
ARCHITECTURE AND IMPLEMENTATION OF

THE 2D MEMORY WITH MULTI-PATTERN

PARALLEL ACCESSES

Arseniy Vitkovskiy, PhD student

ARCES - Advanced Research
Center for Electronic Systems,

University of Bologna,

Viale Pepoli 3/2, 40123,

Bologna, ITALY

avitkovski@arces.unibo.it

Technical report

December, 2007

Supervisors: G. Gaydadjiev,

G. Kuzmanov

2

Contents

ABSTRACT 3

1 INTRODUCTION 4

1.1 Research context and goal description 4

1.2 Related work 5

2 THEORETICAL BASIS 6

3 PROPOSED MEMORY ACCESS SCHEME 11

3.1 Module assignment function 11

3.2 Row address function 14

3.3 Memory access latencies 14

4 DESIGN IMPLEMENTATION AND COMPLEXITY EVALUATION 15

4.1 Mode select 16

4.2 Address generator 16

4.3 Row address generator 18

4.4 Module assignment unit 18

4.5 Shuffle unit 19

4.6 De-Shuffle unit 19

5 RESULTS AND ANALYSIS 20

5.1 ASIC synthesis 20

5.2 FPGA synthesis 21

5.3 Comparison with the related work 21

6 CONCLUSION 23

APPENDIX A. VHDL SOURCES. 24

REFERENCES 32

3

Abstract
This report presents a novel multi-pattern parallel addressing scheme in two-dimensional (2D)
addressing space and the corresponding 2D interleaved memory organization with run-time
reconfiguration features. The proposed architecture targets mainly multimedia and scientific
applications with block cyclic data organization running on computing systems with high
memory bandwidth demands, such as vector processors, multimedia accelerators, etc. The prior
research on 2D addressing schemes is substantially extended introducing additional parameters,
which define a large variety of 2D data patterns. The proposed scheme guarantees minimum
memory latency and efficient bandwidth utilization for arbitrary configuration parameters of the
data pattern. The presented mathematical descriptions prove the correctness of the proposed
addressing schemes. The design and wire complexities, as well as the critical paths are evaluated
using technology independent methodology and confirm the scalability of the memory
organization. These theoretical results are confirmed by the synthesis for both ASIC and FPGA
technologies. Comparison with the related works shows the advantages of reported addressing
scheme. The RTL implementation of the memory organization represents the complete platform-
independent IP and can be integrated in any architecture.

4

1 Introduction

1.1 Research context and goal description

With modern increase of technology development, the performance of memory subsystems lags
more and more behind the processing units. This trend becomes increasingly evident for
architectures with massively parallel data processing, such as multimedia accelerators, vector
processors, SIMD-based machines, etc. There are several techniques developed to reduce the
processor versus memory performance gap, including various caching mechanisms, memories
advanced with extra wide data word or multiple ports. But most of all, the parallelism
phenomenon is utilized in parallel memory organizations, where the storage subsystem consists
of a set of memory modules working in parallel. The main advantages of this organization are:
relatively small overheads, low latency, efficient interconnection usage and possibility of
accessing specific data patterns. The data patterns depend very much on the target application
and might have various shapes, sizes and strides (distances between the successive elements).

The design challenge is to ensure conflict-free parallel data access to all (or maximum possible
number of) memory modules for a set of different data patterns. This is obtained by means of a
module assignment function. According to the data pattern format (in other words template),
various module assignments can be implemented, such as linear functions [4], XOR-schemes [6],
rectangular addressable memories [11], periodic schemes [15] and others. Row address function
specifies physical address inside a memory module. Together, module assignment and row
address functions form the class of skewing schemes.

However, there is no single skewing scheme which would support conflict-free access for all
possible data patterns [1]. Two solutions that deal with such limitation are: Configurable
Parallel Memory Architecture (CPMA) [10], [13] and Dynamic Storage Scheme (DSS) [1], [9],
[8], [16]. CPMA provides access to a number of data templates using a single relatively complex
hardware when the number of memory modules is arbitrary. A more dedicated DSS unifies
multiple storage schemes within one system. The appropriate scheme is chosen dynamically
according to the specific data pattern in use. DSS restricts the amount of memory modules to the
power of two and considers only interleaved memory system [9], [8].

The goal of this research is to develop a memory hierarchy with dynamically adjustable regular
2D access patterns, which would improve the data throughput between the main memory and
processing units. Our approach is to split the problem into six trivial sub-problems, which would
require hardware implementation with rather low complexity and short critical path. We consider
an exhaustive set of pattern definition parameters and propose a performance efficient,
interleaved memory organization. More specifically, the main contributions of the current
proposal are as follows:

 Extended set of 2D pattern access parameters: base address; vertical and horizontal
strides, group lengths, and block sizes.

 Support for the complete set of the 2D data patterns described by the above parameters.

 Run-time programmability of the memory access pattern by means of Special-Purpose
Registers (SPRs).

 Independency of the data pattern size from the number of the interleaved memory
modules;

 Minimal memory access latency for arbitrary strides and group lengths.

5
 Modular implementation, which can be easily simplified to a restricted subset of 2D data

patterns (if the target application does not require full flexibility), thus reducing the
design complexity and critical path.

 High design scalability confirmed by hardware synthesis results.

The proposed memory organization targets highly data-parallel applications with 2D block cyclic
data distribution [5]. The matter concerns mainly scientific operations on matrices for e.g.
synthetic aperture radar (SAR) software [12] or applied aerodynamics (Actiflow), as well as
multimedia applications such as audio/video compression (ADPCM, G721, GSM, MPEG4,
JPEG).

1.2 Related work

A DSS for a strided vector access was presented in [9]. The stride value is detected by the
compiler and sent directly to the pipelined address transformation hardware. In such a way, the
scheme supports conflict-free accesses for non-restricted vectors with constant arbitrary stride.

In [8] the authors extended their scheme with block, multistride and FFT accesses. To decrease
the latency of multistride vector access when conflict-free access is not achieved, it was
proposed to use dedicated buffers to smooth out transient non-uniformities in module reference
distribution. Block access supported only restricted set of blocks sizes equal to power of two.
Finally, in order to improve a radix-2 FFT algorithm, authors proposed non-interleaved storage
scheme and a constant geometry algorithm for which they identified three data patterns. For all
three types of address transformations, the same hardware was used.

CPMA from [10] supports generate, crumbled rectangle, chessboard, vector, and free data
patterns. Virtual address is used to read appropriate row address and access function from the
page table which are further transformed into row and module addresses. The authors presented
complexity, timing and area evaluations for their architecture.

A buffer memory system for a fast and high-resolution graphical display system was proposed in
[13]. It provides parallel access to a block, horizontal, vertical, forward-diagonal, and backward-
diagonal data pattern in a two-dimensional image array. All pattern sizes are limited to power of
two. The address differences of those patterns are specifically prearranged and saved in two
SRAMs so that later they can be added to the base address in order to obtain memory module
addresses.

Other researches explore memory scheduling of DRAM chips by addressing locality
characteristics within the 3D (bank, row, column) memory structure [14]. The solution consists
of reordering memory operations in such a way that allows saving clock cycles on precharging
banks and accessing successive rows and columns.

