
A Cache Architecture for Counting Bloom Filters

Mahmood Ahmadi and Stephan Wong
Computer Engineering Laboratory

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

{mahmadi, stephan}@ce.et.tudelft.nl

Abstract— Within packet processing systems, lengthy
memory accesses greatly reduce performance. To overcome
this limitation, network processors utilize many different
techniques, e.g., utilizing multi-level memory hierarchies,
special hardware architectures, and hardware threading. In
this paper, we introduce a multi-level memory hierarchy and a
special hardware cache architecture for counting Bloom filters
that is utilized by network processors and packet processing
applications such as packet classification and distributed
web caching systems. Based on the value of the counters in
the counting Bloom filter, a multi-level cache architecture
called the cache counting Bloom filter (CCBF) is presented
and analyzed. The results show that the proposed cache
architecture decreases the number of memory accesses by at
least 51.3% when compared to a standard Bloom filter.

Keywords: Cached counting Bloom filter, network processor,
packet processing, cache level.

I. INTRODUCTION

Most network devices, e.g., routers and firewalls, need
to process incoming packets (e.g., classification and forward-
ing) at wire speeds. These devices mostly incorporate special
network processors that are comprised of a programmable
processor core with several memory interfaces and special
co-processors that are optimized for packet processing[1].
However, the performance of these network processors is
usually hampered by slow memory accesses. Such memory
bottlenecks can be overcome by the following mechanisms:
hiding of memory latencies through parallel processing and
reducing the memory latencies by introducing a multi-level
memory hierarchy incorporating special-purpose caches [9].
A poorly designed cache memory can critically affect the
performance of network processor since the number of mem-
ory accesses required for each lookup can vary. Therefore,
high-throughput applications requires search techniques with
more predictable worst-case lookup performance. One such
approach to achieve higher lookup performance is to utilize
the Bloom filter data structure that recently is utilized in
embedded memories.

A Bloom filter is frequently utilized in network pro-
cessing (areas), such as packet classification, packet inspec-
tion, forwarding, p2p networks, and distributed web caching
[4][5][6][10]. In this paper, we present the counting Bloom
filter and analyze the value of counters in the counting Bloom
filters. Afterwards, we introduce a new cache architecture
called the cached counting Bloom filter (CCBF). In addition,

the pruning procedure to optimize the memory utilization
in the counting Bloom filter is described. Based on the
counting Bloom filter analysis, we propose two multi-level
cache architectures and, subsequently, present the perfor-
mance analysis. The performance metric is the number of
accesses in different cache levels of the CCBF compared
to those on the regular Bloom filter. The results show that
the number of accesses is decreased by at least 51.3% when
utilizing a 3-level cache architecture. In this 3-level cache,
we further determine a balance between the different levels
to arrive at approximately equal sizes for the levels. This
paper is organized as follows. Section II presents related
work. Section III describes a counting Bloom filter. Section
IV describes the cached counting Bloom filter architecture
(CCBF). Section V presents our simulation results. Section
VI, we draw the overall conclusions.

II. RELATED WORK

In this section, we present efforts related to our work.
In [5], a cache design based on the standard Bloom filter is
investigated and has been extended to support aging (adding
the ability to evict stale entries from the cache), bound
misclassification rates, and use multiple binary predicates.
It examines the exact relationship between the size and
dimension of the number of flows that can be supported
and the misclassification probability incurred. Additionally, it
presents extensions for gracefully aging the cache overtime to
minimize misclassification. In [6][10], an extended version
of the Bloom filter is considered. It presents a novel hash
table architecture and lookup algorithm and converts a Bloom
filter into a counting Bloom filter and associated hash bucket
which improves the performance over a standard hash table
by reducing the number of memory accesses needed for
the most time-consuming lookups. Our approach finds the
mathematical model for cache architecture based on the value
of the counters in the counting Bloom filters.

III. COUNTING BLOOM FILTER

In this section, we present the standard Bloom filter, the
counting Bloom filter concepts, and afterward, describe the
pruning procedure in counting Bloom filters.

