates individ-
ually. The Variable Trace view of YACO shows the refer-
ences to data blocks/elements in a data structure in the order
as they are accessed. As depicted in the sample view in the
upper diagram of Figure 4, 20 fields are used to demon-
strate the successive references to the selected data struc-
ture. These fields are filled from left to right, top to bottom
as the references going on. In case that all fields are filled,
the earliest access, i.e. the reference in field 20, is removed.

Figure 4. Variable Trace with hit turned-on
(upper: first 20 references, lower: the con-
tinuous 20 references).

Figure 4 depicts the initial 40 accesses to matrix
ou_image in two views. Each field in the diagram con-
tains complete information about the corresponding refer-
ence: the access type (indicated by the color), name of the
referenced data structure (upper text), the concrete data el-
ement (lower right number), and the data block (lower left
number) holding this element. The access type can be a load
operation indicating a first reference, a replacement indicat-
ing the access to this matrix element replacing another data
block in the cache, or a hit event.

First, the accesses show a regular pattern, where nine
data blocks are loaded into the cache, seven of them reused,
and then fully reused one after another. For example, the
first access, illustrated in field 20 of the upper diagram of
Figure 4, is a reference to element 0 stored in data block
0. The color indicates it is a load operation. After another
eight loads of different data blocks, block 0 is re-accessed
for the same element. According to the color of field 11,
this access is a cache hit. Observing field 4 it can be seen
that block 0 is referred again but this time the access is to

element 1.
Examining further references we see that this behavior

repeats till the last elements in these nine blocks, i.e., 0, 10,
...., 80, are referenced with a cache hit (unfortunately, we
could not show all accesses in a single picture). After that,
nine successive blocks, i.e., 1, 11, 21, ..., 81, are loaded into
the cache and reused like the previous blocks. This behavior
repeats till blocks 9, 19, 29,, 89 are loaded into the cache.
We call all of these an access phase. In the following, block
20, 30, ..., 100 are accessed, similarly to the blocks 0, 10,
..., 80, then 21, 31, ..., 101, and so on, forming the second
access phase.

This behavior shows us two kind of data locality: intra-
phase and inter-phase. The former exists within an individ-
ual access phase, where the same data block is reused. The
latter exists across phases, like block 20 is accessed in the
first phase and then in the second phase again. According
to the YACO views, the intra-phase data reuse all introduces
a cache hit, however, the inter-phase reuse all shows cache
miss. YACO shows the reason: after loading twenty data
blocks the cache is full and the inter-phase reused block is
evicted from the cache before it could be reused.

Figure 5. The Cache Set view.

For holding the blocks in the cache for inter-phase reuse,
it needs to know which data block is responsible for the
eviction. For this, we examine the cache set view of YACO,
shown in Figure 5. The cache set view is designed to ex-
hibit the runtime activities in a single cache set, in this case
set 2 where the first reused block, i.e. block 20, is mapped.
As shown in the figure, a cache set contains four lines of
horizontal blocks which correspond to the four cache lines
in a set. These blocks demonstrate the operations and con-
tent update in an individual cache set. The operations are
presented in chronological order with the right followed by
the left. Using the arrow keys, further or earlier operations
can be presented or represented.

Observing the first line it can be seen that block 20

Cache size 1K 2K 4K 8K 16K 32K 64K
Tiling size 16 32 64 128 256 512 1024

Table 1. Tiling size for different cache size.

is replaced by block 4 while accessing element 64 of
in_image. As the source code in Figure 2 shows,
in_image is computed element by element. This means
that if the inner loop only processes 64 elements of
in_image, from element 0 to element 63, and then the
outer loop starts, the access to element 64 would not be is-
sued and block 20 would be maintained in the cache. There-
fore, the number of iterations in the innermost loop, here
loop j, has to be less than or equal to 64 for the goal of
data reuse. We then added another loop for maintaining the
program semantic and achieved an optimized version. This
optimization technique is called tiling.