6

2 Theoretical basis
In parallel memories data can be referenced using predetermined patterns called memory access
patterns or data patterns. The data distribution among the parallel memory modules is called a
module assignment function m which is also known as a skewed scheme. The module
assignment function determines data patterns that can be accessed conflict-free. A data element
with a linear address a is assigned to a memory module according to)(am . A row address
function A determines the physical address of a data element inside a memory module.

Our task is to develop a memory hierarchy with dynamically programmable data patterns to
minimize the main memory access latency from the vector processing units using interleaved
memory modules organized in a two-dimensional matrix with parallel access. Fig. 1 depicts an
example of a data pattern of six groups of size VGL×HGL=2×4 and strides (VS,HS)=(4,5). The
parameters used to describe the data pattern are explained in Table 1.

V
S

V
G

L V
B

L*
V

S

Fig. 1. Proposed memory access pattern.

Table 1. Memory access pattern parameters.

Parameter Description

W ℕ1 - data word length in bytes;

Aw ℕ - row address width in bits;

),(hsvbb [0,ℕ] - base address of the accessed block;

HSVS, ℕ - vertical and horizontal strides;

HGLVGL, ℕ - vertical and horizontal group lengths – group size;

HBLVBL, ℕ - vertical and horizontal block lengths – block size;

NM ℕ - size of a data block stored in the memory;

HDVD ∈ℕ - size of the matrix of memory modules;

1 Though the word length can have any natural value, on practice it usually has a value of power of two.

7

VBL
VGL

id
i V 








0 ,

VGLVBLidV 0 , Vid ∈ℕ.

HBL
HGL

id
j H 




0 ,

HGLHBLid H 0 , Hid ∈ℕ.

- vertical i and horizontal j group indices;

VGLVGLidk V  mod0

HGLHGLidl H  mod0

- vertical k and horizontal l element indices.

The first step is to translate the linear address of the main memory into a two-dimensional one.
The transformation equation (1) is used in order to translate linear base address b into a two-
dimensional one),(hbvb with the vertical and horizontal constituents.

hbNvbb  ,

 Nbvb / ,

Nbhb mod

(1)

Any data element with linear address a belonging to an accessed data block has the following
two-dimensional address),(hava :

haNvaa  ,

kiakVSiVBva , ,

ljalHSjHBha , .

(2)

where indices]1,0[],1,0[ VGLkVBLi , and]1,0[],1,0[ HGLlHBLj

As follows from (2), the two-dimensional address is completely separable, i.e. its vertical and
horizontal constituents are independent from each other. Therefore, in the following discussion
we consider the address constituent along only one dimension.

The stride parameter as any other natural number might be represented in the following
expansion:

sS 2 ∈ℕ, (3)

where 12  x , x ℕ and s∈[0,ℕ]. Consequently, stride S is odd when 0s , and it is

even when s∈ℕ.

Before proceeding to the description of our solution we would need to consider the following
theorems.

Theorem 1: No single skewing scheme can be found that allows conflict-free access for all the
constant strides and group lengths when the data pattern can be unrestrictedly placed. The
theorem is valid for arbitrary number of memory modules, when at least two data elements are
accessed concurrently1.

1 This theorem follows the theorem 1 from [1] but in our case it has wider application since it considers the group
length together with the stride.

8
Proof: Let)(am be the module assignment function and lSjbaid  the first accessed data

element. Then, the next accessed data element is












1,)1(

;1,11

1

1

GLliflSaSjba

GLlifalSjba

idid

idid ,

where GL is a group length, and S is a stride. The two elements can not be accessed conflict-
free if there are stride S and group length GL such that)()(1 idid amam . □

Theorem 2: All the odd strides can be accessed conflict-free with the low-order interleaved

scheme if the number of memory modules equal to power of two: dD 2 , d ∈ℕ.

Proof: The proof is presented by M. Valero et al. in [16]. □

Theorem 3: Let stride S  , group length GL , and number of memory modules D along one
dimension equal to power of two, i.e. sS 2 , glGL 2 , and dD 2 , where dgls ,, ∈ℕ. Also let

ds  which means that the strides have less than one access per row. Then the module
assignment function defined by

  D
Da

GLaam
ds

mod
2

)(











  , (4)

allows conflict-free parallel accesses to D memory modules.

Proof: First we find a period P of function (4). If function)(am maps address a to its module

address for a stride S  and group length GL , then)()(SPamam  , ∀ a . According to (4),
this corresponds to

    D
DSPa

GLSPaD
Da

GLa
dsds

mod
2

)(
)(mod

2 











 













  ;

    D
DSPDa

GLSPaD
Da

GLa
dsds

mod
2

mod
2 












 













  ;

    D
PDa

GLSPaD
Da

GLa
ds

ds

ds
mod

2

2
mod

2 
















 













 



 ;

    DGLP
Da

GLSPaD
Da

GLa
dsds

mod
2

mod
2 

























  ;

    DGLSP
Da

GLaD
Da

GLa
dsds

mod)(
2

mod
2 

























  .

According to the properties of modulo operation, this equality holds when
0mod))(( DGLSP . The last formula corresponds to the following set of periods:














,

;

;)(

DzGLP

DySP

DxGLSP

⇒





















,

;

;

GL

D
zP

S

D
yP

GLS

D
xP

9

where zyx ,, ∈ℕ and zyx ,, : P∈ℕ.

Now we will find the minimum period 1min P . This means to solve the next set of minimization
problems:



















 























,min

;min

;min

min

min

min

GL

D
zP

S

D
yP

GLS

D
xP

where minP ∈ℕ.









































.
),(

;
2

2

)2,2(

2

),(

;
),()2,2(),(

GLDGCD

GL
z

D

S

GCDSDGCD

S
y

GLDGCD

GLS

GLGCD

GLS

GLSDGCD

GLS
x

d

sds

sd

s

property
GCD

dssd































.
),(),(

;1

;
),(),(

min

min

min

GLDGCD

D

GL

D

GLDGCD

GL
P

S

D

D

S
P

GLDGCD

D

GLS

D

GLDGCD

GLS
P

Thus, the minimum period equal to
),(min GLDGCD

D
P  .

Now we will find number of accesses performed to the distinct memory modules. Harper and
Jump showed in [7] that for a basic skewing storage scheme the number of distinct modules
referenced during a vector access is),min(DPA  . For our case with group length presented,

the number of distinct modules is),min(DGLPA  and glGL 2 , gl∈ℕ.

  DDGLDLCMD
GLDGCD

GLD
DGLPA 







 
),,(min,

),(
min),min(.

Thus, any vector of length D , having the form of Fig. 1 and (2), inside the sequence of module
addresses generated by)(am has exactly D distinct addresses. This is the definition of conflict-
free accesses. □

Theorem 4: Let stride S  , group length GL , and number of memory modules D along one
dimension equal to power of two, i.e. sS 2 , glGL 2 , and dD 2 , where dgls ,, ∈ℕ. Also let

ds  which means that the strides have at least one access per row. Then the module assignment
function defined by

DS
D

a
GLaam mod)mod()(












 , (5)

10
allows conflict-free parallel accesses to D memory modules.