A. Standard Bloom Filter

A Bloom filter is a simple space efficient randomized
data structure for representing a set in order to support
membership queries. Burton Bloom introduced Bloom filters
in the 1970s [3]. A set S (x1, x2, ..., xn) of n elements is
represented by an array V of m bits that are initially all set
to 0. A set of k independent hash functions h1, h2, ..., hk

(each with an output range between 1 and m) is utilized to
set k bits in array V at positions h1(x), h2(x), ..., hk(x) for
all x in set S. More precisely, for each element x ∈ S, the
bits at positions hi(x) are set to 1 for 1 ≤ i ≤ k. Moreover,
a location can be set to 1 multiple times. To verify whether
an item y is a member of the set S, the same set of hash
functions is utilized to determine hi(y) (for 1 < i < k)
indicating the locations in array V to be checked whether
their content is a 1. If one of these location yield a 0,
y is certainly not a member of the set S. If all locations
yield a 1, there is a high probability that y is a member of
the set S (positive). However, as increasingly more bits in
array V are set to 1, one can imagine that the probability
of a false positive will increase. It must be clear now that
there is an inverse relation between the number of bits in
the array and the false positive rate. In the extreme case,
when all bits in the array are set, every search will yield a
(false) positive[8][10]. The false positive probability is given
as follows:

pf =

(
1 −

(
1 − 1

m

)kn
)k

=
(
1 − e

−kn
m

)k

(1)

In this equation, n represents the number of elements, m
represents the number of bits in the bit array and k represents
the number of hashing functions. For a given m and n, the
value of k (the number of hash functions) that minimizes the
probability is as follows:

k =
m

n
ln2 ≈ 0.7

m

n
(2)

An example of the Bloom filter is depicted in Figure 1.

0 0 0 0 0 0 0 0 0 00 0

0 1 0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 0 1 0 1 0

0

1 1

11

2
0

3
0
1
2

0
2
0
1
0

R2

R1 R2 R3

R1
R2

R3 R4

R4

1 R3

Address

1
2
3
4
5
6
7

8
9

10
11
12

R1

R2

R3

(A)

R4

R1 R2

P1 P2

R4

R1

 (B)

Fig. 1. (A) An example of a Bloom filter (B) The hash table architecture
using counting Bloom filters for four items.

Figure 1(A) depicts the creation of a Bloom filter for
a set of two items R1 and R2 and the subsequent testing
whether P1 and P2 are part of the set. Each item Ri is
hashed k times (using k independent hashing functions) and
the corresponding bits are set to 1. To check whether P1 or

P2 are member of the set, they are hashed with the same k
hashing functions to determine the locations in the array to
check whether these locations were set. For P1, it is clear
that it is not part of the set.

B. Counting Bloom Filter

The previously discussed Bloom filter works fine when
the members of the set does not change over time. When they
do, adding items requires little effort since it only requires
hashing the additional item and setting the corresponding
bit locations in the array. On the other hand, removing an
item conceptually requires unsetting the ones in the array,
but this could inadvertently lead to removing a ’1’ that was
the result of hashing another item that is still member of the
set. To overcome this problem, the counting Bloom filter has
been introduced[7]. In the counting Bloom filter, each bit in
the array is replaced by a small counter. when inserting an
item, each counter indexed by the corresponding hash value
is incremented, therefore, a counter in this filter essentially
give us the number of items hashed to it. When an item is
deleted, the corresponding counters are decremented. Figure
1(B) depicts the results of hashing four items. Additionally,
in this figure, we introduce the concept of buckets that are
pointed to by the counters storing the items of the set.

