
1

A Profiling Framework for Design Space Exploration in Heterogeneous System
Context

Kamana Sigdel, Roel Meeuws, Koen Bertels
Computer Engineering, EEMCS
Delft University of Technology

{k.sigdel, r.j.meeuws, k.l.m.bertels}@tudelft.nl

Abstract—
Design of embedded systems is subject to different types of
design constraints such as execution cycles, power consump-
tion, and memory consumption/bandwidth. At the same
time, modern computing systems make increasing use of re-
configurable and heterogeneous architectures. The increas-
ing heterogeneous nature of embedded system platform and
the application makes the design of embedded system very
complicated. In hardware/software co-design environment,
to make early design decision such as mapping of application
onto heterogeneous set of processors, it is necessary to per-
form exhaustive design space exploration in order to iden-
tify the various design parameters such as execution time,
memory, bandwidth etc. Profiling is one of the such tech-
niques that helps to measure these design parameter and
helps to quickly find promising candidate for mapping onto
heterogeneous set of processor. Profiling and tracing pro-
vide necessary information to analyze the programs stati-
cally and/or dynamically in order to determine relevant in-
formation for design space exploration, hardware/software
partitioning and optimization. Towards this goal, in this pa-
per, we present an outlook of the methodology for the dy-
namic analysis of the application for design space explo-
ration, hardware/software partitioning and parallelization
within Delft Workbench.

Keywords: Profiling, Reconfigurable Computing, De-
sign Space Exploration, Hardware/Sofware Partition-
ing

I. INTRODUCTION AND BACKGROUND

The main goal of hardware/software co-design is to
shorten time to market while reducing the design effort and
costs of designed products. Design of embedded system
is subject to many different types of constraints such as
computation cycles, power consumption and memory con-
sumption. Partitioning an embedded application among
software running on a microprocessor and reconfigurable
hardware such as FPGA(Field Programmable Gate Ar-
rays) improves the performance of the embedded systems
and optimize the design in terms of various attributes. In
general, hardware implementation of a function has bet-
ter performance than software implementation. Thus mov-
ing selected software region that requires significant com-
putation cycles to configurable hardware can improve the
performance of the whole system. However, there is no

generally accepted methodology to separate applications
onto hardware and software execution. Moreover, the in-
creasing heterogeneous nature of embedded system plat-
form and application makes the mapping of tasks onto
different set of processors very complicated. One of the
major requirement for such traditional partitioning pro-
cess is to identify which application or part of the applica-
tion can be implemented onto reconfigurable hardware. In
the heterogeneous system context, this problem becomes
more complicated as partition has to be further extended
to support heterogeneous architecture which combines dif-
ferent architectures. Design Space Exploration of embed-
ded system allows rapid performance evaluation of differ-
ent design parameters, application to processor mapping
and hardware/software partitioning. One of the way of se-
lecting the critical software region for hardware/software
partitioning is to use program analysis tools like profil-
ing and tracing. Profiling and tracing provide necessary
information to collect and analyze the program behavior
which helps to pinpoint the performance or memory hot-
spot in the program and identify the candidate kernels for
mapping into different set of processors. These functions
can further be optimized in iterative manner to get the
best candidate for hardware implementation. Towards this
goal, the first step is to investigate the application based on
various design criteria such as execution time, bandwidth,
power consumption etc for optimization and design space
exploration.

The organization of the paper is the following: Section II
presents the system context and the problem definition.
Section III discusses the related work. Section IV presents
the dynamic profiling approach. Section V presents the
methodology for measuring execution time and bandwidth
with an example. And, finally section VI gives summary
of the paper and future work.

II. SYSTEM CONTEXT

Modern computing systems make increasing use of recon-
figurable and heterogeneous architectures. The increas-
ing heterogeneous nature of platform and the application
makes the design of embedded system very complicated.