Proof: The proof mainly repeats the one of Theorem 3. First we find a period P basing on the
fact that)()(SPamam  , ∀a .

DS
D

SPa
GLSPaDS

D

a
GLa mod)mod(mod)mod(












 













 .

Using properties of modulo operation we derive the following combined equations:





















 

















.mod)mod(mod)mod(

;0mod)(

DS
D

SP

D

a
GLaDS

D

a
GLa

DSP

The first equation gives us the set of periods equal to
S

D
xP


 , where x∈ℕ: P∈ℕ. Now we

substitute period P in the second equation with its value derived from the first equation:

DS
D

S

S

D
x

D

a
GLaDS

D

a
GLa mod)mod(mod)mod(












 
















 ;

DSxGL
D

a
GLaDS

D

a
GLa mod)mod(mod)mod(

























 .

Using the same property of modulo operator we obtain the following equation:

0mod)( SGLx ⇒
GL

S
yx


 , where y∈ℕ: x∈ℕ.

Substitute x in the equation which gives the set of periods P :

GL

D
y

S

D

GL

S
y

S

D
xP 








 , y∈ℕ: P∈ℕ.

This set of periods exactly repeats the one from the proof of Theorem 3. Therefore, the minimum

period equal to
),(min GLDGCD

D
P  and, as follows from the same proof, the number of distinct

accessed addresses equals to D . Thus, module assignment function (5) is conflict-free. □

Theorem 5: If a vector is to be accessed with even stride sS 2 , where 12  x , x ℕ,

s∈ℕ and 0s , and its elements are arranged in memory according to the storage scheme
appropriate for a stride sS 2 access the accesses are conflict-free [9].

Proof: The proof repeats the one from [9] with only difference that in our case we should
examine the sequence of groups of module addresses instead of the sequence of single addresses.
□

Now we are ready to present the proposed solution.

11

3 Proposed memory access scheme
Since there is no any single scheme for all the strides and group lengths according to Theorem 1,
we propose to partition the problem in a number of cases, thus reducing the problem to a set of
trivial sub-problems, and examine each of them independently.

We propose to partition the problem according to the stride oddness criterion on two subtasks.
The following partition is done according to the theorems in section 2. According to Theorem 2
odd strides can be accessed conflict-free using a basic skewing scheme [1], [11]. Further splitting
on cases I and II is made for the purpose of memory latency minimization. Cases V and VI refer
to Theorem 3 and Theorem 4 respectively. The remaining situations with even stride refer to
cases III and IV and the skewing scheme from [9] is used. The problem partitioning is depicted
on Fig. 2.

BL
D

GL
GL

D

BL










BL
D

GL
GL

D

BL










BL
D

GL
GL

D

BL










Fig. 2. Problem partition.

Now we need to build the module assignment and row address functions for all the cases.

3.1 Module assignment function

We partition the design problem, imposed by the multiplicity of access patterns, into trivial
subtasks. A module assignment function is devised for each of six different cases with respect to
particular initial conditions.

3.1.1 Case I

Initial conditions:

}0;12|2{  sxS s  ,

BL
D

GL
GL

D

BL








 .

(6)

An access to the data pattern is performed on a basis of sets of elements; i.e. ab init, the set of the
first elements of all groups is accessed followed by the set of the second elements of all groups
and so on. When DBL  then more than one access is required to reed/write a whole group of
data. If 0)mod(DBL then the remaining memory modules stay unused. The relation

BL
D

GL
GL

D

BL








 again guarantees that the number of accesses required to access the

12
whole pattern is minimal. This case represents a conventional interleaved scheme with stride
access which can be implemented conflict-free according to Theorem 2.

The module assignment function has the same representation as for a common interleaved
scheme:

Daam mod)( . (7)

The indices iterate according to the following sequence:

(i,k) = ((0,0);(1,0);…;(VBL-1,0);
(0,1);(1,1);…;(VBL-1,1);
…;
(0,VGL-1);(1,VGL-1);…;(VBL-1,VGL-1)).

(8)

The number of the required accesses to read/write the whole data pattern in this case is equal to:

GL
D

BL
t 



 . (9)

3.1.2 Case II

Initial conditions:

}0;12|2{  sxS s  ;

}0;12|2{  sxS s  & glGL 2 , gl ℕ;

BL
D

GL
GL

D

BL








 .

(10)

An access to the data pattern is performed group-wise, i.e. one group is accessed at a time.
When DGL  then more than one access is required to reed/write a whole group of data. If

0)mod(DGL then the remaining memory modules stay unused. The relation

BL
D

GL
GL

D

BL








 guarantees that the number of accesses required to access the whole

pattern is minimal. The fact that any separate group inside the block can be accessed conflict-
free is shown by G. Kuzmanov et al in [11].

The module assignment function has the same representation as for the case I (7):

Daam mod)( ,

but the indices iterate according to the different sequence:

(i,k) = ((0,0);(0,1);…;(0,VGL-1);
(1,0);(1,1);…;(1,VGL-1);
…;
(VBL-1,0);(VBL-1,1);…;(VBL-1,VGL-1)).

(11)

The number of the required accesses to read/write the whole data pattern in this case is equal to:

BL
D

GL
t 



 . (12)

3.1.3 Case III

Initial conditions:

gls GLsxS 2&}0;12|2{   , (13)

13

BL
D

GL
GL

D

BL








 ,

ds  .

In this case, the indices iterate as in (8) but here we use module assignment function from [9]:

  D
Da

aam
ds

mod
2

)(











  , (14)

In fact, all initial conditions for this case exactly repeat the ones presented in [9].

The number of the required accesses to read/write the whole data pattern is described by formula
(12).

3.1.4 Case IV

Initial conditions:

gls GLsxS 2&}0;12|2{   , gl ℕ;

BL
D

GL
GL

D

BL








 ;

ds  .

(15)

Again, memory access repeats the sequence (8), and the module assignment function from [9] is
appropriate to the initial conditions:

DS
D

a
aam modmod)(







 



 . (16)

The number of the required accesses to read/write the whole data pattern is described by formula
(12).

3.1.5 Case V

Initial conditions:

gls GLsxS 2&}0;12|2{   , gl ℕ;

ds  .
(17)

An access to the data pattern is performed element-wise, that allows the maximum utilization of
the memory modules. Power of stride is not smaller than power of the array size: ds  .

The module assignment function has the following representation:

  D
Da

GLaam
ds

mod
2

)(











  , (18)

The sequence of indices (i, k) is not important in this case since all memory modules are
accessed conflict-free (refer to Theorem 3).

The number of the required accesses to read/write the whole data pattern in this case is equal to:





 


D

BLGL
t . (19)

14
3.1.6 Case VI.

Initial conditions:

gls GLsxS 2&}0;12|2{   , gl ℕ;

ds  .
(20)

An access to the data pattern is performed element-wise, as in case V. Power of stride is smaller
than power of the array size: ds  .

The module assignment function has the following representation:

DS
D

a
GLaam mod)mod()(












 , (21)

The sequence of indices (i, k) is not important again since all memory modules are accessed
conflict-free (refer to Theorem 4).