C(i) is used to denote the count associated with the
ith counter. Considering a Bloom filter for n items, with k
hashing functions, and m counters, the probability that the
ith counter is incremented j times is given as a binomial
random variable in the following:

p (c(i) = j) =
(

nk
j

)(1
m

)j (
1 − 1

m

)nk−j

(3)

An n-bit counter will overflow if and only if it reaches a
value of 2n. The analysis performed by Fan, et.al. [7] shows
that a 4-bit counter is adequate for most applications. The
probability for 4-bit counter to overflow is:

p (maxi〈c(i) ≥ 16〉) ≤ 1.37 × 10−15.m (4)

Based on a counting Bloom filter, we compute k hashing
functions h1(), ..., hk() over an input item and increment
the related k counters indexed by these hash values. Sub-
sequently, we store the item in the lists associated with each
of the k buckets hence a single item is stored k times in
memory. In the mentioned approach, we need to maintain
up to k copies of each item requiring k times more memory
compared to a standard hash table. However, in a Bloom filter
only one copy is accessed while the other (k − 1) copies of
item are never accessed, therefore, the memory requirement
can be minimized in the mentioned architecture, resulting
in the pruned counting Bloom filter. The pruned counting
Bloom filter for Figure 1(B) is depicted in Figure 2.

There are two alternatives to perform pruning on a
Bloom filter. The first method entails the creation of a

2
0

3
0
1
2

0
2
0
1
0

R1

R4

R1

R3

1
R3

R2

8

10

R2

R4

Address
1
2
3
4
5
6
7

9

11
12

Fig. 2. The hash table architecture using pruned counting Bloom filters.

regular Bloom filter. Afterwards, the regular Bloom filter
is pruned by only maintaining those items in the buckets
that are pointed to by the counter with the lowest value,
i.e., all other already inserted items in the other buckets are
deleted. In the event two counters have to the lowest value,
the bucket pointed to by the counter with the lowest index
is chosen. This method is simple, but it requires storage
of n copies of each item in the set in the creation of the
pruned Bloom filter and additionally a special procedure to
delete redundantly stored items. In second method [2][10],
the memory requirement is equal to n, which is the number
of items, and thereby reducing the memory requirements
(compared to the first method). In the meantime, it involves
more computations to create the pruned Bloom filter in
compared to the previous method. It must be noted that
during the pruned counting Bloom filter creation, the counter
values are not changed. Consequently, after pruning, the
counter does not express the number of items in the list and
is larger than or equal to the number of items in each bucket.

IV. CACHED COUNTING BLOOM FILTER CONCEPT AND

ANALYSIS

In this section, we present the concept of the cached
counting Bloom filter and its analysis.

A. Cached Counting Bloom Filter Concept

According to definition of a Bloom filter, the number
of hashing functions can be expressed as:

k = g
m

n
(5)

where the value of g changes for different Bloom filter
configurations. The optimal value for g to have a minimum
false positive rate is g = ln(2). Using Eq. 1 and Eq. 5,
the false positive rate for different value of g is depicted in
Figure 3.

After the substitution of Eq. 5 in Eq. 3, we obtain the
following equation:

p (c(i) = j) =
(

gm
j

)(1
m

)j (
1 − 1

m

)mg−j

(6)

Using Eq. 6, we can compute the probability of incre-
menting of the ith counter for different values of g and m.
Using Eq. 6, the counter probability distribution for different
counting Bloom filter configurations is depicted in Figure 4.

Fig. 3. False positive probability for different configurations.

Fig. 4. The counter probability distribution for different configurations in
counting Bloom filters.

Based on the figure, when g ≤ ln(2) the value of
the counters with non-zero probability changes between 0
and 3, and when g > ln(2) the value of the counters with
non-zero probability is increased (for g = 2, the value of
the counters changes between 0 and 5). Therefore, we can
utilize a multi-level caching memory to store the items. We
introduce the cached counting Bloom filter a Bloom filter
with each counter pointing to the level corresponding to its
counter value and with level l containing l buckets.

B. Counting Cached Bloom Filter Analysis

In this section, we present the analysis of the cached
counting Bloom filter. The number of accesses to the memory
depends on the fact whether the Bloom generates a ’positive’
or ’negative’ result. For the negative case, no accesses to the
memory is needed since it certain that they are not in the
original set. For the positive case, still it must be verified
whether the item in question is a member or not (false
positive). Consequently, we assume in the analysis that all
tests are on different elements which would result in the
testing of n elements (the same number of items in the
original set). The number of accesses in a standard Bloom
filter is nk(1 + pf) memory accesses, where n represents
the number of items, k represents the number of hashing
functions and pf is false positive probability. The l-level

cached counting Bloom filter architecture is depicted in
Figure 5.

level

Counting Bloom filter

1

input
key

C
C
C

C
C
C

Size M M M

H
as

hi
ng

 f
un

ct
io

ns

...