Similarly, we examined the case with 2KB caches and
detected a tiling size of 32 for this configuration. Based on
these results with both 4KB and 2KB caches, we assume
that the tiling size can be calculated for other cache sizes
with the same associativity. Actually, this is also theoreti-
cally correct. For example, a 4KB cache has a double capac-
ity as a 2KB cache, can hold twice as much data, and hence
the innermost loop is allowed to contain twice as many it-
erations. Table 1 gives this information for several cache
capacities.

Having detected the cache problem with image size
which is not a power of two, we further examined the fea-
ture of conflict misses with power two image sizes. For this,
we performed a simulation with an image size of 512×512.
First, we found that in this case even the intra-phase reuse
causes cache miss. Using the cache set view we further de-
tected that the reason for this poor behavior lies in the fact
that all nine ou_image blocks needed for processing a sin-
gle element of in_image are mapped in the same cache
set. This means that if a cache set cannot hold all these
blocks, e.g. in case of a 2-, 4-, and 8-way cache with LRU
replacement policy, each of the blocks has to be moved from
the cache before reuse. Therefore, all accesses to them are
cache misses.

The solution is either to perform only partial calculations
in the innermost loop so that fewer data blocks are requested
or to insert at least a cache line between the rows of matrix
ou_image to map these nine blocks in different cache sets.
The former technique is called loop fission and the later ar-
ray padding. Again, we achieved two optimized versions of
the DWT program using theses schemes.

6. Experimental Results

The optimized versions were evaluated on several differ-
ent architectures. For a comparative study the original code
was also tested.

6.1. Experimental Setup

Four platforms were used for executing the resulted
codes: P3, P4, AMD Opteron, and Itanium II. The main
architectural parameters of these systems are summarized
in Table 2.

All versions were compiled using gcc with optimization
level -O2 and executed on a lightly loaded system. Per-
formance was measured using the IA-32 cycle counter [7].
Cycle counters provide a very precise tool for measuring
the time that elapses between two different points in the ex-
ecution of a program. In order to eliminate the effects of
context switching and compulsory cache misses, the K-best
measurement scheme and a warmed up cache have been
used [3]. That means that the function is repeatedly (K
times) executed and the fastest time is recorded. Executing
the function at least once before starting the measurement
minimizes the effects of both instruction and data cache
misses.

6.2. Performance

We first examine the implementation of the vertical fil-
tering using the fission technique which is used to tackle
conflict miss by working set size of a power of two. Fig-
ure 6 depicts the speedup resulting from this technique. The
speedup is calculated by dividing the execution time of the
reference implementation by the execution time of the opti-
mized version.

It can be seen that for those image sizes that suffer from
many cache misses, loop fission improves performance sig-
nificantly. For example, the speedup ranges from 1.01 to
1.29 for P3, from 1.09 to 1.24 for P4, and from 1.13 to 2.38
for the AMD Opteron processors. However, only a slight
performance improvement with a speedup of up to 1.1 has
been gained on the Itanium architectures. Even a slowdown
can be observed with smaller and no power of two image
sizes. The slowdown accounts for up to 13%, 4%, 17%, and
12% on P3, P4, AMD Opteron, and the Itanium processors,
respectively.

The reason that why the loop fission reduces the perfor-
mance for some image sizes is that this technique partitions
a single loop into several loops. This means that the proces-
sor has to do additional work for managing these loops and
their related index variables. More importantly, the loops
introduce a number of conditional instructions. Depend-
ing on the processor architecture the overhead for manag-
ing theses loops can vary significantly. For example, pro-
cessors with better branch predictor requires less time for
handling the loops than those that are poorer in this fea-
ture. Hence, the overhead could be larger than the gain
through reduced cache misses, causing thereby slowdown
rather than speedup. However, for large power of two im-
age sizes, which suffer from considerable cache misses, the

Processor Intel P3 AMD Opteron Intel P4 Intel Itanium II
CPU Clock Speed 451MHz 2.0GHz 3.0GHz 1.3GHz
L1 Data Cache 16 KBytes 64 KBytes 8 KBytes 16 KBytes