Due to its heterogeneous nature, the traditional design
methodologies are not sufficiently suited for these emerg-
ing systems and developers need in-depth knowledge of
both hardware and software in order to create an effective
design of such system. In hardware/software co-design en-
vironment, to make early design decision, it is necessary to
perform exhaustive design space exploration (DSE). DSE
demands an exploration of a huge design space in a short
period of time. For this it is essential to prune the design
space using fast methods, which further can be refined pre-
cisely to a reduced design space. For making such early
design decisions, it is very essential to identify the var-
ious design parameters such as execution time, memory,
bandwidth etc. The measurement of these parameters can
help reduce the design space exploration by determining
whether kernels can be implemented efficiently on hard-
ware. Profiling is one of the such techniques to measure
these design parameter to quickly find promising candi-
date for mapping onto heterogeneous set of processors and
thereby reduce the points in the design space that needs to
be explored. The Delft Workbench [1] addresses optimal
and rapid design of embedded systems from high-level de-
scriptions, targeting a heterogeneous platform with combi-
nation of embedded processors, digital signal processing,
reconfigurable hardware etc. The Delft Work Bench re-
search project also supports developers during DSE phase.

The Delft Work Bench uses profiling and cost esti-
mation techniques for design space exploration, hard-
ware/software partitining and optimization. In Delft Work
Bench context, we analyze the program statically and dy-
namically in order to determine relevant profiling infor-
mation[2]. The dynamic analysis captures the dynamic
behavior of the application and provides the measure of
various design parameter such as execution time, band-
width utilization, while with static analysis we make early
estimates of hardware utilization, such as area, delay and
bandwidth. This information provides necessary informa-
tion on deciding which kernels to map onto hardware. In
heterogeneous context, these information provides vital in-
formation for which kernels can be mapped onto particular
processor set. Within this context, in this paper, we present
a methodology for the dynamic analysis of the application
for design space exploration, hardware/software partition-
ing and parallelization within Delft Workbench.

III. RELATED WORK

The goal of profiling is to analyze the program statically
and/or dynamically in order to determine relevant informa-
tion for design exploration, hardware/software partitioning
and parallelization. Multiple profiling techniques are de-

veloped to analyze the input application behavior for dif-
ferent criteria such as performance, memory, power con-
sumption etc.

The static code analysis performs the analysis of the source
code without actually executing programs while dynamic
analysis performs the analysis during program execution.
Static analysis is less accurate than dynamic profiling as
it is based on estimation of branch prediction execution,
while dynamic profiling is slow and requires program-
mer intervention. For runtime profiling, the most com-
mon methods are code instrumentation [3][4], sampling
[5][6],[6], or hardware profiling [7] [8], [9] and [10].
Instrumentation gives precise information than sampling
while they have several overhead associated and results ob-
tained may be skewed by inserted hooks. Sampling works
with unmodified code but needs enough samples to be ac-
curate. Researches have proposed several algorithms for
program profiling and tracing such as basic block profil-
ing, control flow - edge and path profiling [11][12][13],
value profiling [14] etc at the same time there are various
profiling tools those use these algorithm. Each of these
tools has its own advantages and disadvantages in terms of
speed, accuracy and overhead. Based on the requirement
of the application to be profiled, it is necessary to modify
these tools and make tradeoff between the offered criteria.

In Delft Work Bench, we combine both static and dy-
namic approaches to develop an efficient profiling tool in
terms of accuracy and speed for hardware/software parti-
tioning. During the profiling phase, relevant execution and
data storage information is collected. In addition, prelimi-
nary estimations of the hardware and the software costs of
the application’s kernels are performed.The static estima-
tion for Delft Work Bench is measured with a quantitative
model and presented in the paper [15].

IV. DYNAMIC PROFILING

The usual goal of dynamic code analysis is to determine
which parts of a program should be optimized for speed or
memory usage. Dynamic profiling is a performance analy-
sis technique that measures the behavior of a program as it
runs, particularly measuring the frequency and duration of
function calls. The output is a stream of recorded events
(a trace) or a statistical summary of the events observed
(a profile). Dynamic profiling involves obtaining the ex-
ecution time, memory usage etc of the program basically
within the software code level (at function level, statement
level or loop level) and analyzing them to get an idea of
where the processor is spending most of its time or where
program is using most of the bandwidth. Dynamic analysis

is performed with executing programs. This investigates
the program’s behavior using information gathered as the
program runs.

