Parallelism Utilization in Embedded Reconfigurable
Computing Systems: A Survey of Recent Trends

S. Arash Ostadzadeh and Koen Bertels
Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology, The Netherlands
{arash, koen}@ce.et.tudelft.nl

Abstract— Recently, embedded reconfigurable computing has
attracted great attention due to its potential to accelerate appli-
cation execution. Its key feature is the ability to perform compu-
tations in hardware to increase performance, while retaining much
of the flexibility of a software solution. Researchers in this field
have reported substantial performance improvements for a variety
of different applications like cryptography, multimedia processing,
genetics, networking and DSP. Embedded reconfigurable comput-
ing systems can lend themselves to high performance computing
by taking advantage of parallelism at different levels of granularity,
ranging from fine grained instruction level to coarse grained process
and/or task level parallelism. It is often necessary to use different
parallel processing techniques to fully take advantage of these sys-
tems. In this survey, we explore recent enhancements to this new
field of computing, considering the embedded reconfigurable hard-
ware architectures and software facilities targeting these systems.
The focus of the survey is on the employment of parallelism which
seems to be a key feature in application development for embed-
ded reconfigurable systems. More precisely, four different levels of
parallelism indicated by Instruction Level, Data/Loop Level, Task
Level, and Process/Thread Level, are introduced and distinguished
by properties identified for each category. Various reconfigurable
systems incorporating one or a combination of these attributes are
investigated. Finally, we generally try to identify the major prob-
lems that limit the embedded reconfigurable computing systems
from reaching their maximum potentials.
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I. INTRODUCTION

Tuning applications for optimum performance has
always been elusive. Recently, Reconfigurable Com-
puting (RC) has attracted great attention because of
its potential to accelerate application execution. Its
key feature is the ability to perform computations
in hardware to increase performance, while retaining
much of the flexibility of a software solution [1][2].

Traditionally, two methods are used in implement-
ing algorithms. The first one is with the hardwired
technology which can use an Application Specific In-
tegrated Circuit (ASIC) or separate components com-
bined together on board(s). ASICs are dedicated com-
ponents designed for specific computations, and thus
they prove to be quite fast and efficient when executing
the exact computation for which they were designed.
A more flexible method would be the employment of
software-programmable microprocessors in which pro-
cessors execute a set of instructions to perform com-
putations. Simply changing the software instructions

would result in the system functionality alternation
without any hardware manipulation. However, this
flexibility is going to be compensated by degradation
in performance [1].

Basically, the dynamic nature of reconfigurable de-
vices is addressed to a collection of computational el-
ements or logic blocks whose functionality is decided
by means of configuration patterns. The logic blocks
are composed of either commercial FPGAs or custom
configurable hardware. This new field of computing
has attracted great attention and shown to be efficient
in a variety of applications to name a few, network in-
trusion prevention [3], data encryption [4][5][6], image
processing [7], digital signal processing [8][9][10][11],
and recently more sophisticated applications like face
recognition [12].

Reconfigurable systems are usually employing
general-purpose processor(s) (GPP) in addition to
logic blocks to exhibit better flexibility in executing
wide range of applications and achieve better perfor-
mances. These GPPs usually conduct hard-to-map
kernels (codes) which can be easily implemented in
software such as control constructs, while the reconfig-
urable units are mostly concerned with computations.

Compilation environments for reconfigurable device
are quite diverse, ranging from tools for hand-mapping
assistance of a digital unit to the hardware, to fully au-
tomated utilities which are fed with circuit description
in a high-level language such as VHDL to be trans-
formed into a configuration for reconfigurable device
[13].

It should also be noted that for reconfigurable de-
vices which demand fixed structure setting at compile-
time, space availability can be a source of concern and
the system can only accelerate as much of the pro-
gram as fits in the start-up, however, for the run-time
reconfigurable devices, it’s possible to reuse the space
during program execution which is going to introduce
a tradeoff between extra reconfigurability time and in-
creased efficiency arising from the potential accelera-
tion of larger part of the program. Although reconfig-
urable systems (even run-time ones) have been gener-
ally shown to achieve high performance, the speedups
over traditional microprocessor systems are limited by
the cost of configuration of the hardware. Current re-



configurable systems suffer from a significant overhead
due to the time it takes to reconfigure their hardware.
In order to deal with this overhead, and increase the
computing power of reconfigurable systems, it is im-
portant to develop hardware and software systems to
reduce or eliminate this delay. To reduce the overhead
of configuration, some techniques like configuration
compression [14][15], configuration prefetching tech-
nique [16] and partial reuse of already programmed
configurations [17][18][19][20] are employed.