2-way set asso., 2-way set asso., 4-way set asso., 4-way set asso.,
32 Bytes line size 64 Bytes line size 64 Bytes line size 64 Bytes line size

L2 Cache 512 KBytes 1 MBytes 512 KBytes 256 KBytes
8-way set asso., 8-way set asso., 8-way set asso., 8-way set asso.,
32 Bytes line size 32 Bytes line size 64 Bytes line size 128 Bytes line size

Memory 384 MBytes 1 GBytes 1 GBytes 8 GBytes

Table 2. Parameters of the experimental platforms.

performance gain through cache optimization is significant
and therefore speedup has been achieved.

Figure 6. Speedup by using loop fission.

For the padding scheme we do not see such performance
penalty. This is because the padding technique relies on en-
larging data structures to change the mapping behavior and
thereby eliminate conflict misses. Hence, this optimization
scheme does not result in any runtime execution overhead.
Figure 7 depicts the speedup achieved by this technique.

Again, it can be seen that considerable improvements are
achieved with power of 2 image sizes. The padding tech-
nique improves performance by factors ranging from 1.01
to 1.68 for P3, from 1.01 to 1.27 for P4, from 1.01 to 3.19
for AMD Opteron, and from 1.05 to 1.34 for the Itanium
processors. This result is better than loop fission.

Figure 7. Speedup achieved by the padding
technique.

The high performance improvement obtained by both
optimized versions, loop fission and padding, on P3, P4,
and the AMD Opteron processors compared to Itanium pro-

cessor. The reason is that the applied Itanium processor has
an L3 cache of 3MB with a latency of 15 cycles. This cache
can hold most of the data evicted from the L1/L2 caches.
Therefore, the programs do not suffer as significantly as
other machines from the long access latency of the main
memory.

Figure 8 depicts the speedup of the horizontal filtering
over vertical filtering with padding technique. It can be ob-
served the vertical filtering presents a good performances,
much better than its behavior with the original code de-
picted in Figure 1.

Figure 8. Speedup of horizontal filtering over
vertical filtering with padding technique.

Figure 9. Speedup of the vertical filtering us-
ing tiling technique over the reference imple-
mentation.

Finally, we examine the tiling technique. Figure 9 de-
picts the speedup achieved by this scheme in the implemen-
tation of vertical filtering over the reference implementa-
tion. Observing the overall performance gain across the im-

age sizes, it can be seen that this technique does not yield
speedups as high as the fission and padding schemes do.
This can be expected because the latter two techniques are
used to tackle conflict misses, and there are several orders of
magnitude more conflict misses than capacity misses. For
example, our simulation with an image size of 512 × 512

showed 120,960 conflict misses and 5020 capacity misses
(24-fold).

Despite the relatively small number of capacity misses,
we have achieved performance gains. As can be seen in
Figure 9, the best performance is obtained on the Itanium
and AMD Opteron, where a speedup of close to 1.3 has
been achieved. P4 has shown an up to 1.15 speedup, while
on P3 the maximal improvement counts for 8%.

Our tiling algorithm is similar to the aggregation tech-
nique. The reason that why this technique improve perfor-
mance for some image sizes is as follows. The rows of in-
put image data needed to compute one row of output image
data, all except the first two can be reused to compute the
next row of output data. In particular, if the rows of input
image needed to compute row i of output data are the rows
j to j+L−1, where L is the filter length, then rows j+2 to
j+L−1 are reused to compute the next row i+1, provided
L rows can be kept in cache.

On the other hand, the reason that why this technique
reduce the performance of some image sizes is as follows.
First, this algorithm does not improve cache conflict misses.
Second, this algorithm incurs more loop overhead than ref-
erence implementation. Finally, it destroy spatial locality
because it does not entirely processes the elements of rows
consecutively.