The dynamic analysis captures the dynamic behavior of
the application and provides the measure of various de-
sign parameter such as computation requirement and band-
width requirement of the systems. In heterogeneous con-
text, for making early design decision such as mapping of
tasks or set of tasks onto multiple set of processors, it is
also essential to know these parameter. Towards this goal,
the first step is to measure computation requirement and
the communication requirement of the application. The
computation requirement is a measure of number of CPU
cycles required to execute a particular task. And, the com-
munication requirements is the measure of the amount of
data that is transferred between different tasks.

V. METHODOLOGY

The increasing heterogeneous nature of platform and the
application makes the design of embedded system very
complicated. For making early design decisions such as
mapping of application into heterogeneous set of proces-
sors and hardware/software partitioning, it is very essential
to identify the various design parameters such as execution
time, memory, bandwidth etc. To measure such design pa-
rameters, it is necessary to capture the dynamic behavior
of the system at run time in order to know the dependency
between the tasks and the resources used by these tasks in
the system. We want to use task graph for representing the
dynamic behavior of the program in order to measure such
parameters of the application. For this we want to rep-
resent the application as network of interconnected tasks
where nodes in the graph represents the tasks and the in-
teraction between these tasks are represented by the edges
in the graph.

The application can be represented by a graph G = (V, E)
where vertex V represents the tasks and the edge E repre-
sents the communication between tasks. Tasks can contain
one or more functional blocks (such as blocks or loops).
A task in the graph communicates with other task passing
data through the communication channel between them.
All the vertexes and edges are given some weighted value.
This value is the measured value of the execution time of
the task and the channel bandwidth between the tasks. For
example in figure 1, parameters a, b, c, d, e represents the
execution time of each tasks A, B, C, D and E respectively
and parameters x, y, z, u, v, w represents the data trans-
fer between the tasks. We call this graph a weighted task
graph.

B
(b)

A
(a)

C
(c)

D
(d)

E
(e)

xy

z u

v

w

Fig. 1
WEIGHTED TASK GRAPH

There are two types of requirements of the application -
communication and computation. The communication re-
quirements is the measure of the amount of data that is
transferred between two tasks. The computation require-
ment is a measure of number of CPU cycles required to
execute a task. In very simple form, the problem of map-
ping of tasks into heterogeneous set of processors can be
expressed as a function in terms of communication and
computation requirement of the application. If F(x) is the
mapping function then it can be represented as

F(x) = f (x). g(x)

where f(x) represents the computation time of the tasks and
g(x) represents the data transfer between two tasks. The
obvious goal is to gain the maximum execution time and to
minimize bandwidth between different tasks. If two tasks
are mapped to different processors we want to minimize
the communication between those tasks and similarly if
there is a significant communication between two tasks we
want to map them to same processor. We call the tasks
tightly coupled if two tasks have considerable amount of
data transfer between them. And, tasks are loosely coupled
if there is less communication between them.

A. Measuring Computation Time

As a first design parameter for system design, we want to
measure the execution time of the tasks. The computation
time is the time taken to execute a task. It can be repre-
sented as a time in second or percentage of execution time.
There are various techniques available that can be used to
measure the execution time of the tasks.

B. Measuring Bandwidth

Another important parameter for system design in band-
width. For measuring bandwidth, we want to measure
the memory dependencies between different task and the
amount of data transfer between them. Sharing of data in-
volves communication, if there is sharing of data between
two tasks then there is some some kind of sequential com-
munication or sequential data transfer between these tasks.
So as a first step of measuring bandwidth between two
task, we want to know the dependency between two tasks.
Knowing the dependency between the tasks, we can mea-
sure the data transfer between these tasks.

At the first step toward measuring data transfer between
different tasks we want to distinguish separate tasks of the
applications. The granularity of the task can be at func-
tion level or part of a function. At second step we want
to know what data structures communicate data from one
task to another and what structures are private to a task.
We want to record the memory trace for every task of the
application. The traces for a data structure can be grouped
together to a logical address. We record the trace of all the
task that accesses same logical address.

There are two different kinds of task events: memory read
and memory write. For each instance of time for all the
data structure, we record each event when there is a mem-
ory read and memory write in a table like structure. The
table contains the task which writes to the address and how
many bytes is written similarly which task reads the data
and how many bytes are read. With this information, we
create a tuple (Tw, Tr, Bytes) where Tw is the task which
writes data, Tr is the task which reads data and Bytes is the
number of bytes/bits read or written to certain logical ad-
dress. This information can be used to construct weighted
task graph. The weighted task graph in figure 3 is con-
structed from the tuples in table I.