Number of the required accesses to read/write the whole data pattern in this case, as in case V, is
equal to:





 


D

BLGL
t . (22)

3.2 Row address function

The row address function determines the linear address inside a memory module. An important
characteristic of the proposed solution is that, in spite of having four different representations of
the module assignment function, there is only one row address function which is valid for all
cases described above. This feature enables large hardware design simplification as well as
reduces the design time. The row address function is described by the following formula:


















HD

ha

HD

N

VD

va
havaA),(. (23)

Equation (23) shows that the function is completely separable, which means that we are still able
to examine vertical and horizontal constituents independently.

3.3 Memory access latencies

Number of accesses that are needed to read/write the whole data pattern is described by the
following equations, representing the best and the worst cases:





 





 


HD

HBLHGL

VD

VBLVGL
t best

m , (24)




























HD

HBLHGL
HBLHGL

VD

VBLVGL
VBLVGLt worst

m

),max(
),min(

),max(
),min(. (25)

From the equations above we can derive an optimal choice for the matrix size:

 ),max(|: BLGLDDDopt  . (26)

15

4 Design implementation and complexity evaluation
In order to evaluate our scheme, we have verified it using a MatLab model, implemented it in
VHDL and performed technology independent complexity evaluation in terms of wire
complexity and logic complexity. The parallel memory controller which exploits the proposed
scheme is implemented between the main memory and the processing unit (see Fig. 3). It aims at
shadowing the high-latency channel to the main memory by means of a wide bus connection to
the processing unit which performs parallel transmissions of data. The concurrently accessed
matrix of memory modules is placed inside the memory controller. The pattern parameters are
transmitted to the memory controller via programmable Special Purpose Registers (SPRs).

Main memory

Special Purpose
Registers (SPR)

Memory
controller Processing

Unit (PU)
DW

VDxHDxDW

Fig. 3. Integration of parallel memory controller.

Structurally, the memory controller consists of an address generation part, a data routing part and
a matrix of memory modules (see Fig. 4). The address generation part is split in vertical and
horizontal sides that completely mirror each other. It includes the following blocks: mode select,
address generator, set of row address generators, module assignment and address shuffle. The
data routing part consists of a number of input shuffles and output de-shuffles. Refer to
Appendix A for the VHDL source code of each sub-module of the design.

The critical path passes through the address generator, module assignment unit and decoding part
of the shuffle. Hereafter the memory controller blocks are described in details.

S
h

uf
fle

S
pe

ci
al

 P
u

rp
o

se
 R

e
gi

st
e

rs
 (

S
P

R
s)

C
R

IT
IC

A
L

P
A

T
H

Fig. 4. Parallel memory controller block diagram.

16

4.1 Mode select

The mode select unit sets the address generation logic to a mode, corresponding to the six cases
of the problem partitioning (see Fig. 2). The pattern parameters stride S , group length GL and
block length BL are read from the programmable SPRs.

The block implements stride oddness check and resolving of two inequalities:

BL
D

GL
GL

D

BL








 and ds  (see Fig. 5). The Counter* includes logic for power of two

equality check, i.e. it counts number of logic ‘1’ in the input signal: if there is only one logic ‘1’,
then the input is equal to power of two and the output is set to logic ‘1’, otherwise the output is
set to logic ‘0’. The Coder block performs coding of four 1-bit signals according to the problem
partition diagram (Fig. 2) in order to create 3-bit Mode signal. The correspondence between
cases and Mode signal is outlined in Table 2.

Fig. 5. Mode select block diagram.

The hardware complexity almost does not depend on the size of the matrix of memory modules
HDVD , nor on the data word length W since the width of the input signal is constant and

equals to 16 bits in our implementation. The wire complexity is constant and does not depend on
the quantity of memory modules, data or address widths.

Table 2. Correspondence table.

Mode signalCase #

bit 2 bit 1 bit 0

Case I. 0 0 0

Case II. 0 0 1

Case III. 0 1 0

Case IV. 0 1 1

Case V. 1 0 0

Case VI. 1 0 1

Reserved 1 1 0

Reserved 1 1 1

4.2 Address generator

The address generator produces vertical/horizontal constituents of two-dimensional addresses of
the accessed data pattern according to formula (2). Data pattern parameters are read from SPRs

17
and an address mode is loaded from the mode select block. The address generator consists of two
double parallel counters and one single parallel counter (see Fig. 6) that generate the sequence of
pairs of indices (i, k) or (j, l) (refer to Table 1, section 3.1 and equations (8),(11)). The double
counters generate group and element indices separately (for cases I-IV), and the single counter
generates group and element indices on the base of a common index by implementing
respectively division and modulo by group length (for cases V-VI). Note that the group length is
equal to power of two for cases V-VI therefore division and modulo operations become possible.
One side of a parallel double counter is presented on Fig. 7.

The complexity of the address generator block is)(DwO A  because of the multiplier with input
signal width depending on the size of the matrix of memory modules.

The critical path passes from the register inside a double counter and goes through the double
counter, one multiplexer, one multiplier1 and one adder to the address output. The critical path is
equivalent to)(log DO .

The wire complexity is equal to)(DwO A  since the address generator produces D addresses of

width Aw for each of the two dimensions.

Fig. 6. Address generator block diagram.

Fig. 7. Parallel counter block diagram.

1 In the actual VHDL implementation, this multiplier was unrolled in a set of adders and pre-calculated in parallel
with the counters. This allowed to reduce the critical path though its length still equals to)(log DO .

18

4.3 Row address generator

The row address generator translates vertical/horizontal constituents of two-dimensional
addresses into the physical addresses inside memory modules according to equation (23). Since
formula (23) is completely separable, vertical and horizontal row address generators are
implemented in separable blocks (see Fig. 4). Consequently, vertical blocks generate upper bits
of the row address, and horizontal blocks generate the lower bits. No additional logic is needed
to implement this block. The wire complexity is equivalent to the address width:)(AwO .

4.4 Module assignment unit

The module assignment unit translates vertical/horizontal constituents of two-dimensional
addresses into memory module addresses inside the matrix of memory modules according to
equations (7), (14), (16), (18), and (21). Data pattern parameters are read from SPRs and an
address mode is loaded from the mode select block. The equations are implemented in parallel
and their outputs are multiplexed according to the address mode (see Fig. 8).

Fig. 8. Module assignment unit block diagram.

Complexity of the module assignment function for all cases (refer to equations (7), (14), (16),
(18), and (21)) is presented in Table 3. The notation lsmsx : represents the bit interval from the

least significant bit ls to the most significant bit ms . The complexity of the complete block is
proportional to)(log DO because of the adders with input signals of the maximum width equal
to Dlog .

The wire complexity is equal to)(DwO A  since the module assignment unit produces D results

basing on the input address of width Aw .

The critical path passes through the mask unit, shifters, one adder and one multiplexer. Its length
is mostly influenced by the adder of width Dlog and is equivalent to))(log(log DO .

Table 3. Module assignment function complexity for different cases.

Case # Complexity

Cases I-II.
0:1)( daam (27)

Case III.   0:1:10:1)(  dsdsd aaam (28)

Case IV.   0:1:10:1)(  dddsd aaam (29)

19

Case V.   0:1:10:1 2)(  d
gl

sdsd aaam (30)

Case VI.   
0:10:1:180:1 2)(

 
ds

gl
dWd aaam (31)

4.5 Shuffle unit

The shuffle unit is used to reorder row addresses, received from the row address generators,
according to the module assignment function. It consists of a parallel set of de-multiplexers and
output OR-gates (see Fig. 9).