An introduction to the rapidly evolving field of re-
configurable computing, background of techniques and
systems, current researches in hardware and software
for RC, and techniques for run-time reconfigurability
can be found in [21]]22][23][24][1]]25][26]. Several com-
mercial dynamically reconfigurable processors systems
and their array structures, PEs and interconnection
architectures are classified in [27].

The rest of this paper is organized as follows. In sec-
tion II, we introduce parallelism utilization at different
levels of granularity in recent works on embedded re-
configurable systems. In section III, the modern con-
cept of High-Performance Reconfigurable Computing
is concisely described. Some limiting factors in current
embedded systems are discussed in section IV. Finally,
section V is devoted to the summary and concluding
remarks. It should also be stressed that the paper pri-
marily presents an outline of only the most recent de-
velopments and techniques in the reconfigurable com-
puting field and is not intended as an introductory text
or detailed descriptions of ongoing research projects.

II. PARALLEL COMPUTING WITH
RECONFIGURABLE LOGIC

Embedded reconfigurable computing is bound to ex-
ploit parallelism at different levels of granularity. In
this section, we are going to take a brief look at the
reconfigurable devices’ roles and contributions in this
context. Regarding the standard parallel computing
terminology, it is ostensible that reconfigurable hard-
ware can generally provide parallelism in finer granu-
larity as compared to distributed systems, up to the
task or process level. Upper level coarse-grain paral-
lelism is commonly practiced on distributed systems
in an abstract layer over the reconfigurable logic.

In the following, we first introduce different levels
of parallelism and quickly survey the use of embedded
reconfigurable systems at various granularity of paral-
lelism, ranging from instruction through process level.
Figure 1 depicts the concept of parallelism at different
levels in embedded reconfigurable computing systems.

A. Instruction Level Parallelism (ILP)

The lowest level of granularity is ILP and is ex-
ploited by high-performance microprocessors. Instruc-
tion level parallelism in its purest form is truly at
the instruction level, such as load, stores, and ALU
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Fig. 1. Different levels of parallelism in Embedded Reconfig-
urable Computing Systems

operations. The instruction level operations are not
visible in the source code and so cannot be manipu-
lated by the programmer. In conventional micropro-
cessors, ILP is exploited in the micro-architecture of
a superscalar processor. By having multiple instruc-
tions in progress in different stages of completion, the
superscalar processor is able to complete more than
one instruction in a clock cycle. Very Long Instruc-
tion Word (VLIW) processors offer another method
for fine-grained parallel operation. A VLIW processor
contains multiple functional units operating in paral-
lel.

The key difference between VLIWs and SIMDs is
the instruction stream. In a VLIW of P processing
elements, there can be P different instructions exe-
cuted whereas a SIMD executes the same instruction
across all processing elements. The parallelism of a
VLIW, however, is limited by the scalability of the reg-
ister file, which is shared by all processing elements,
and is further limited by the instruction level paral-
lelism of the source code [28]. VLIW processors have
started gaining acceptance in the embedded systems
domain. However, monolithic register file VLIW pro-
cessors with a large number of functional units are not
practical. A simple solution would be the utilization of
architectures termed Clustered VLIW Processors [29].

RC-SIMD [30] is a type of SIMD architecture, with
a reconfigurable communication network. It uses a
delay-line in the instruction bus, causing the accesses
to the communication network to be distributed over
time. This architecture requires only a very cheap



communication network while performing almost the
same as expensive fully connected SIMD architectures.
A conflict model is also employed to deal with the ir-
regular resource conflicts in this architecture. A run-
time reconfiguration refinement of the SIMD architec-
ture is presented in [31].

A multiprocessor platform for high throughput de-
coding based on a configurable ASTP combined with
an efficient memory and communication interconnect
scheme is presented in [32]. This ASIP has an
SIMD architecture with a specialized and extensible
instruction-set and 5-stages pipeline control. The at-
tached memories and communication interfaces en-
able the design of efficient multiprocessor architec-
tures. These multiprocessor architectures benefit from
the recent shuffling technique introduced in the turbo-
decoding field to reduce communication latency. The
major characteristics of the proposed platform can be
addressed to its flexibility and scalability which make
it reusable for various operating modes.

Bocchino and Adve [33] have presented Vector
LLVA, a virtual instruction set architecture (VISA)
that exposes extensive static information about vector
parallelism while avoiding the use of hardware-specific
parameters. It provides both arbitrary-length vectors
and fixed-length vectors, such as subword SIMD exten-
sions, together with a set of operations on both vec-
tor types. Translators that compile (1) Vector LLVA
written with arbitrary-length vectors to the Motorola
RSVP architecture and (2) Vector LLVA written with
fixed-length vectors to both AltiVec and Intel SSE2
are implemented. The experiments show that VISA
design captures vector parallelism for two quite differ-
ent classes of architectures and provides virtual object
code portability within the class of subword SIMD ar-
chitectures.