In this case, we assume every node produces or consume
tokens. We ignore the inter node communication and we
just consider there is communication between two nodes
only. In more formal way, we can measure this communi-
cation data in matrix like form. The cell (i,j) of the matrix
represents the amount of data produced or consumed by
node i with node j. If node i produces the data then it is
represented by positive number while if the node consumes
data from another node then it is represented by negative
number. If there is no relation between two nodes then the
value is zero. If a node has a connection to itself (self loop)
then we assume the data produced by the node is consumed
by the same node so we represent it just as a positive num-

ber. The matrix representation example for the given graph
is in figure 2.

1

2 3

6 4

5

D =

5 6 4

-6 0 0

-4 0 0

Fig. 2
MATRIX REPRESENTATION

Write Read No. of
Tokens

Tuple

T1 T1 1
T1 T1 2 (T1, T1, 3)
T1 T2 2
T1 T2 1 (T1, T2, 3)
T2 T4 1 (T2, T4, 1)
T2 T5 1
T2 T5 2 (T2, T5, 3)
T1 T3 2
T1 T3 2 (T1, T3, 4)
T3 T4 2 (T3, T4, 2)
T3 T5 2 (T3, T5, 2)
T4 T5 1 (T4, T5, 1)

TABLE I
EXAMPLE TRACE OF THE MEMORY ACCESS

Using this weighted task graph we quantify the dynamic
behavior of the system measuring various parameters such
as,
• Task Run Graph - This gives the timeline at what in-
stances of time which tasks is actively running. This will
capture the dynamic behavior of the task in the system.
• Bandwidth Utilization - This gives the timeline at what
instance of time which communication channel is occu-
pied and how much bandwidth is used.

The bandwidth utilization of the system gives the mini-
mum/maximum bandwidth gain of requirement of the sys-
tem when particular set of tasks are mapped onto particu-
lar processor. Similarly, knowing the dependency between
the tasks and the resource(in this example bandwidth) used
by these tasks, we can pipeline/parallelize these tasks for
faster execution. For instance at time Ts if there is suf-
ficient bandwidth available, we can create multiple in-
stances of the tasks and execute them simultaneously in
multi-threaded way in order to make the execution faster.

T2

T1

T3

T4

T5

3

1
2

3

1
2

3 4

Fig. 3
WEIGHTED GRAPH CONSTRUCTED FROM THE TUPLES IN

TABLE I

C. Example

The figure 4 gives the example weighted graph for part of
MPEG2 application. In the figure the hot-spots are high-
lighted within a circle. The example shows both the mea-
sure of percentage of computation time of each tasks and
data transfer between them. Based on the measured value
of percentage of computation time a and the number of
byte transferred between the tasks, the application can be
mapped onto one or more processors. For instance, in or-
der to optimize the bandwidth and reduce inter task com-
munication fullsearch and dist1 can be mapped
onto the same processor. There is a significant data trans-
fer between fullsearch and dist1 and these tasks are
tightly coupled. In heterogeneous context, in order to re-
duce the inter process communication, the tightly coupled
tasks should be mapped onto same processors. Similarly,
fdct, transform and sub pred can be mapped to the
same processors.

VI. SUMMARY AND FUTURE RESEARCH

Modern computing systems make increasing use of re-
configurable and heterogeneous architectures. In hetero-
geneous environment, for making early design decisions
such as mapping of application into heterogeneous set of
processors and hardware/software partitioning, it is very
essential to identify the various design parameters such as
execution time, memory, bandwidth etc. Profiling is one
of the such techniques to measure these design parame-
ter to quickly find promising candidate for mapping onto
heterogeneous set of processors and provide relevant in-
formation for design space exploration. Towards this goal,
in this paper we presented the methodology for dynamic
analysis of the application for design space exploration,

main

putseq
(0.04)

Itransform
(0.08)

add_pred
(0.43)

Idct
(0.16)

Idctrow
(0.47)

Idctcol
(0.39)

7875 87452

786 587
motion

estimate
(0.0)

frameME
(0.08)

frame
estimate

(0.04)

fullsearch
(2.63)

dist1
(61.78)