Its complexity is)(DwO A  . The biggest shuffle in the design is the Data IN shuffle (see Fig. 4).

Its wire complexity is equal to)(2 WDO  since it has 2D inputs and the same amount of outputs
of width W .

The critical path passes through a multiplexer via its select port and does not depend on D .

Fig. 9. Shuffle unit block diagram.

4.6 De-Shuffle unit

The de-shuffle unit is needed to reorder the data from memory modules back to the initial
sequence. It consists of a set of parallel multiplexers (see Fig. 10).

The complexity of the shuffle unit is)(DwO A  . The widest de-shuffle is situated at the Data

OUT. Its wire complexity is similar to the shuffle’s one and equals to)(2 WDO  .

RData1

RData2

ModuleID1

ModuleID2

MUX

S1

S2

D

C

MUX

S1

S2

D

C

Rdata’1

Rdata’2

...

Fig. 10. De-Shuffle unit block diagram.

20

5 Results and analysis
The technology independent complexity estimations from Table 4 indicate that the critical path
complexity is weakly sensitive to the size of the memory matrix and thus the design is well
scalable to any matrix size. In fact, the throughput is directly proportional to the matrix size
VD×HD, and inversely proportional to the critical path, i.e. DDWthroughput log2 .

Table 4. Summary of the technology independent design complexity evaluation.

Design unit Logic complexity Wire complexity Critical path

Mode select)(constO)(constO -

Address generator)(DwO A )(DwO A )(log DO

Row address generator 0)(AwO -

Module assignment unit)(log DO)(DwO A ))(log(log DO

Shuffle)(DwO A )(2 WDO )(constO

De-shuffle)(DwO A )(2 WDO  -

Total)(DwO A )(2 WDO )(log DO

5.1 ASIC synthesis

The synthesis was performed for an ASIC 90 nm CMOS technology. The results for six different
matrix sizes, word widths W of 32 and 64 bits, and 12-bit addresses are presented in Table 5 and
Ошибка! Источник ссылки не найден.. In fact, data word width of 8 Bytes corresponds to
utilization of two concurrently coupled 32-bit wide memory modules. Generally speaking, the
address width ranging from 8 till 16 bits is enough for the most of practical applications, which
would give the complexity range of 45.5-53.9 Kgates for 4×4 matrix with W = 32 bits.
Considering that the memory modules used in the design have 4096×32bits size and occupy 43.8
Kgates, the logic complexity overheads vary from 14.5% for 2×2 32-bits matrix to 3.8% for 8×8
64-bits matrix with respect to the total hardware complexity. The presented synthesis results
confirm the linear increase of the design complexity and the quadratic increase of the throughput,
derived from our theoretical estimations. As it was expected, the critical path is proportional to
the logarithm of the matrix size along one dimension and the design complexity depends linearly
on it.

Table 5. Synthesis results for ASIC 90 nm.

Complexity (KGates) Frequency (MHz) Throughput (Gbits/sec)Matrix size

W=4 W=8 W=4 W=8 W=4 W=8

2×2 25.34 26.73 377 371 44.94 88.45

2×4 33.81 39.11 341 336 81.30 160.21

2×8 58.48 70.19 314 321 149.72 306.12

4×4 46.60 53.27 336 333 160.21 317.57

4×8 88.07 101.57 321 314 306.12 598.90

8×8 176.83 211.06 313 310 597.00 1182.55

21

Fig. 11. Synthesis results for ASIC 90 nm: design complexity, frequency and throughput.

5.2 FPGA synthesis

The FPGA synthesis was performed with Xilinx ISE 8.2i toolset for Virtex2P xc2vp30-7ff896
device with speed coefficient -7. The results are presented in Table 6.

Table 6. FPGA synthesis results.

Matrix size IO ports utilization (%) Frequency (MHz) Throughput (Gbits/sec)

W=1 W=2 W=4 W=1 W=2 W=4 W=1 W=2 W=4

2×2 16 22 58 128.8 128.8 108.4 4.12 8.24 13.87

2×4 22 34 - 123.3 123.3 - 7.89 15.78 -

2×8 35 58 - 134.4 134.4 - 17.20 34.40 -

4×4 35 58 - 124.6 124.6 - 15.94 31.89 -

4×8 61 - - 133.2 - - 34.09 - -

In contrast to ASIC, design for FPGA is much more sensitive to the wire complexity which is
significant for the parallel systems. Therefore, FPGA technology enables implementation of a
restricted variety of configurations outlined in Table 6. On the other hand, FPGA technology
allows mapping the design within a short timeframe and performing the experiments on real-
applications to prove the concept of parallel memory access with configurable 2D data patterns.

5.3 Comparison with the related work

Table 7 presents the comparison with the related schemes from [3] and [2]. The memory access
latency is presented for the case when the number of accessed elements is smaller than the
number of memory modules. In our design it is calculated by formulas (24), (25) and is equal to
one cycle for the best case and four cycles for the worst case. For instance, a data pattern with
even stride and group length equal to the power of two will always have one cycle of latency.
The large area occupied by our scheme is accounted for its higher flexibility. However, the
modularity feature allows significant simplification of the design by reducing the set of the

Design complexity

0

100

200

300

Matrix of memory modules

C
o

m
p

le
xi

ty
 (

K
g

at
es

)

W=32b 25,34 33,81 58,48 46,6 88,07 176,83

W=64b 26,73 39,11 70,19 53,27 101,57 211,06

2×2 2×4 2×8 4×4 4×8 8×8

Operating frequency

0

100

200

300

400

Matrix of memory modules

F
re

q
u

en
cy

 (
M

H
z)

W=32b 377 341 314 336 321 313

W=64b 371 336 321 333 314 310

2×2 2×4 2×8 4×4 4×8 8×8

Throughput

0

500

1000

1500

Matrix of memory modules

T
h

ro
u

g
h

p
u

t
(G

b
it

s/
se

c)

W=32b 44,94 81,3 149,72 160,21 306,12 597

W=64b 88,45 160,21 306,12 317,57 598,9 1182,55

2×2 2×4 2×8 4×4 4×8 8×8

22
supported data patterns. The critical path in our design scales according to O(log(max{VD,HD}))
while in the other schemes it scales linearly with the total number of memory modules VD×HD.

Table 7. Comparison to the schemes with 8 memory modules and 8 bits data width.

Design Memory latency (r/w cycles) Complexity (Kgates) Frequency (MHz)

CPMA [3] 11/8 pipelined ~27.0 ~13 (0.25CMOS)

PMAS [2] 3/2 pipelined 5.5 256 (0.18CMOS)

This proposal 1/1 bc – 4/4 wc 26.9 393 (0.09CMOS)

23

6 Conclusion
High throughput memory accesses with flexible data patterns are widely used in many different
areas such as multimedia, telecommunications, and scientific applications. We presented a
parallel memory organization that accumulates the advantages of the previous solutions. In
addition, it allows access to a data pattern with more complex structure and relaxes the
limitations of the data pattern parameters. Runtime programmability by means of SPRs enables
flexible data management. Our theoretical conclusions were proved, and additionally confirmed
by mathematical modeling. The design implementation and synthesis showed expected results
according to our theoretical estimations. As a result, our memory organization provides
minimum latency between main memory and processing unit for a given type of schemes.