Some modern microprocessors use an out-of-order
execution mechanism to keep multiple execution units
as busy as possible and achieve a higher performance.
This is achieved by allowing instructions to be issued
and completed out of the original program sequence
as a means of exposing concurrency in a sequential in-
struction stream. More than one instruction can be
issued in each cycle, but only independent instruc-
tions can be executed in parallel, other instructions
must be kept waiting or, under some circumstances,
can proceed speculatively. Speculative execution and
out-of-order issue are used in superscalar processors to
expose concurrency from sequential binary code. The
Sun MAJC 5200 is a chip multiprocessors based on
four-way issue, VLIW pipelines. This architecture pro-
vides a set of predicated instructions to support con-
trol speculation. Intel’s explicitly parallel instruction
computing (EPIC) architecture is another speculative
evolution of VLIW.

To compile for a superscalar processor, the compiler
simply generates a sequential instruction stream, and

the processor parallelizes the instruction stream at run
time. In contrast, the VLIW processor executes the
instruction word generated by the compiler, requir-
ing the compiler to schedule concurrent operations at
compile time. Some legacy techniques in compiling se-
quential code for reconfigurable processors concerning
ILP are reviewed in [34].

Explicit Dataflow Graph Execution (EDGE) archi-
tectures [35] aim to exploit fine-grained concurrency
within a single thread. They break a program into a se-
quence of multi-instruction blocks that must each com-
mit atomically. In the TRIPS prototype EDGE archi-
tecture, the compiler assigns instruction numbers that
determine placement on the ALU substrate. To exploit
instruction level parallelism, the TRIPS microarchi-
tecture implements out-of-order execution. By assign-
ing IDs to instructions, the TRIPS scheduler statically
places each instruction on the array of ALUs, and the
hardware dynamically issues instructions when their
operands are ready. It differs from the VLIW ap-
proach, which uses static placement and static issue,
and the out-of-order superscalar approach, which uses
dynamic placement and dynamic issue.

VLIW-like architectures have large hardware re-
sources supporting multiple parallel operations.
Therefore, performance improvements can easily be
obtained by defining and using a complex instruction
with multiple parallel operations instead of using a se-
quence of simple instructions, however, a typical RISC
architecture has little instruction level parallelism and
thus cannot benefit from parallel operations combined
into one complex instruction. However, even in RISC
architectures with no explicit instruction level paral-
lelism, we can exploit the parallelism in between the
pipeline stages. Many other possibilities that com-
bine multiple operations from different pipeline stages
are also feasible, and can contribute to performance
improvements over the processor’s native instruction
set. Lee et al. [36] have presented an instruction
set synthesis framework that optimizes the instruc-
tion set through an efficient instruction encoding for
the given application as well as for the given data
path architecture. Their work is aimed at modern
RISC pipelined architectures with multi-cycle instruc-
tion support, representative of current configurable
processors despite most existing methodologies [37][38]
which are only applicable to VLIW-like processors. A
library of new instructions is created with various en-
coding alternatives taking into account the data path
architecture constraints, and then the best set of in-
structions is selected while satisfying the instruction
bitwidth constraint.

Paolucci et al. [39] have proposed a tiled architec-
tural strategy that employs scalable building blocks.
In SHAPES [40], a typical DSP oriented tile is com-
posed of a RISC, a VLIW DSP, a DNP (Distributed
Network Processor), on-tile memories and a set of on-



tile peripherals (POT). Each tile can be equipped with
a Distributed eXternal Memory (DXM). The tile is
the evolution of Atmel Diopsis, a multiprocessor SoC
which includes a RISC plus a floating-point VLIW
mAgic DSP. The SHAPES routing fabric connects on-
chip and off-chip tiles, weaving a distributed packet
switching network. SHAPES will investigate a lay-
ered system software, which does not destroy algorith-
mic and distribution info provided by the programmer
and is fully aware of the hardware paradigm. In [41], a
parameterizable hierarchical instruction scheduling for
tiled processors is explored. The scheduler is employed
to determine the contention-latency sweet spot that
generates the best instruction schedule for each appli-
cation. To avoid the application-specific tuning, the
parameters that produce the best performance across
all applications are determined.

Adaptive Explicitly Parallel Instruction Comput-
ing (AEPIC) [42]is a stylized form of a reconfigurable
system-on-a-chip that is designed to enable compiler
control of reconfigurable resources. AEPIC is an archi-
tectural model that extends the Explicitly Parallel In-
struction Computing Architectures (EPIC) [43] design
outline, wherein instruction level parallelism is explic-
itly communicated by the compiler to the hardware.
AEPIC extends this model into reconfigurable SoCs.
It has support for a reconfigurable fabric, which can
be dynamically configured as a collection of Adaptable
Functional Units (AFUs). The AFUs are configured
by a stream of bits called a configuration. AEPIC spe-
cific instructions are executed on the EPIC processor
to send the configuration stream to the adaptive fabric.
Similar instructions are executed to manage configu-
rations within the configuration memory hierarchy.

