Analysis of Video Filtering on the Cell Processor

Arnaldo Azevedo, Cor Meenderinck, Ben Juurlink
Delft University of Technology
Delft, the Netherlands
Email: {Azevedo, Cor, Benj}@Qce.et.tudelft.nl

Mauricio Alvarez
Technical University of Catalonia (UPC)
Barcelona, Spain
Email: alvarez@ac.upc.edu

Abstract— In this paper an analysis of bi-dimensional
video filtering on the Cell Broadband Engine Processor is
presented. To evaluate the processor, a highly adaptive fil-
tering algorithm was chosen: the Deblocking Filter of the
H.264 video compression standard. The baseline version
is a scalar implementation extracted from the FFMPEG
H.264 decoder. The scalar version was vectorized using
the SIMD instructions of the Cell Synergistic Processing
Element. Results show that approximately one third of the
processing time of the SIMD version is used for transposi-
tion and data packing and unpacking. Despite the required
SIMD overhead and the high adaptability of the kernel,
the SIMD version of the kernel is 3.1 times faster than its
scalar version.

I. INTRODUCTION

Video processing coders/decoders (codecs) are in-
creasingly complex to obtain better compression rates
and improve the picture quality. The H.264 standard
[1] is an example of this trend. H.264 produces a bit-
stream which is, on average, twice as small as the bit-
stream produced by the MPEG-2 and MPEG-4 stan-
dards, for the same picture quality. However, this
improvement is obtained by increasing the computa-
tional complexity.

Many processors feature Single Instruction Multiple
Data (SIMD) units to accelerate multimedia process-
ing. IBM Cell Broadband Engine processor [2] is an
example of a multimedia tailored processor with eight
cores that work exclusively in a SIMD fashion. The
increasing complexity of multimedia kernels, however,
can have a negative impact on the efficiency of SIMD
processing, due to the fact that there can be less data-
level parallelism with the addition of complex control
structures.

This work analysis the suitability of the Synergistic
Processing Elements (SPEs) [3] of the Cell Broadband
Element for bi-dimensional video filtering. To evalu-
ate the processor a highly adaptive filtering algorithm
was chosen: the Deblocking Filter (DF) of the H.264

Alex Ramirez

Barcelona Supercomputing Center (BSC)

Barcelona, Spain
Email: alex.ramirez@bsc.es

video compression standard.

Profiling an H.264 decoder shows that the DF con-
sumes about 6% of the processing time of a non-
optimized decoder [4]. However, in an optimized ver-
sion of the decoder with a non-optimized version of
the DF, this increases to 49% of the total processing
time [5].

This paper is organized as follow. Section II
presents a brief overview of the Cell Broadband En-
gine. The Deblocking Filter is described in Section I1I
and its implementation on the Cell processor is given
in Section IV. Section V presents experimental results
and comparisons, and Section VI concludes the paper.

II. CELL BROADBAND ENGINE

In this section a brief overview of the Cell Broad-
band Engine is provided. This overview focuses on the
characteristics of the processor relevant to the imple-
mentation of the DF. More details about the processor
can be found in [2,3].

The Cell Broadband Engine is a multi-core proces-
sor consisting of a dual-threaded PowerPC with Al-
tiVec extension and eight Synergistic Processing FEle-
ments (SPEs). Each SPE is an in-order 2-way RISC-
like Synergistic Execution Unit (SXU) with a local
store (scratch-pad memory), and a DMA unit. The
cores are connected by four 16B-wide data rings. Fig-
ure 1 depicts the main architectural units of the pro-
cessor. Figure 1(a) shows the cores and their intercon-
nect, while Figure 1(b) shows the main architectural
blocks of the SPE.

The Power Processing Element (PPE) is a simpli-
fied version of the PowerPC processor family. It is
based on IBM’s 64-bit Power Architecture with 128-
bit vector media extensions and has a two-level on-
chip cache hierarchy. It is fully compliant with the
64-bit Power Architecture specification and can run
32-bit and 64-bit operating systems and applications.
The PPE is dual-threaded and has a two-way in-order

SPE

SXU

SPE SPE SPE SPE

PPE

On-chip coherent bus

11 1
(a)

Fig. 1. Cell Broadband Engine block diagram: (a) Cores
and interconnect; (b) SPE main architectural blocks

execution unit with a 23-stage pipeline.