... 1l l−1

l l−1

1,2,...,l

l−level cache architecture

1,l−1

2,l−1

C i

1,l

2,l 1,2,..,l−1

1

k

C
C

Counters
1,1

2,1

l
i ,1

l−1,
,l−1

C zero

i ,l
l

1

1

k

1

k

Fig. 5. The l-level cached counting Bloom filter architecture.

In this figure, C(il, l) represents the counter with the
value “l” pointing to location il within cache level “l”.
Therefore, the values of C1,1, ..., Ci1,1 are equal to 1, the
values of C1,l−1, ..., Cil−1,l−1 are equal to l−1 and the values
of C1,l, ..., Ci,l are equal to l. Czero shows the counters with
value 0 and do not point to any bucket in the cache memory.
These counters are represented by Czero. Ml represents the
size of the cache memory in level l. From the Figure 5, the
number of accesses in l-level CCBF is equal to summation
of accesses in each level as follows:

Number of accesses in l − level CCBF =
(N1 + ... + Ni + ... + Nl)

(7)

In this equation, Ni represents the number of accesses in
level i. Using the Eqs. 3 and 7, the number of accesses in
CCBF is extended as follows:

Number of accesses in l − level CCBF =

A
(
p(j = 1) + p(j=2)

2
+ ... + p(j=l)

l

)
=

A

(
A
1

) (
1
m

) (
1 − 1

m

)A−1
+ ...+

A

(
A
l

) (
1
l

)
(1

m
)l
(
1 − 1

m

)A−l
(with A = nk(1 + pf))

(8)
For the large values of m, the Eq. 9 can be utilized:(

1 − 1
m

)nk

∼= e
−nk

m (9)

Using Eq. 9, we can rewrite the Eq. 8 as follows:
Number of accesses in l − level CCBF =

A
(
p(j = 1) +

p(j=2)
2

+ ... +
p(j=l)

l

)
= Ae

−A
m(

(1
m

)

(
A
1

)
+ ... +

(
A
l

) (
1
l

)
(1

m
)l

)
∼=

Ae
−A
m

(∑l
i=1

1
ii!

(
A
m

)i
)

(with A = nk(1 + pf))

(10)

If we assume that m
n = c then we can rewrite Eq. 10 as

follows:
Number of accesses in l − level CCBF =

nk(1 + pf)e
−k
c

(1+pf)

(∑l
i=1

1
ii!

(
k(1+pf)

c

)i
)

(11)

After the normalization to nk(1 + pf) the number of
accesses is expressed as function of c and k as follows:

Number of accesses in l − level CCBF =

e
−k(1+pf)

c

(∑l
i=1

1
ii!

(
k(1+pf)

c

)i
)

(12)

Designing an l-level CCBF is impractical. Therefore, we
propose to limit the number of levels to 3 based on our
observation from Eq. 6 and Figure 4 that the counter values
are not likely to be larger than 3. More precisely, levels 1
and 2 (containing 1 and 2 buckets, respectively) store the
elements for the counters with values 1 and 2, respectively.
Level 3 stores the elements for counters with value 3 or
larger. As the counters with larger than 3 values require more
storage, the elements are stored over multiple rows in the
third level of the CCBF (segmentation). The 3-level cache
architecture is depicted in Figure 6.

Counters

input
key

C
C
C
C
C

C
C
C

l

Size M M

H
as

hi
ng

 f
un

ct
io

ns

C

i ,1

2,1

1,1

1,2

2,2

i2,2

1,3

2,3

i3,3

C other

3 2

1,2 1

M 1

1,2,3

Counting Bloom filter

C zero

level 3

3−level cache architecture

2 1

1

k

1

k

1

k

Fig. 6. The 3-level cached counting Bloom filter architecture.