24

Appendix A. VHDL sources.

Mode select
library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use work.gsma_package.all;

entity mode_select is
 generic (
 logD : natural := 1); -- Logarithm to the base 2 of number of
 -- modules along one dimention
 port (
 logS : in std_logic_vector(logParam_width - 1 downto 0); -- Logarithm to
 -- the base 2 of
 -- S
 GL : in std_logic_vector(param_width - 1 downto 0); -- Group length
 BL : in std_logic_vector(param_width - 1 downto 0); -- Block length
 mode : out std_logic_vector(2 downto 0) -- Case enable
);
end mode_select;

architecture Behavioral of mode_select is
 signal stride_oddness : std_logic; -- '1' = odd stride
 signal GL_norm, BL_norm : unsigned(2 * param_width - logD - 1 downto 0);
 signal pot : boolean;

begin -- Behavioral
 stride_oddness <= '1' when conv_integer(unsigned(logS)) = 0 else -- S(0);
 '0';
 GL_norm <= conv_unsigned(unsigned(BL(param_width - 1 downto logD)) * unsigned(GL), 2 * param_width - logD) when
 conv_integer(unsigned(BL(logD - 1 downto 0))) = 0 else
 conv_unsigned((unsigned(BL(param_width - 1 downto logD)) + 1) * unsigned(GL), 2 * param_width - logD);
 BL_norm <= conv_unsigned(unsigned(GL(param_width - 1 downto logD)) * unsigned(BL), 2 * param_width - logD) when
 conv_integer(unsigned(GL(logD - 1 downto 0))) = 0 else
 conv_unsigned((unsigned(GL(param_width - 1 downto logD)) + 1) * unsigned(BL), 2 * param_width - logD);
 mode <= "000" when (stride_oddness = '1') and (GL_norm < BL_norm) else -- Case I.
 "001" when ((stride_oddness = '1') and (GL_norm >= BL_norm)) or
 ((stride_oddness = '0') and (not po2(GL)) and (GL_norm >= BL_norm)) else -- Case II.
 "010" when (stride_oddness = '0') and (not po2(GL)) and
 (GL_norm < BL_norm) and (unsigned(logS) >= logD) else -- Case III.
 "011" when (stride_oddness = '0') and (not po2(GL)) and
 (GL_norm < BL_norm) and (unsigned(logS) < logD) else -- Case IV.
 "100" when (stride_oddness = '0') and po2(GL) and (unsigned(logS) >= logD) else -- Case V.
 "101" when (stride_oddness = '0') and po2(GL) and (unsigned(logS) < logD) else -- Case VI.
 "XXX";
end Behavioral;

Address generator
library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use work.gsma_package.all;

entity AddrGen is
 generic (
 D : natural; -- Number of memory modules along one dimension
 logD : natural
);

25
 port (
 clk : in std_logic;
 RESETn : in std_logic;
 ready : in std_logic; -- Enables addr generation process
 mode : in std_logic_vector(2 downto 0);
 B : in std_logic_vector(addr_width - 1 downto 0); -- Linear base address
 S : in std_logic_vector(param_width - 1 downto 0); -- Stride
 GL : in std_logic_vector(param_width - 1 downto 0); -- Group length
 BL : in std_logic_vector(param_width - 1 downto 0); -- Block length
 output_valid : out std_logic_vector(D - 1 downto 0); -- Output velidness
 last_output : out std_logic; -- Signals the last output address
 a : out addr_bus(D - 1 downto 0)); -- Output addresses
end AddrGen;

architecture Behavioral of AddrGen is
 type index_type is array (natural range <>) of std_logic_vector(param_width - 1 downto 0); --natural range 0 to
2**param_width - 1;

 signal i, k : index_type(D downto 0);
 signal ind : std_logic_vector(param_width - 1 downto 0); --natural range 0 to
2**param_width - 1;
 signal carry_i, carry_k, carry_ind : std_logic_vector(param_width - 1 downto 0); --natural range 0 to
2**param_width - 1;
 signal carry_last_output, last_output_i : std_logic;
 signal output_valid_i : std_logic_vector(D - 1 downto 0);
 signal ibyS, iS_prec : index_type(D downto 0);
 signal carry_ibyS : std_logic_vector(param_width - 1 downto 0);

begin -- Behavioral

 TPC_REGs: process (clk, RESETn)
 begin -- process
 if RESETn = '0' then -- asynchronous reset (active low)
 carry_i <= (others => '0');
 carry_k <= (others => '0');
 carry_ind <= (others => '0');
 carry_ibyS <= (others => '0');
 elsif clk'event and clk = '1' then -- rising clock edge
 -- Counter indices
 if ready = '1' then
 carry_i <= i(D); -- i + 1
 carry_k <= k(D); -- k + 1
 carry_ind <= ind; -- (i * k) + 1
 carry_ibyS <= ibyS(D); -- (i * S) + S
 end if;
 end if;
 end process TPC_REGs;

 -- Preculculation of the (i * S) product
 iS_prec(0) <= carry_ibyS;
 ibyS(0) <= carry_ibyS;
 MULT_PREC: for id in 1 to D generate
 iS_prec(id) <= iS_prec(id - 1) + S; -- precalculated value
 ibyS(id) <= iS_prec(id) when i(id) > i(id - 1) else
 ibyS(id - 1) when i(id) = i(id - 1) else
 (others => '0');
 end generate MULT_PREC;

 -- Tripple Parallel Counter
 TPC: process (mode, GL, BL, carry_k, carry_i, carry_ind)
 variable i_id, k_id, ind_id, temp_id : natural;
 variable save_i : natural;
 variable lst_output, output_valid_i_id : std_logic;
 variable temp : std_logic_vector(param_width - 1 downto 0);

26
 begin

 k(0) <= carry_k;
 i(0) <= carry_i;
 output_valid_i(0) <= '1';

 case mode is

 when "001" => -- Group-wise access
 -- Current indices
 for id in 1 to D - 1 loop
 if carry_k + id > GL - 1 then
 k(id) <= GL - 1;
 output_valid_i(id) <= '0';
 else
 k(id) <= carry_k + id;
 output_valid_i(id) <= '1';
 end if;
 i(id) <= carry_i;
 end loop; --id
 -- Next carry indices
 if carry_k + D > GL - 1 then
 k(D) <= (others => '0'); -- reset k syncronously
 if carry_i = BL - 1 then
 i(D) <= (others => '0'); -- reset i syncronously
 last_output_i <= '1';
 else
 i(D) <= carry_i + 1;
 last_output_i <= '0';
 end if;
 else
 k(D) <= carry_k + D;
 i(D) <= carry_i;
 last_output_i <= '0';
 end if;
 ind <= carry_ind;

 when "000" | "010" | "011" => -- Access based on the set of elements
 -- Current indices
 for id in 1 to D - 1 loop
 if carry_i + id > BL - 1 then
 i(id) <= BL - 1;
 output_valid_i(id) <= '0';
 else
 i(id) <= carry_i + id;
 output_valid_i(id) <= '1';
 end if;

 k(id) <= carry_k;
 end loop; --id
 -- Next carry indices
 if carry_i + D > BL - 1 then
 i(D) <= (others => '0');
 if carry_k = GL - 1 then
 k(D) <= (others => '0');
 last_output_i <= '1';
 else
 k(D) <= carry_k + 1;
 last_output_i <= '0';
 end if;
 else
 i(D) <= carry_i + D;
 k(D) <= carry_k;
 last_output_i <= '0';
 end if;