The Cell multiprocessor has eight SPEs tailored for
multimedia processing. The SPE register file has 128
registers each 128 bits wide. All instructions are 128-
bit SIMD instructions with varying element width, i.e.
2 X 64-bit, 4 x 32-bit, 8 x 16-bit, 16 x 8-bit, and 128
x 1-bit.

As all instructions are SIMD, the compiler must
manage scalar operations. To perform a scalar oper-
ation, the SPE compiler first moves both operands to
a preferred slot, performs the operation, then shuffies
the result with the content of a register, and finally
writes it back.

The SPE can only access data and code stored in its
Local Store (LS). The LS size is 256 KB; code and data
must fit on the LS or the programmer must manually
describe data and code overlays. The LS is mapped
into the memory map of the main processor to allow
LS-to-LS communication, but this memory (if cached)
is not coherent in the system. Data and instructions
are transferred between this local store and system
memory by asynchronous coherent DMA commands,
executed by the DMA unit included in each SPE. All
data communication from/to SPEs is done through
explicit DMA commands. A DMA transfer has a max-
imum size of 16 KB.

Data communication can be performed in parallel
with computation. This enables a double buffering
strategy to minimize the effects of DMA transfer la-
tency.

III. DEBLOCKING FILTER

The discrete cosine transform (DCT) applied in
video and image compression can produce sharp edges
between the blocks it operates on. These artifacts are
known as blocking, because square areas in the picture
are visible. The aim of the Deblocking Filter (DF) is

p3 | p2 |p1 | p0Jq0|ql|qg2| a3

(a) (b)
Fig. 2. Line of pixels to be filtered

to improve the appearance of the decoded pictures by
smoothing the edges of adjacent blocks. In H.264 this
process is defined in the standard and it is part of the
coding loop, the filtered frame is used as reference by
the next frames. The DF is highly adaptive and has
different filter strengths depending on the type of the
block being filtered (such as Intra or Inter prediction
types) and the types of its adjacent blocks.

The DF process consists of modifying pixels at the
four block edges by an adaptive filtering process [6].
The filtering is performed by one of the five different
standardized filters, selected by means of boundary
strength (BS) calculation. This boundary strength is
obtained from the block type and some pixel arith-
metic to verify if the existing pixel differences along
the border are a natural border or an artifact.

The filters employed in the DF are one-dimensional.
The bi-dimensional behavior is obtained by applying
the filter on both the vertical and the horizontal edges
of all 4x4 luma or chroma blocks. Figure 2 illustrates
a line of pixels used in the filtering process, for the
left (a) and the top (b) edges. Pixels denoted ¢ are
those from the current block, while pixels denoted p
are those from neighboring blocks. Depending on the
filter strength, the values of pixels p2 to p0 and g0 to
q2 are modified.

The filter process starts with the vertical left edge
of the macroblock (MB) and then each vertical inter-
nal edges. After the vertical edges have been filtered,
the process is repeated for the horizontal edges. This
process is illustrated in Figure 3, where each box rep-
resents a 4x4 luma block. The gray area represents
the current MB, dark-hatched the p blocks, and the ¢

Step 4

Step 8

if(p2 - p0 < beta){

pl’? = ((p2 + ((p0O + g0 + 1) >> 1)) >> 1) - pl;
pl’ = pl + clip(p1’’, -tcO, tc0);
}
delta’ = (((q0 - p0) << 2) + (pl - q1) + 4) >>3;
delta = clip(delta’,-tc, tc);
poO’ = clip(pO + delta);

N\

)
A/A/A/A

Fig. 3. Filtering of edges

blocks are light-hatched.