In Figure 6, the values of C1,1, ..., Ci1,1 are equal to 1,
the values of C1,2, ..., Ci2,2 are equal to 2 and the values of
C1,3, ..., Ci3,3 are equal to 3. Cother represents the counters
with values larger than three and, therefore, they point to
a storage within level 3 of the CCBF. Figure 6 highlights
the mentioned segmentation. Czero represents the counters
with their value being zero. In the following, we analyze the
effects of the items with counter values larger than three.
The number of accesses in 3-level CCBF is equal to number
of accesses in the levels 1, 2, and 3 combined. The number
of accesses in third level of cache can be computed as a
summation of the number of counters with value 3 and larger.
Therefore, the number of accesses in a 3-level CCBF is as
follows:

Number of accesses in 3 − level CCBF =

A
(
p(j = 1) + p(j=2)

2
+ p(j≥3)

3

)
=

A
(
p(j = 1) + p(j=2)

2
+ p(j=3)

3

)
+⌈

1
3
p(j = 4)A

⌉
+ ... +

⌈
1
3
p(j = l)A

⌉
=

A

(
A
1

) (
1
m

) (
1 − 1

m

)A−1
+

A

(
A
2

) (
1
2

)
(1

m
)2
(
1 − 1

m

)A−2
+

A

(
A
3

) (
1
3

)
(1

m
)3
(
1 − 1

m

)A−3
+

∑l
i=4

⌈(
A
i

) (
1
3

)
(1

m
)i
(
1 − 1

m

)A−i
A

⌉
(with A = nk(1 + pf))

(13)

Using Eq. 9, the Eq. 13 is rewritten as follows:

Number of accesses in 3 − level CCBF ∼=
Ae

−A
m
(

A
m

+ 1
2∗2! (

A
m

)2 + 1
3∗3! (

A
m

)3
)
+∑l

i=4

⌈
1
3i!

e
−A
m
(

A
m

)i
A
⌉

(with A = nk(1 + pf))

(14)

According to definition and properties of the
ceiling function, this relation x ≤ �x� < x + 1 is
true for each x in real numbers, therefore, we can write for
the second term in Eq. 14 to the following inequality:∑l

i=4
1
3i!

e
−A
m
(

A
m

)i
A ≤∑l

i=4

⌈
1
3i!

e
−A
m
(

A
m

)i
A)
⌉

<∑l
i=4

1
3i!

e
−A
m
(

A
m

)i
A + l − 4 (with A = nk(1 + pf))

(15)

Using this inequality, we can rewrite Eq. 15 as follows:

Ae
−A
m
(

A
m

+ 1
2∗2! (

A
m

)2 + 1
3∗3! (

A
m

)3
)

+
∑l

i=4
1
3i!

e
−A
m
(

A
m

)i
A

≤ Number of accesses in 3 − level CCBF

< Ae
−A
m
(

A
m

+ 1
2∗2! (

A
m

)2 + 1
3∗3! (

A
m

)3
)
+∑l

i=4
1
3i!

e
−A
m
(

A
m

)i
A + l − 4 (with A = nk(1 + pf))

(16)

After the normalization to A = nk(1 + pf) (number
of accesses in standard Bloom filter) Eq. 15 is rewritten as
follows:

e
−A
m
(

A
m

+ 1
2∗2! (

A
m

)2 + 1
3∗3! (

A
m

)3
)

+
∑l

i=4
1
3i!

e
−A
m
(

A
m

)i
≤ Number of accesses in 3 − level CCBF

< e
−A
m
(

A
m

+ 1
2∗2! (

A
m

)2 + 1
3∗3! (

A
m

)3
)
+∑l

i=4
1
3i!

e
−A
m
(

A
m

)i
+ l−4

A
(with A = nk(1 + pf))

(17)

In practice, we can observe that the value of l 	 nk(1+
pf), since l

nk(1+pf) ≈ 0, therefore we can write the number
of accesses in 3-level CCBF as follows:

Number of accesses in 3 − level CCBF ∼=
e

−nk(1+pf)
m

(
nk(1+pf)

m
+ 1

2∗2! (
nk(1+pf)

m
)2 + 1

3∗3! (
nk(1+pf)

m
)3
)

+∑l
i=4

1
3i!

e
−nk(1+pf)

m

(
nk(1+pf)

m

)i

(18)

After substitution of m
n with c the number of accesses

in the 3-level CCBF is written as follows:
Number of accesses in 3 − level CCBF ∼=

e
−k(1+pf)

c

(
k(1+pf)

c
+ 1

2∗2! (
k(1+pf)

c
)2 + 1

3∗3! (
k(1+pf)

c
)3
)

+∑l
i=4

1
3i!

e
−k(1+pf)

c

(
k(1+pf)

c

)i

(19)

In the pruned counting Bloom filter for each item k
hashing functions are computed and only one item is stored
in the memory, therefore, the CCBF can be applied for
pruning procedure. The memory organization in the pruned
CCBF can be seen as a memory that is organized by a
counting Bloom filters with one hashing function. In the
other words, the cache architecture for counting Bloom
filter with one hashing function can assumed as a good
approximation for cached pruned counting Bloom filter. In
this way, we can optimize the number of accesses using
cache architecture and memory usage by pruning procedure.

In the following, we evaluate the size of the different
cache levels in the CCBF architecture. In short, the size of

each cache level is equal to the multiplication of nk and the
probability of each counter value in the CCBF. The size of
each cache level in l-level CCBF is expressed as follows:

The size of level j within l − level CCBF =
nk.p (c(i) = (level number)) =

nk.p (c(i) = j) = nk

(
nk
j

) (
1
m

)j (
1 − 1

m

)nk−j
(20)

In this equation, j is level number. Using Eqs. 7 and
9, we can rewrite the previous equation as follows:

The size of level j in l − level CCBF ∼=
nke

−k
c

(
1
j!

(
k
c

)j
)

where j is level number
(21)

Using Eq. 21, the total size of l-level CCBF cache after
normalization to nk (size of a standard Bloom filter) is:

The total size of l − level CCBF = nk
∑l

j=1(p(c(i) = j) ∼=
e

−k
c

(∑l
j=1

1
j!

(
k
c

)j
)

(22)

Applying this equation to the 3-level CCBF case, results
in the following sizes of the 3 levels (keeping in mind 4-bit
counter, the with l being 16):

The level 1 = e
−k
c k

c
The level 2 = 1

2
e

−k
c

(
k
c

)2

The level 3 = e
−k
c

(∑l
j=3

1
j!

(
k
c

)j
) (23)

V. SIMULATION RESULTS

In this section, we present the simulation results of
CCBF architecture. The simulation results were generated
using Maple v.10.0. The number of accesses for different
CCBF configurations is depicted in Figure 7.

The l-level CCBF result based on Eq. 11 is depicted in
Figure 7 (A). In this figure, the x axis is labeled by m/n that
m shows address space size and n shows number of items.
y axis is labeled by k number of hashing functions and z
axis is labeled by number of accesses that is normalized
to nk. We can observe that, the l-level CCBF decreases
the number of accesses at least by 51.6% in compared to
standard Bloom filter. The 3-level CCBF results based on
Eq. 19 are depicted in Figure 7 (B). We can observe that
the 3-level CCBF decreases the number of accesses at least
by 51.3% in compared to standard Bloom filter. It is clear
that, the results can explain the pruning of counting Bloom
filter. The comparison between 3-level and l-level CCBF is
depicted in Figure 7 (C). We can observe that, the difference
of two approaches is negligible. The size of different levels
in 3-level CCBF is depicted in Figure 8 (A).