27
 ind <= carry_ind;

 when "100" | "101" => -- Element-wise access
 -- Current indices
 for id in 1 to D - 1 loop
 if (carry_k + id = GL - 1) and (carry_i + id = BL - 1) then
 k(id) <= GL - 1;
 i(id) <= BL - 1;
 output_valid_i(id) <= '0';
 else
 k(id) <= carry_k + id; -- mod2(carry_ind + id, GL);
 i(id) <= div2(carry_ind + id, GL);
 output_valid_i(id) <= '1';
 end if;
 end loop; -- id
 -- Next carry indices
 if (carry_k + D = GL - 1) and (carry_i + D = BL - 1) then
 ind <= (others => '0');
 k(D) <= (others => '0');
 i(D) <= (others => '0');
 last_output_i <= '1';
 else
 ind <= carry_ind + D;
 k(D) <= carry_k + D; -- mod2(carry_ind + D, GL);
 i(D) <= div2(carry_ind + D, GL);
 last_output_i <= '0';
 end if;

 when others =>
 k <= (others => (others => 'X'));
 i <= (others => (others => 'X'));
 ind <= (others => 'X');
 output_valid_i <= (others => 'X');
 last_output_i <= 'X';

 end case;

 end process TPC;

 -- Outport connections
 ADDR_BUS : for m_id in 0 to D - 1 generate
 a(m_id) <= std_logic_vector(conv_unsigned(unsigned(B + ibyS(m_id) + k(m_id)), addr_width)); -- implicit
multiplication and base address
 end generate ADDR_BUS;
 last_output <= last_output_i;
 output_valid <= output_valid_i;

end Behavioral;

Row address generator
library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use work.gsma_package.all;

entity RowGen is
 generic (
 logD : natural := 1); -- Logarithm to the base 2 of number of modules along one dimention
 port (
 a : in std_logic_vector(addr_width - 1 downto 0); -- One dimention constituent of the input address
 row : out std_logic_vector(addr_width - 1 downto 0)); -- One dimention constituent of the row address
end RowGen;

28

architecture Behavioral of RowGen is

 signal row_un, a_un : unsigned(addr_width - 1 downto 0);

begin -- Behavioral

 -- Shifter is implemented afterwords as high and low memory module addresses (simplified)
 row(addr_width - logD - 1 downto 0) <= a(addr_width - 1 downto logD);
 row(addr_width - 1 downto addr_width - logD) <= low_vector(logD - 1 downto 0);

end Behavioral;

Module assignment unit
library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use work.gsma_package.all;

entity ModuleAssign is

 generic (
 logD : natural := 1);
 port (
 a : in std_logic_vector(addr_width - 1 downto 0); -- One dimention constituent of the input address
 logS : in std_logic_vector(logParam_width - 1 downto 0); -- Logarithm to the base 2 of S
 GL : in std_logic_vector(param_width - 1 downto 0); -- Group length
 mode : in std_logic_vector(2 downto 0); -- Case enable
 ModuleID : out std_logic_vector(logD - 1 downto 0)); -- Module select
end ModuleAssign;

architecture Behavioral of ModuleAssign is

 signal GL_un : unsigned(param_width - 1 downto 0);
 signal m1, m2, m3, m4, m5, m6 : unsigned(logD - 1 downto 0);
 signal prod5, prod6 : unsigned(addr_width - 1 downto 0);
 signal a_msk3, a_msk6, a_sh3 : std_logic_vector(addr_width - 1 downto 0);
 signal logS_nat : natural;
 signal ModuleID_tmp : std_logic_vector(logD - 1 downto 0);

begin -- Behavioral

 logS_nat <= conv_integer("0" & logS);

 -- CASE I.
 m1 <= unsigned(a(logD - 1 downto 0)); -- m1 = a[d - 1 : 0]

 -- CASE II.
 m2 <= unsigned(a(logD - 1 downto 0)); -- m2 = a[d - 1 : 0]

 -- CASE III.
 masking3 : for i in 0 to addr_width - 1 generate
 a_msk3(i) <= a(i) when i < logS_nat + logD else -- a_msk3 = a[s + d - 1 : 0]
 '0';
 end generate masking3;
 a_sh3 <= to_stdLogicVector(to_bitVector(a_msk3) srl logS_nat); -- a_sh3 = a[s + d - 1 : s]
 m3 <= conv_unsigned(unsigned(a(logD - 1 downto 0)) + unsigned(a_sh3), logD);

 -- m3 = (a[d - 1 : 0] + a[s + d - 1 : s])[d - 1 : 0]

 -- CASE IV.
 m4 <= conv_unsigned(unsigned(a(logD - 1 downto 0)) + unsigned(a_msk3(addr_width - 1 downto logD)), logD);
 -- m4 = (a[d - 1 : 0] + a[s + d - 1 : d])[d - 1 : 0]

29

 -- CASE V.
 prod5 <= conv_unsigned(unsigned(to_stdLogicVector(to_bitVector(a_sh3) sll log2(GL))), addr_width);
 -- prod5 = a[s + d - 1 : s] * 2^gl

 m5 <= conv_unsigned(unsigned(a(logD - 1 downto 0)) + prod5, logD);
 -- m5 = (a[d - 1 : 0] + a[s + d - 1 : s] * 2^gl)[d - 1 : 0]

 -- CASE VI.
 prod6 <= conv_unsigned(unsigned(to_stdLogicVector(to_bitVector(a(addr_width - 1 downto logD)) sll log2(GL))),
addr_width);
 -- prod6 = a[addr_width - 1 : d] * 2^gl
 masking6 : for i in 0 to addr_width - 1 generate
 a_msk6(i) <= prod6(i) when i < logS_nat else -- a_msk6 = (a[addr_width - 1 : d] * 2^gl)[s - 1 : 0]
 '0';
 end generate masking6;
 m6 <= conv_unsigned(unsigned(a(logD - 1 downto 0)) + unsigned(a_msk6), logD);
 -- m6 = (a[d - 1 : 0] + (a[addr_width - 1 : d] * 2^gl)[s - 1 : 0])[d - 1 : 0]

 -- Case multiplexing
 ModuleID_tmp <= std_logic_vector(m1) when mode = "000" else
 std_logic_vector(m2) when mode = "001" else
 std_logic_vector(m3) when mode = "010" else
 std_logic_vector(m4) when mode = "011" else
 std_logic_vector(m5) when mode = "100" else
 std_logic_vector(m6) when mode = "101" else
 (others => 'X');

 ModuleID <= ModuleID_tmp;

end Behavioral;