The strength of the filter is determined dynamically
and depends on the current quantizer, the coding of
the neighboring blocks, and the gradient of the image
samples across the boundary. There are five strengths
which the filter can apply, ranging from 0 (no filtering)
to 4 (strongest one). Boundary strength 4 is applied
between edges of two Intra Prediction blocks, when
one of them is a MB boundary. Boundary strength
3 is applied between edges of an Intra Prediction and
Inter Prediction blocks. The other are used to edges
between inter prediction blocks.

Filtering is performed over a line of pixels if the
conditions (p0 — ¢0) < alpha, (pl — p0) < beta and
(g1 — q0) < beta are met. The thresholds alpha and
beta depend on the encoder average quantization pa-
rameter over the edge.

There are two filter processes which depend on the
BS value. When the BS value is 4, the function below
is applied, where pi’ is the new value of pixel pi.

if(p0 - g0 < (alpha << 2) + 2)
{
if(p2 - pO < beta)
{
p0’ = p2 + 2xpl + 2%xp0 + 2%q0 + ql + 4 >> 3;
pl’ =p2 + pl + p0 + g0 + 2 >> 2;
p2’ = 2%p3 + 3*p2 + pl + p0 + q0 + 4 >> 3;
}
else
p0’ = 2xpl + p0 + ql + 2 >> 2;
}
else

p0’ = 2%pl + p0 + ql + 2 >> 2;

The function below is applied for all other BS val-
ues.

The above code presents only the equations for p
pixels. The equations for ¢ pixels are symmetrical.
The clip functions are defined as follow:

clip(x, y, z){
return x <y 7y :

}

(x>z7?z: %)

clip(x) {return clip(x, 0, 255)}

IV. IMPLEMENTATION

In this section the implementation of the DF on the
Cell Broadband Engine is detailed. The implementa-
tion will be described in a top-down fashion. The de-
scription starts with the main loop of the kernel and
gradually goes down to the inner parts of the imple-
mentation. The focus of this analysis is the compu-
tational part of the DF of the FFMPEG H.264/AVC
decoder, rather than concentrating on a small compu-
tation kernel.

Two versions of the DF were implemented on the
Cell processor SPE: a scalar version and a vector-
ized SPE version. The baseline version is a scalar
implementation extracted from the FFMPEG H.264
decoder [7]. The extracted code does not include the
parameter calculation of the DF. The analysis focuses
on the sample filtering of the code. This scalar version
was then vectorized by hand using the SIMD instruc-
tions of the SPE.

In these implementations the PPE is used only to
read the parameters from the input files and to store
them in main memory. After storing the parameters,
the SPE threads are spawned. Thereafter, the PPE
thread sends a signal to all SPEs to start the compu-
tation.

Each SPE thread processes one frame. This ap-
proach avoids data movements between SPEs and/or
between SPEs and main memory as all data depen-
dencies are between instructions executed on the same
SPE. The processing starts by reading the input point-
ers for the samples and parameters from the main
memory.

Each frame is divided into MB lines (MBs from
the same row), to use the SPEs ability of perform-
ing computation and data communication in parallel.
This partition is based on several factors such as the
latency, maximum DMA transmission package size,
number of DMA transfers, and organization of the
data in the memory. The partition size is proportional
to the start-up latency but inversely proportional to
the number of DMA requests. or each frame, the pixel
components (Y, Cb, Cr) are stored in seperate arrays.
Partitioning into complete lines of MBs allows to load
the pixel samples of one partition with three DMA
transfers. Using smaller partitions would require to
DMA each line seperately.

For every MB line there are four DMA transfers
from memory to the LS. One DMA transfer is nec-
essary for 16 lines of luma samples, two for 8 lines
of each set of chroma samples, and another one for
the DF parameters of the MB line. After the data is
available in the LS, the processing of the MB line is
performed and the results are transmitted back to the
main memory.