2D-VLIW [44] is another architecture and execu-
tion model which adopts a template based on large
pieces of computation running over a matrix of func-
tional units connected by a set of local register spread
across the matrix. FExperiments show performance
gain when comparing to an EPIC architecture with
the same number of registers and functional units.

Jones et al. [28] have proposed a Super-Complex
Instruction-Set Computing (SuperCISC) embedded
processor architecture and particularly investigated
the performance and power consumption of this device
compared to traditional processor architecture-based
execution. SuperCISC is a heterogeneous, multicore
processor architecture designed to exceed performance
of traditional embedded processors while maintaining
a reduced power budget compared to low-power em-
bedded processors. These processors are tightly inte-
grated through a shared register file, eliminating the
need for overheads associated with busses often used in
multiprocessor chips. At the heart of the SuperCISC
processor is a multicore VLIW containing several ho-
mogeneous execution cores/functional units.

Code generation for embedded reconfigurable archi-

tectures can efficiently exploit multiple memory banks
to demonstrate instruction level parallelism. Basi-
cally, such code generation process should contain in-
termediate representation, code compaction, instruc-
tion scheduling, memory bank assignment, and reg-
ister/accumulator assignment [45]. These five phases
can be performed in various sequences because they
are logically independent. A number of researches
have investigated the use of multi-bank memory to
achieve maximum instruction level parallelism. Some
works focus on designing variable partitioning mecha-
nisms, which try to evenly distribute memory accesses
and explore the potential of higher memory bandwidth
[46][47]. For heterogeneous register sets, Daveau et al.
[48] and Zhuang et al. [49] present specific register al-
location algorithms to fit their irregularities. Detailed
information is given in [50].

B. Data Level Parallelism (DLP)

Data level parallelism which sometimes referred to
as Loop Level Parallelism (LLP), is usually revealed
and exploited in sequential programs by optimizing
compilers. Data parallelism on a small scale can be
found in basic blocks of a program. Larger scale data
parallelism can be found in a nest of loops that perform
array/vector calculations.

Loop parallelization is a common technique in em-
bedded reconfigurable computing as the primary tar-
get to exploit parallelism. Generally, automatic par-
allelization of loops is planned by hardware compilers
as an attempt to maximize the use of the reconfig-
urable hardware. Loop unrolling can be done in dif-
ferent styles and at various scales. Some compilers se-
lect the innermost loop level to be completely unrolled
for parallel execution in hardware, potentially creating
a heavily pipelined structure [51][52]. For these cases,
outer loops may not have multiple iterations executing
simultaneously.

Any loop reordering to improve the parallelism uti-
lization of the reconfigurable device is basically done
by the programmer as a preprocessing step. On the
other hand, some compiler systems have taken this
procedure a step further and focus on the paralleliza-
tion of all loops within the program, not just the inner
loops [53][54]. These type of compilers generate and
analyze different data and control flow graph repre-
sentations based upon the entire program source code
as needed to clear data and control dependencies be-
tween iterations and schedule parallel operations in the
hardware. Kejariwal et al. [55] have evaluated the
performance potential of different types of parallelism
when executing loops. Applications from the industry-
standard EEMBC 1.1, EEMBC 2.0 and the MiBench
embedded benchmark suites are analyzed using the In-
tel C compiler.

Ziegler and Hall [56] have presented a set of measure-
ments which characterize the design space for auto-



matically mapping high-level algorithms consisting of
multiple loop nests onto an FPGA. They have focused
on the space-time tradeoffs associated with sharing
constrained chip area among multiple computations
represented by an asynchronous pipeline. Other anal-
yses and transformations, also associated with paral-
lelizing compiler technology, are used to perform high-
level optimization of the designs. The amount of par-
allelism in individual loop nests is controlled variably
with the goal of deriving an overall design that makes
the most effective use of chip resources. They have
described several heuristics for automatically search-
ing the space and a set of metrics for evaluating and
comparing designs.

Traditional schedulers for mapping software imple-
mentations of compute-intensive loops onto the array
can be less profitable if they do not take into account
the explicit routing of operand values. In essence, the
problem of binding operations to time slots and re-
sources is extended to also include explicit routing of
operands from producers to consumers. A software
pipelining technique referred to as modulo graph em-
bedding [57] is proposed for mapping loop bodies onto
reconfigurable architectures. It leverages graph em-
bedding from graph theory, which is used to draw
graphs onto a target space. The advantage of the tech-
nique is that it considers the communication structure
of the loop body during mapping.