4004

14088

1706

transform
(0.0)

fdct
(26.19)

sub_pred
(0.43)

844880 849880

bdist1
(0.83)

7845

100

40570 405780

8800

1061538

Fig. 4
EXAMPLE WEIGHTED GRAPH OF MPEG2 WITH HOT-SPOT

HIGHLIGHTED

hardware/software partitioning and parallelization within
Delft Workbench. The technique presented in the paper
expresses the dynamic behavior of the application in terms
of weighted task graphs and measures a application spe-
cific design parameter such as execution time and band-
width via a dynamic profiling mechanism. In this paper we
presented the outlook of the profiling method with exam-
ple data, in future this methodology will be implemented
within Delft Work Bench framework and real parameters
will be measured.

REFERENCES

[1] “Delft workbench,” Online: http://ce.et.tudelft.nl/DWB/.
[2] K. Bertels, G. Kuzmanov, E. M. Panainte, G. N. Gaydadjiev,

Y. D. Yankova, V. Sima, K. Sigdel, R. J. Meeuws, and S. Vassil-
iadis, “Profiling, compilation, and hdl generation within the hartes
project,” in FPGAs and Reconfigurable Systems: Adaptive Het-
erogeneous Systems-on-Chip and European Dimensions (DATE
07 Workshop), April 2007, pp. 53–62.

[3] A. Srivastava and A. Eustace, “Atom: a system for building cus-
tomized program analysis tools,” SIGPLAN Not., vol. 39, no. 4,
pp. 528–539, 2004.

[4] “http://valgrind.org/.”
[5] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: a call

graph execution profiler,” in SIGPLAN Symposium on Compiler
Construction, 1982, pp. 120–126.

[6] D. W. Wall, “Systems for late code modification,” in Code Gener-
ation - Concepts, Tools, Techniques, R. Giegerich and S. L. Gra-
ham, Eds. Springer-Verlag, 1992, pp. 275–293.

[7] R. V. Peri, S. Jinturker, and L. Fajardo, “A novel technique for
profiling programs in embedded systems,” in Second ACM Work-
shop on Feedback-Directed and Dynamic Optimization.

[8] M. C. Merten, A. R. Trick, E. M. Nystrom, R. D. Barnes, and
W. mei W. Hwu, “A hardware mechanism for dynamic extraction
and relayout of program hot spots,” in ISCA, 2000, pp. 59–70.

[9] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal, and
W. mei W. Hwu, “A hardware-driven profiling scheme for iden-
tifying program hot spots to support runtime optimization,” in
ISCA, 1999, pp. 136–147.

[10] S. Narayanasamy, T. Sherwood, S. Sair, B. Calder, and G. Vargh-
ese, “Catching accurate profiles in hardware,” in 9th Interna-
tional Symposium 184 on High-Performance Computer Architec-
ture, February 2003, pp. 269–280.

[11] T. Ball and J. R. Larus, “Optimally profiling and tracing pro-
grams,” ACM Transactions on Programming Languages and Sys-
tems, vol. 16, no. 4, pp. 1319–1360, July 1994.

[12] ——, “Efficient path profiling,” in International Symposium on
Microarchitecture, 1996, pp. 46–57.

[13] T. Ball, P. Mataga, and M. Sagiv, “Edge profiling versus path pro-
filing: the showdown,” in POPL ’98: Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. New York, NY, USA: ACM Press, 1998, pp.
134–148.

[14] B. Calder, P. Feller, and A. Eustace, “Value profiling,” in MI-
CRO 30: Proceedings of the 30th annual ACM/IEEE interna-
tional symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 1997, pp. 259–269.

[15] R. J. Meeuws, Y. D. Yankova, K. Bertels, G. N. Gaydad-
jiev, and S. Vassiliadis, “A quantitative prediction model for
hardware/software partitioning,” in Proceedings of 17th Interna-
tional Conference on Field Programmable Logic and Applica-
tions (FPL07), August 2007, p. 5.

	Introduction and Background
	System Context
	Related Work
	Dynamic Profiling
	Methodology
	Measuring Computation Time
	Measuring Bandwidth
	Example

	Summary and Future Research