The increasing of m
n will decrease size of different

cache levels, since the more addresses are stored in level
0 (level 0 represents addresses from address space that the
counter values are 0). Based on the figure, when m

n is small
the size of level 3 is increased and the size of levels 1 and 2
is decreased. From the Figure 8 (A), we can find the area to
have a balance between different cache level in 3-level CCBF

Fig. 7. The number of accesses in CCBF normalized to number of accesses in standard Bloom filter (nk(1 + pf)). (A) The number of accesses in a
l-level CCBF. (B) The number of accesses in a 3-level CCBF. (C) The comparison of a l-level and a 3-level CCBF.

Fig. 8. The cache size in a CCBF normalized to size of standard Bloom filter (nk(1 + pf)). (A) Different levels size in a 3-level CCBF. (B) The total
cache size in a 3-level CCBF.

by finding intersecting area in different cache levels. To find
the intersecting area, we solve the following equations.

nke
−k
c

(∑l
j=3

1
j!

(
k
c

)j
)

= nke
−k
c k

c

nke
−k
c

(∑l
j=3

1
j!

(
k
c

)j
)

= nke
−k
c

(
k
c

)2 (24)

The final results of Eq. 24 are: k = 1.87m
n and k = 1.79m

n .
With substitution these values in Eq. 19, we can observe that
the number of accesses is decreased by 52% using 3-level
CCBF. The total size for 3-level CCBF in compared with
standard Bloom filter is depicted in Figure 8(B).

VI. OVERALL CONCLUSIONS

In this paper, we presented a new approach to embed a
cache in a counting Bloom filter (CCBF). Using the counting
Bloom filter property, the number of accesses and sizes of
cache levels in the CCBF architecture were investigated.
We concluded from the results that incorporating a cache to
Bloom filters will improve the performance of Bloom filter
by at least 51.3% (in terms of memory accesses) compared to
a standard Bloom filter. We expect this approach to be useful
in the design of high performance memory architectures
utilized in network processors and related applications such
as packet classification and web caching.

REFERENCES

[1] M. Ahmadi and S. Wong. “Network Processors: Challenges and
Trends”. In Proc. of the 17th Annual Workshop on Circuits, Systems

and Signal Processing, ProRisc 2006, pages 223–232, November
2006.

[2] M. Ahmadi and S. Wong. “Modified Collision Packet Classification
Using Counting Bloom Filter in Tuple Space”. In Proc. of the
25’th IASTED Int. Conf. on Parallel and Distributed Computing and
Networks (PDCN 2007), pages 70–76, February 2007.

[3] B. H. Bloom. “Space /Time Trade-offs in Hash Coding with Allowable
Errors”. Communication of the ACM, 13(7):422–426, July 1970.

[4] A. Broder and M. Mitzenmacher. “Network Applications of Bloom
Filters: A Survey”. In Proc. 14’th Annual Allerton Conf. on Commu-
nication, Control, and Computing, pages 636–646, October 2002.

[5] F. Chang, F. Wu-chang, and L. Kang. “Approximate Caches for Packet
Classification”. In 23’th Annual Conf. of the IEEE, INFOCOM, pages
2196–2207, March 2004.

[6] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood. “Fast Packet
Classification Using Bloom Filters”. Technical Report 27, Department
of Computer Science And Engineering, Washington University in St.
Louis, May 2006.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. “Summary Cache:
A Scalable Wide-Area (WEB) Cache Sharing Protocol”. IEEE/ACM
Transactions on Networking, 8(3):281–293, 2000.

[8] S. Kumar and P. Crowley. “Segmented Hash: An Efficient Hash
Table Implementation for High Performance Networking Subsystems”.
In Proc. Symp. on Architecture for Networking and Communications
Systems (ANCS05), pages 91–103, October 2005.

[9] J. Mudigonda, H. M. Vin, and R. Yavatkar. “Overcoming the Memory
Wall in Packet Processing: Hammers or Ladders?”. In Proc. of Symp.
on Architecture for Networking and Communications systems (ANCS-
05), pages 1–10. ACM Press, October 2005.

[10] H. Song, J. Turner, S. Dharmapurikar, and J. Lockwood. “Fast Hash
Table Lookup Using Extended Bloom Filter: An Aid to Network
Processing”. In Proc. of Conf. on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, pages 181–192,
August 2005.