Dou et al. [58] have also presented a specula-
tive execution mechanism for dynamic loop scheduling
with the goal of one iteration per cycle. Their tech-
nique exploits both data dependences of intra-iteration
and inter-iteration. Two instructions for special data
reuses in the case of loop-carried dependences have
been designed. The experimental results show sub-
stantial reduction in memory accesses.

C. Task Level Parallelism (TLP)

Task level parallelism is usually regarded as the first
potential of parallelism brought into attention in many
applications which can result in considerable perfor-
mance gains. It is particularly important in embedded
reconfigurable systems because these systems often
perform several different types of computation on data
streams. Conceptually, task level parallelism looks
easy to exploit since tasks can be allocated to proces-
sors. However, task structure is not easily exposed in
ordinary programming languages; programmers often
face difficulties to clarify the bounds of tasks. More ab-
stract programming models may help clarify the task
structure of an application.

Embedded processes can also consist of multiple
(sub)tasks that are presented as different source code
which can be (partly) executed in parallel. However,
the subtask level parallelism inside a single task is of-
ten too limited to fully utilize all the parallel processors
and results in many slacks on processors. Subtasks of

multiple tasks can also be executed in an interleaving
fashion for more efficient use of the processors. In [59]
design-time algorithms are proposed to interleave sub-
tasks based on the separated schedules of tasks. The
interleaver can be considered as part of a hierarchical
scheduler to steer the code generation of very complex
applications with many tasks.

Krasteva et al. [60] have proposed an FPGA par-
tition architecture, a methodology and a set of sup-
porting tools that enable the use of partial recon-
figuration in two directions: the (re)allocation of
tasks within a slot based FPGA arrangement, and
the reconfiguration of the communication infrastruc-
ture between these tasks and with an external proces-
sor. Thus, embedded reconfigurable devices can op-
erate autonomously to adapt themselves when they
receive a new task or group of tasks, optimizing both
task allocation and intra-task communications. The
type of communication structures supported can be
a combination of buses, point-to point connections
and networks-on-chip (NoC), each with variable width,
sharing a fixed set of intra-task communication chan-
nels.

D. Process vs. Thread Level Parallelism

In parallel computing systems, the major parallel
activity can be at a process level or the finer granular-
ity thread level. At process level, each process has its
own separate address space. In order to communicate
state, a process must send a message and the destina-
tion process(es) must explicitly receive the message.
Several different sorts of messaging protocols may be
used. Messages may be buffered, asynchronous, as
with MPI [61]. At the thread level of parallel pro-
cessing, the threads share an address space, and can
communicate through shared memory or messaging.
Signaling and synchronization mechanisms for thread-
based processing include critical sections and mutual
exclusion, or barriers.

A multithreaded processor is able to pursue two or
more threads of control in parallel within the processor
pipeline. The contexts of two or more threads of con-
trol are often stored in separate on-chip register sets.
Unused instruction slots, which arise from latencies
during the pipelined execution of single-threaded pro-
grams by a contemporary microprocessor, are filled by
instructions of other threads within a multithreaded
processor. The execution units are multiplexed be-
tween the thread contexts that are loaded in the reg-
ister sets. Underutilization of a superscalar processor
due to missing ILP can be overcome by simultaneous
multithreading, where a processor can issue multiple
instructions from multiple threads each cycle. Simul-
taneous multithreaded processors combine the multi-
threading technique with a wide-issue superscalar pro-
cessor to utilize a larger part of the issue bandwidth
by issuing instructions from different threads simulta-



neously.

Explicit multithreaded processors are multithreaded
processors that apply processes or operating system
threads in their hardware thread slots. These pro-
cessors optimize the throughput of multiprogram-
ming workloads rather than single-thread perfor-
mance. We distinguish these processors from im-
plicit multithreaded processors that utilize thread-
level speculation by speculatively executing compiler-
or machine-generated threads of control that are part
of a single sequential program. Many forms of explicit
multi-threading techniques have been described, such
as interleaved multi-threading (IMT), blocked multi-
threading (BMT) and SMT.

Simultaneous multithreading (SMT) is an architec-
tural technique that improves resource utilization by
allowing instructions from multiple threads to coexist
in a processor and share resources, however, it can-
not be afforded in systems with tight energy budgets.
Moreover, it does not exploit data level parallel hard-
ware, and does not exploit the available information
on threads. Earlier studies have shown that the per-
formance of an SMT architecture begins to saturate
as the number of coexisting threads increases beyond
four. Shin et al. [62] have shown that no single
fetch policy can be the best solution during the en-
tire execution time and that a significant performance
improvement can be attained by dynamically switch-
ing the fetch policies. They proposed an implementa-
tion method which includes an extremely lightweight
thread to control fetch policies (a detector thread) and
a processor architecture to run the detector thread
without impact on the user application threads. They
have also evaluated various heuristics for the detector
thread to determine the best fetch policies. Software-
SMT (SW-SMT) [63], is another technique to exploit
task level parallelism to improve the utilization of
both instruction level and data level parallel hard-
ware, thereby improving performance. The technique
performs simultaneous compilation of multiple threads
at design-time, and it includes a run-time selection
of the most efficient mixes. A good survey of multi-
threading and classifications of explicit multithreading
techniques is given in [64].