The processing of the MB lines is performed as a
software pipeline and uses a double buffering strat-
egy. First, the data for the first MB line is requested,
followed by the request of the data for the second MB
line. After the data of the first MB line is available in
the LS it is filtered. This way the processing of MB
line 0 is performed in parallel with the data transmis-
sion of MB line 1. The pseudo-code below illustrates
the process:

Request (MB_Line[0]);
Request (MB_Line[1]);
Wait (MB_Line[01);
Process (MB_Line[0]);

FOR x = 2 TO frame_height_in_MB -1

{
Request (MB_Line[x];
Wait (MB_Line[x-1];
Process (MB_Line[x-1];
Save (MB_Line[x-2];
}

Process (MB_Line[x-1];
Save (MB_Line[x-2];

Save (MB_Line[x-1];

The MB line cannot be immediately transmitted to
memory. As can be seen in Figure 3, the processing
of the next MB line changes the values of the current
bottom edge samples.

The filter process is performed per MB. As de-

scribed in section III, there are 8 edges, four verti-
cal and four horizontal. First the four vertical edges
are filtered and then the four horizontal. The filtering
process is divided into the following steps: (1) unpack
the 8-bit (8b) samples of the current and left MBs to
signed 16b, (2) transpose the current and left MBs,
(3) filter the vertical edges, (4) transpose the result,
(5) pack back the left MB result to 8b, (6) unpack the
last 4 lines of the top MB to 16b, (7) filter the hori-
zontal edges, and finally, (8) pack back the MB result
to 8b.

The computational core of the DF is the edge filter-
ing. There are four functions required to implement
the edge filtering. Luma and chroma samples require
two functions each: one for Intra MB external edges
blocks and another one for the other cases. These
functions exhibit data-level parallelism and have been
optimized with SIMD instructions of the SPE, such
that the edge filtering computes 8 pixels simultane-
ously.

Despite their adaptiveness, the filtering functions
have been implemented without branches, except for
one to select between the filter processes listed above.
To perform the filtering without branches, all equa-
tions of the function are computed. All branches are
replaced by comparisons that result in a mask. These
masks are used to select the positions of the result
vectors that will be saved in memory.

V. EXPERIMENTAL RESULTS

In this section the experimental results are pre-
sented. First the simulation input and tool are de-
scribed followed by the analysis of the results. Based
on the analysis the conclusions are drawn.

To evaluate the implementations the first eight
frames of the Lake Wave video sequence, in the CIF
(320 x 240 pixels) resolution, were used as input. The
results were obtained using IBM Full-System Simula-
tor for the Cell Broadband Engine processor [8].

Figure 4 depicts the number of cycles required for
each frame, for the scalar implementation as well the
SIMD version. For the SIMD version, the filtering of a
CIF frame takes 2.2 million cycles on average for the
video used in this experiment. This corresponds to
0.9 ms per frame in a 2.4 GHz version of the Cell pro-
cessor or 0.68 ms in a 3.2 GHz processor. For the same
input the scalar version consumes 7 million cycles, for
each frame, on average. The SIMD implementation
has a speedup of 3.1 over the scalar version.

For profiling purposes the SIMD version of the
kernel was divided into four parts: Transposition,

Cycles

10,000,000

9,000,000

8,000,000

7,000,000 T—y

6,000,000+

5,000,000 —=R

4,000,000

3,000,000

S

Sl

DI

N |
Sl

2,000,000 1—+

~| | | |

sy |
1

7////J|

1,000,000 /N
0N N

]

R
N
IA;

DN

N 7N 7N 7N

Frames

| | | |]]

Z\

74 SIMD
N Scalar

Fig. 4. SIMD and Scalar DF performance comparison

Cycles

2,750,000
2,500,000

2,250,000

2,000,000
1,750,000 T
1,500,000
1,250,000
1,000,000

750,000

Filtering

Transposition
[pack/Unpack

500,000 I control

250,000
04

Frames

Fig. 5. Deblocking Filter performance on the SPE for 8
CIF frames input data

Pack/Unpack, Filtering, and Control. We call Con-
trol all parts of the kernel other than Transposition,
Pack/Unpack, and Filtering. Figure 5 depicts the
number of cycles spent in each part of the kernel. Fil-
tering consumes 47% to 62% of the cycles required to
process a frame, with an average of 58%. Approxi-
mately one third of the kernel cycles is spent on the
Transposition and Pack/Unpack parts, they consume
on average 20% and 12%, respectively. The remain-
ing 10% is used by the control structures of the kernel,
e.g., data requests and function calls.