Shuffle
library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use work.gsma_package.all;

entity Shuffle is
 generic (
 sub_bus_num : natural := 2;
 log_sub_bus_num : natural := 1;
 sub_bus_width : natural := 1);
 port (
 I_bus : in std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0); -- Input busses
 S_bus : in std_logic_vector(sub_bus_num * log_sub_bus_num - 1 downto 0); -- Select signal busses
 O_bus : out std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0)); -- Shuffled busses

end Shuffle;

architecture Behavioral of Shuffle is

 type inner_subtype is array (sub_bus_num - 1 downto 0) of std_logic_vector(sub_bus_width - 1 downto 0);
 type inner_type is array (sub_bus_num - 1 downto 0) of inner_subtype;
 type inner_nat_type is array (sub_bus_num - 1 downto 0) of natural;

 signal O_bus_tmp : std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0);
 signal inner_sig : inner_type;
 signal sel : inner_nat_type;

begin -- Behavioral

30
 -- Set of deMUXs
 SET_OF_deMUXs : for demux_id in 0 to sub_bus_num - 1 generate
 -- Select signal decoder
 sel(demux_id) <= conv_integer(unsigned(S_bus((demux_id + 1) * log_sub_bus_num - 1 downto demux_id *
log_sub_bus_num)));
 -- DeMUX
 DeMUX : for output_id in 0 to sub_bus_num - 1 generate
 inner_sig(demux_id)(output_id)(sub_bus_width - 1 downto 0) <=
 I_bus((demux_id + 1) * sub_bus_width - 1 downto demux_id * sub_bus_width) when output_id = sel(demux_id) else
 low_vector(sub_bus_width - 1 downto 0); --(others => '0');
 end generate DeMUX;
 end generate SET_OF_deMUXs;

 -- Set of OR-gates
 OUTPUT_OR_GATES: process (inner_sig)
 variable O_bus_var : std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0);
 begin -- process OUTPUT_OR_GATES
 for or_id in 0 to sub_bus_num - 1 loop
 -- OR-gate
 O_bus_var((or_id + 1) * sub_bus_width - 1 downto or_id * sub_bus_width) :=
 inner_sig(0)(or_id)(sub_bus_width - 1 downto 0);
 for input_id in 1 to sub_bus_num - 1 loop
 O_bus_var((or_id + 1) * sub_bus_width - 1 downto or_id * sub_bus_width) :=
 O_bus_var((or_id + 1) * sub_bus_width - 1 downto or_id * sub_bus_width) or
 inner_sig(input_id)(or_id)(sub_bus_width - 1 downto 0);
 end loop; -- input_id
 end loop; -- or_gate_id
 O_bus_tmp <= O_bus_var;
 end process OUTPUT_OR_GATES;
 O_bus <= O_bus_tmp;

end Behavioral;

De-shuffle
library ieee;
use ieee.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use work.gsma_package.all;

entity De_Shuffle is
 generic (
 sub_bus_num : natural := 2;
 log_sub_bus_num : natural := 1;
 sub_bus_width : natural := 1);
 port (
 I_bus : in std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0); -- Input busses
 S_bus : in std_logic_vector(sub_bus_num * log_sub_bus_num - 1 downto 0); -- Select signal busses
 O_bus : out std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0)); -- Shuffled busses

end De_Shuffle;

architecture Behavioral of De_Shuffle is

 signal O_bus_tmp : std_logic_vector(sub_bus_num * sub_bus_width - 1 downto 0);

begin -- Behavioral

 MUXs : process (I_bus, S_bus)
 variable sel : natural; -- natural_vector(sub_bus_num - 1 downto 0);
 begin -- process MUXes
 O_bus_tmp <= (others => '0');
 for mux_id in 0 to sub_bus_num - 1 loop -- Block of MUXes

31
 sel := conv_integer(S_bus((mux_id + 1) * log_sub_bus_num - 1 downto mux_id * log_sub_bus_num)); -- Select
signal
 for input_id in 0 to sub_bus_num - 1 loop -- MUX inputs
 if input_id = sel then
 O_bus_tmp((mux_id + 1) * sub_bus_width - 1 downto mux_id * sub_bus_width) <=
 I_bus((input_id + 1) * sub_bus_width - 1 downto input_id * sub_bus_width);
 end if;
 end loop;
 end loop;
 end process MUXs;

 O_bus <= O_bus_tmp;

end Behavioral;

32

References
[1] E. Aho, J. Vanne, and T.D. Hamalainen. Parallel memory architecture for arbitrary stride
accesses. Design and Diagnostics of Electronic Circuits and systems, 2006 IEEE, pages 63–68,
2006.

[2] E. Aho, J. Vanne, and T.D. Hamalainen. Parallel memory implementation for arbitrary
stride accesses. In Embedded Computer Systems: Architectures, Modeling and Simulation, 2006
International Conference on, pages 1–6, July 2006.

[3] E. Aho, J. Vanne, K. Kuusilinna, and T.D. Hamalainen. Address computation in
configurable parallel memory architecture. IEICE T. on Information and Systems, E87-
D(7):1674–1681, July 2004.

[4] D.J. Budnik, P. Kuck. The organization and use of parallel memories. IEEE T. Comput.,
C-20:1566–1569, Dec. 1971.

[5] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley,
D. Walker, and R. C. Whaley. ScaLAPACK: A portable linear algebra library for distributed
memory computers - design issues and performance. Technical report, Knoxville, TN 37996,
USA, 1995.

[6] Jean Marc Frailong, William Jalby, and Jacques Lenfant. Xor-schemes: A flexible data
organization in parallel memories. In ICPP, pages 276–283, 1985.

[7] D. Harper and J. Jump. Vector access performance in parallel memories using a skewed
storage scheme. IEEE Trans. on Comput., C-36:1440–1449, 1987.

[8] III Harper, D.T. Block, multistride vector, and fft accesses in parallel memory systems.
IEEE T. Parall. Distr., 2(1):43–51, 1991.

[9] III Harper, D.T. and D.A. Linebarger. Conflict-free vector access using a dynamic
storage scheme. IEEE T. Comput., 40(3):276–283, 1991.

[10] Kimmo Kuusilinna, Jarno Tanskanen, Timo Hдmдlдinen, and Jarkko Niittylahti.
Configurable parallel memory architecture for multimedia computers. J. Syst. Archit., 47(14-
15):1089–1115, 2002.

[11] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis. Multimedia rectangularly addressable
memory. IEEE T. Multimedia., 8:315 – 322, April 2006.

[12] Coert Olmsted. Scientific sar user's guide. Technical Report asf-sd-003,
AlaskaSatelliteFacility (ASF), July 1993.

[13] Jong Won Park. An efficient buffer memory system for subarray access. IEEE T. Parall.
Distr., 12(3):316–335, 2001.

[14] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, and J.D. Owens. Memory access
scheduling. In Computer Architecture, 2000. Proceedings of the 27th International Symposium
on, pages 128–138, 2000.

[15] H.D. Shapiro. Theoretical limitations on the efficient use of parallel memories.
Transactions on Computers, C-27(5):421–428, May 1978.

[16] M. Valero, T. Lang, M. Peiron, and E. Ayguade. Conflict-free access for streams in
multimodule memories. IEEE T. Comput., 44(5):634–646, 1995.