An alternative, which avoids complexity in instruc-
tion issue and elimination of speculative execution, is
the microthreaded model. This model fragments se-
quential code at compile time and executes the frag-
ments out of order while maintaining in-order execu-
tion within the fragments. The only constraints on the
execution of fragments are the dependencies between
them, which are managed in a distributed and scalable
manner using synchronizing registers. The fragments
of code are called microthreads and they capture in-
struction level parallelism [65].

Carta et al. [66] have proposed a reconfigurable
architectural template which exploits mixed coarse-

grained and fine-grained reconfigurable data path and
control elements to obtain performances at ASICs
level on computational tasks based on repetitive ex-
ecution of a reduced set of operations on multidimen-
sional array data. The architectural template deter-
mines execution partitioning between dominant and
non-dominant kernels, and processor/coprocessor in-
teraction. System integrability and scalability is im-
proved by the use of memory mapping for coproces-
sor/processor communications. In this way coproces-
sor can be coupled with each kind of existing processor,
and a cluster of coprocessors in parallel can be used to
implement thread-level parallelism. The main innova-
tion lies in reconfigurable coprocessor core architecture
which is optimized for the execution of the kernels.

ALP [67] is also an architecture that efficiently in-
tegrates all different forms of parallelisms (including
ILP and TLP) with evolutionary changes to program-
ming model and hardware. The novel part of ALP is
a data level parallelism technique called SIMD vectors
and streams (SVectors/SStreams), which is integrated
within a conventional superscalar-based CMP/SMT
architecture with subword SIMD. This technique lies
between subword SIMD and vectors, providing signif-
icant benefits over the former at a lower cost than the
latter.

ATLAS [68], is a prototype for chip-multiprocessors
with hardware support for Transactional Memory
(TM), a technology aiming to simplify parallel pro-
gramming. ATLAS uses BEE2 multi-FPGA board to
provide a system with 8 PowerPC cores running Linux.
It’s aimed to provide benefits for chip-multiprocessors
research such as performance improvement over a soft-
ware simulator and good visibility that helps with soft-
ware tuning and architectural enhancements. Certain
issues about building a FPGA-based framework for
chip-multiprocessors are also addressed in the work,
such as overall performance, challenges of mapping
ASIC-style chip-multiprocessors RTL on to FPGAs,
software support, the selection criteria for the base
processor, and the challenges of using pre-designed IP
libraries.

Currently researchers in MIT are investigating
vector-thread architectures. These architectures unify
data level, thread level, and instruction level paral-
lelism, providing new insights of parallelization for pro-
grams that are difficult to vectorize or that incur exces-
sive synchronization costs when multithreaded. They
have developed the Scale processor, which is an exam-
ple of a vector-thread architecture designed for low-
power and high-performance embedded systems. The
prototype includes a single-issue 32-bit RISC control
processor, a vector-thread unit which supports up to
128 virtual processor threads and can execute up to
16 instructions per cycle, and a 32KB shared primary
cache [69].

The design of a thread-associative memory microar-



chitecture for multicore and multithreaded processor
is investigated in [70]. Considering the fact that mem-
ory contention among concurrent threads in chip mul-
tithreaded processing has become a limiting factor
for performance improvement, the proposed thread-
associative memory addresses this challenge by incor-
porating thread-specific information explicitly into on-
chip memory hardware and can be utilized at different
levels of memory hierarchy.

Coarse-grained reconfigurable architecture ADRES
(Architecture for Dynamically Reconfigurable Embed-
ded Systems) and its compiler offer high instruction
level parallelism to applications by means of a sparsely
interconnected array of functional units and register
files. Wu et al. [71] have proposed ADRES exten-
sion to MT-ADRES (Multi-Threaded ADRES) to also
exploit thread level parallelism. On MT-ADRES ar-
chitectures, the array can be partitioned in multiple
smaller arrays that can execute threads in parallel. Be-
cause the partition can be changed dynamically, this
extension provides more flexibility than a multi-core
approach.