7. Conclusions

In this paper, we show an approach of using a visual-
ization tool to analyze and optimize the cache performance
of the DWT algorithm. We actually have addressed two
kind of cache misses: the capacity and the conflict miss.
For capacity misses, the proposed approach is general with
respect to image size and target systems. This is because
capacity misses are caused by the limited cache size. Hence
the miss behavior only depends on the cache size. For con-
flict misses we could find general solution for various image
sizes and architectures based on one analysis like we have
done in this paper. This solution, however, may not be ideal
for all scenarios. This is because the runtime conflict misses
depend on the cache associativity, the data size, and also on
the compiler. The former two factors determine the map-
ping of data in the cache and thereby influence the number
of conflict misses. For the latter, modern compilers perform
code transformations that modify the data accesses. Hence,
for an accurate optimization it is better to observe the cache
behavior with individual data size and cache architecture.

Overall, in contrast to conventional approaches based on

static analysis of the source code, our approach is better in
terms of accuracy because it considers the runtime dynamic
behavior of the cache. Hence, a higher performance gain
can be achieved. Although with some optimization tech-
niques it is needed to deal with individual cases, such as
different cache organization and data size, for optimal so-
lutions, however, approaches based on static analysis also
have to handle these cases separately.

References

[1] M. D. Adams. Efficient Breadth-First Implementation of the
Wavelet Transform. In Proc. IEEE Int. Symp. on Signal Pro-
cessing and Information Technology, August 2006.

[2] M. D. Adams and R. K. Ward. JasPer: A Portable
Flexible Open-Source Software Tool Kit for Image Cod-
ing/Processing. In Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, volume 5, pages 241–244,
May 2004.

[3] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A
Programmer’s Perspective. Prentice Hall, 2003.

[4] S. Chatterjee and C. D. Brooks. Cache-Efficient Wavelet
Lifting in JPEG 2000. In Proc. IEEE Int. Conf. on Multi-
media, pages 797–800, August 2002.

[5] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and F. Tirado.
2-D Wavelet Transform Enhancement on General-Purpose
Microprocessors: Memory Hierarchy and SIMD Parallelism
Exploitation. In Proc. Int. Conf. on the High Performance
Computing, Dec. 2002.

[6] C. Chrysafis and A. Ortega. Line-Based, Reduced Memory,
Wavelet Image Compression. IEEE Trans. on Image Pro-
cessing, 9(3):378–389, March 2000.

[7] Intel Corporation. The IA-32 Intel Architecture Software
Developer’s Manual Volume 3 System Programming Guide,
2004. Order Number: 253668.

[8] P. Meerwald, R. Norcen, and A. Uhl. Cache Issues with
JPEG2000 Wavelet Lifting. In Proc. of Visual Communi-
cations and Image Processing, January 2002.

[9] B. Quaing, J. Tao, and W. Karl. YACO: A User Conducted
Visualization Tool for Supporting Cache Optimization. In
Proc. 1st Int. Conf. on High Performance Computing and
Communcations, volume 3726 of Lecture Notes in Computer
Science, pages 694–703, September 2005.

[10] M. Rabbani and R. Joshi. An Overview of the JPEG2000
Still Image Compression Standard. Signal Processing: Im-
age Communication, 17(1):3–48, January 2002.

[11] A. Shahbahrami, B. Juurlink, and S. Vassiliadis. Perfor-
mance Comparison of SIMD Implementations of the Dis-
crete Wavelet Transform. In Proc. 16th IEEE Int. Conf. on
Application Specific Systems Architectures and Processors
(ASAP), pages 393–398, July 2005.

[12] A. Shahbahrami, B. Juurlink, and S. Vassiliadis. Improving
the Memory Behavior of Vertical Filtering in the Discrete
Wavelet Transform. In Proc. 3rd ACM Int. Conf. on Com-
puting Frontiers, pages 253–260, May 2006.

[13] E. J. Stollnitz, T. D. Derose, and D. H. Salesin. Wavelets
for Computer Graphics: Theory and Applications. Morgan
Kaufmann, 1996.