Anderson et al. [72] have presented hthreads, a
unifying programming model for specifying applica-
tion threads running within a hybrid CPU/FPGA sys-
tem. Threads are specified from a single pthreads
multithreaded application program and compiled to
run on the CPU or synthesized to run on the FPGA.
The hthreads system abstracts the CPU/FPGA com-
ponents into a unified custom threaded multiproces-
sor architecture platform. To support the abstraction
of the CPU/FPGA component boundary, they have
created the hardware thread interface (HWTI) com-
ponent that frees the designer from having to spec-
ify and embed platform specific instructions to form
customized hardware/software interactions. Instead,
the hardware thread interface supports the general-
ized pthreads API semantics, and allows passing of
abstract data types between hardware and software
threads. Thus the hardware thread interface provides
an abstract, platform independent compilation target
that enables thread and instruction level parallelism
across the software/hardware boundary.

Fuentes [73] have proposed a lightweight subset im-
plementation of the MPI standard, called TMD-MPI.
TMD-MPI provides a programming model capable
of using multiple-FPGAs and embedded processors
while hiding hardware complexities from the program-
mer, facilitating the development of parallel code and
promoting code portability. A message-passing en-
gine (TMD-MPE) is also developed to encapsulate the
TMD-MPI functionality in hardware. TMD-MPE en-
ables the communication between hardware engines
and embedded processors. In addition, a Network-
on-Chip is designed to enable intra-FPGA and inter-
FPGA communications. Together, TMD-MPI, TMD-
MPE and the network provide a flexible design flow

for Multiprocessor System-on-Chip design.

I1I. HiGH-PERFORMANCE RECONFIGURABLE
CompuTING (HPRC)

High-Performance Reconfigurable Computing is
based on uniting the conventional processors and field-
programmable gate arrays. This new powerful com-
puting facility is basically looks appealing for the high-
performance computing community, primarily because
these systems have the potential to exploit coarse-
grained process/task level parallelism as well as fine-
grained instruction level parallelism through direct
hardware execution on FPGAs and dynamically tune
their architecture to fit various applications [25][74].
Figure 2 illustrates the outline of a typical high-
performance reconfigurable architecture.

High-performance reconfigurable computers, also
known as reconfigurable supercomputers, have shown
considerable improvements not only in performance
but also power, size, and cost over conventional high-
performance computers. Traditionally HPRC benefits
are utilized in compute-intensive integer applications.
However, there has been doubt that the same benefits
can be attained for general scientific applications. Pro-
gramming HPRCs is also not straightforward yet and
depending on the programming tool can range from
designing hardware to software programming which
may require partial or substantial hardware knowl-
edge. Fortunately, the trend in reconfigurable chip
sizes and diversity of resources may relieve some of
those concerns. Yet, with the hardware reconfigura-
bility, it is feared that users have to learn how to de-
sign hardware if they were to employ such machines
effectively [75].

The recent SRC-6 and SRC-7 parallel architectures
from SRC Computers are developed with a gear to-
ward scalability [76]. In addition, traditional high-
performance computing vendors have utilized FP-
GAs into their parallel architectures. Silicon Graph-
ics Inc. (SGI) has introduced SGI RASC (Recon-
figurable Application Specific Computing) technology
[77]. Building on the success of the Cray XT3 sys-
tem, the Cray XT4 system brings new levels of scala-
bility and sustained performance to high performance
computing [78]. Linux Networx [79] is working on an
FPGA-accelerated system tailored specifically for high
performance multi-paradigm computing. It aims to
help accelerate adoption of this emerging computing
paradigm by offering a powerful platform with open-
source tools. In keeping with the Linux spirit, the
driver, user-space API, and Verilog interfacing IP will
all be open-source and transparent. It’s claimed that
the system would be the most powerful reconfigurable
device available on the market.

As far as software development is concerned, SRC
provides a semi-integrated solution that addresses the
hardware and software sides of the application sepa-
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rately. The hardware side is expressed using Carte
C or Carte Fortran as a separate function, compiled
separately and linked to the compiled C (or Fortran)
software side to form one application. Other hardware
vendors use a third-party software tool, such as Im-
pulse C, Handel-C, Mitrion C, or DSPlogic’s RC Tool-
box. However, these tools handle only the FPGA side
of the application, and each machine has its own ap-
plication interface to call those functions. At present,
Mitrion C and Handel-C support the SGI RASC, while
Mitrion C, Impulse C, and RC Toolbox support the
Cray XD1. Currently, only a library-based parallel
tool such as the MPI [61] can handle scaling an appli-
cation beyond one node in a parallel system [80].

In a recent attempt to develop an HPRC system,
Patel et al. [81] have proposed an architecture for a
scalable computing machine built entirely using FPGA
computing nodes. The machine enables designers to
implement large-scale computing applications using a
heterogeneous combination of hardware accelerators
and embedded microprocessors spread across many
FPGAs, all interconnected by a flexible communica-
tion network. Parallelism at multiple levels of granu-
larity within an application can be exploited to obtain
the maximum computational throughput. By provid-
ing a simple, abstracted communication interface with
the objective of being able to scale to thousands of
FPGA nodes, the proposed architecture appears to the
programmer as a unified, extensible FPGA fabric. A
programming model based on MPI is also presented
to support partitioning an application into indepen-
dent computing tasks that can be implemented on the
architecture.

IV. PARALLELISM LIMITATIONS IN EMBEDDED
SYSTEMS

The main problem with traditional parallel process-
ing is that it requires the user to handle the paral-
lelization, the synchronization, and the communica-

tion. In essence, the major problems of implementing
multiprocessor applications are placed on the end user.
Embedded reconfigurable architectures replicate many
custom or semi-custom hardware components across
the chip. It is often necessary to utilize different par-
allel processing techniques to take advantage of these
multi-core resources.

Unfortunately, there are several problems that limit
the multi-core embedded computing systems from
reaching their potential. First, parallel processing is
often hard to achieve. Writing parallel programs is ex-
tremely tedious and error prone. Automation tools for
parallel programming (e.g., coarse grain parallelizing
compilers and fine grain instruction level parallelism)
have had limited success. A shared memory resource
as used in many VLIW or symmetric multiprocessor-
style architectures is popular, particularly in embed-
ded DSP architectures. This is a similar concept to
vector processing cores that are used in many pro-
cessors, such as the Pentium (MMX) and PowerPC
(AltiVec). Often the way applications are written can
inadvertently hide parallelism from a compiler. In par-
ticular, the instruction level parallelism of even highly
parallel codes is ultimately limited to what a compiler
can find and this can be extremely low. These shared
memory systems do not scale well for large number of
processor cores, even if the ILP could be increased.

Second, many available sequential programs contain
extremely limited parallelism (if any at all), making
many of the cores sit idle, thus eliminating their bene-
fits. Third, parallel execution can lead to tremendous
overheads, such as coherence mechanisms and addi-
tional code required to manage the parallel execution.

Task Level Parallelism and Workload Partitioning
have been and certainly continue to be two dominant
software development issues for reconfigurable plat-
forms, either for heterogeneous or homogeneous archi-
tectures. These issues are more critical on heteroge-
neous architectures, since specialized processors may



have additional constraints.

The most evolutionary stage in embedded applica-
tion development is Language Refinement. A signif-
icant amount of work has been done on parallelizing
functional languages such as C. However, the existing
work can not be easily adapted to embedded recon-
figurable computing as it may seems. It can partly
be addressed to developer supervised parallelism ex-
ploitation. OpenMP [82] and MPI can be two evident
examples.

Embedded Computing Languages need to offer a hy-
brid approach to identify task level parallelism, which
were originally developed for general purpose com-
putations. To put it in other words, we need to
achieve high performance without the challenges of
understanding the PEs architecture or sophisticated
parallel programming techniques. There are some re-
search platforms aimed to achieve this goal such as
RapidMind [83], which intends to make programming
processors as easy as single-threaded, single core pro-
gramming, yet taking full advantage of all available
resources. In summary, we can consider scalability
of architecture, appropriate programming models and
task control management to be the primary challenges
for embedded system designs in the coming years.

V. SUMMARY AND CONCLUDING REMARKS

Embedded computing research is gaining popularity
in recent years. Innovative concepts such as using em-
bedded languages to exploit parallelism and tuning in
performance, seems to be crucial to take an evolution-
ary step toward more convenient application develop-
ment. Embedded reconfigurable systems have the po-
tential to demonstrate the computing power for over-
coming hard-to-solve problems. What makes the over-
all concept even more demanding is the fact that they
can be steered in the direction of high performance
computing as well as specific application accelerations.
In this paper, we described the latest contributions in
embedded reconfigurable computing, concerning par-
allelism in both hardware platforms and software facil-
ities targeting these systems. As a summary, reconfig-
urable computing systems can lend themselves to high
performance computing by taking advantage of paral-
lelism at multiple levels of granularity, ranging from
instruction through process level parallelism.

Considering parallelism utilization inherent in cur-
rent applications one should note that some types of
parallelism can be found statically, by just examin-
ing the program. Other opportunities can be found
only dynamically, by executing the program. Static
parallelism is easier to implement but does not cover
all important sources of parallelism (maximum par-
allelism that can be achieved). Dynamic discovery of
parallelism for a particular application can also be per-
formed at many levels of abstraction ranging from in-
struction to task level and so on.

The authors believe that a major benefit of us-
ing a parallel programming paradigm/language, tai-
lored to embedded reconfigurable computing, would
be the ease of identifying and extracting opportunities
for parallelism in an application which could result in
maximal performance gain.
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