The results also show that the double buffering
strategy hides the communication latency. The total
number of cycles that the cores were stalled waiting
for data from memory accounts only for 0.4% of the
total running time, on average. As subsequent frames
can be overlapped, the data communication influences
only in the latency for the first results.

Part of the speedup is due to the mechanism re-
quired to process scalar values in the SPE, which in-
troduces overhead. However, this overhead cannot

be measured in the present version of the simulator.
Futhermore, due to this feature of the SPE, a com-
parison with other SIMD implementations on other
platforms is not possible. Results of DF implementa-
tions on processors with SIMD execution units can be
found in [9] and [4].

Experimental results, using hardware counters,
show that the speedup of the SIMD implementation
on the SPE compared with the scalar version on the
PPE is 30%. However, this needs futher investiga-
tion, because the used methodology does not present
accurate results.

This experiment shows that for video processing the
SIMD implementation on the SPE can have good per-
formance improvement over a scalar implementation.
The overall speedup is considerable and pays off the
extra effort of the SIMDmization of the code. The
speedup of 3.1 is a good result, especially considering
the high adaptability of the filtering process and the
high overhead required by the SIMD processing, such
as transposing and data packing and unpacking.

VI. CONCLUSIONS

This work presented the H.264 Deblocking Filter as
a case study of the video filtering on the Cell Broad-
band Engine processor. An overview of the Cell pro-
cessor and of the DF module of the video standard
were presented. The DF kernel of the H.264 standard
was implemented on the SPEs of the processor.

The kernel was implemented using SIMD instruc-
tions and performance was measured using the IBM
Cell Simulator. Results show that approximately one
third of the processing time of the SIMD version is
required for transposition and packing and unpacking
of data. Despite this SIMD overhead and the high
adaptability of the kernel, the SIMD version of the
kernel is 3.1 times faster than its scalar version, both
running on the SPEs. This experiment shows that
for video processing the SIMD implementation on the
SPE can have good performance improvement over
the scalar implementation.

As future work we plan to compare the performance
of the PPE and SPE versions of the DF. Currently we
are replacing the DF of the H.264 decoder of FFM-
PEG by our modified version and porting it to Cell
processor.

ACKNOWLEDGMENT

This work was supported by the European Com-
mission in the context of the SARC integrated project
#27648 (FP6).

(1]

2l

5]

(7l
(8]

(9]

REFERENCES

T. Wiegand, G. Sullivan, G. Bjntegaard, and A. Luthra,
“Overview of the H.264/AVC Video Coding Standard,” Cir-
cuits and Systems for Video Technology, IEEE Transactions
on, vol. 13, no. 7, pp. 560-576, 2003.

J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and
D. Shippy, “Introduction to the Cell multiprocessor,” IBM
Journal of Research and Development, vol. 49, no. 4, pp.
589-604, 2005.

M. Gschwind, H. Hofstee, B. Flachs, M. Hopkins, Y. Watan-
abe, and T. Yamazaki, “Synergistic Processing in Cell’s
Multicore Architecture,” IEEE Micro, vol. 26, no. 2, pp.
10-24, 2006.

X. Zhou, E. Li, and Y. Chen, “Implementation of H.264
Decoder on General-Purpose Processors with Media Instruc-
tions,” in SPIE Conf. on Image and Video Communications
and Processing, Jan, 2003, pp. 1-800.

M. Alvarez, E. Salami, A. Ramirez, and M. Valero, “A Per-
formance Characterization of High Definition Digital Video
Decoding Using H.264/AVC,” in Workload Characterization
Symposium, 2005. Proceedings of the IEEE International,
2005, pp. 24-33.

P. List, A. Joch, J. Lainema, G. Bjntegaard, and M. Kar-
czewicz, “Adaptive Deblocking Filter,” Clircuits and Sys-
tems for Video Technology, IEEE Transactions on, vol. 13,
no. 7, pp. 614-619, 2003.

“The FFmpeg Libavcoded.” [Online]. Available:
http://fmpeg.mplayerhq.hu/

“IBM Full-System Simulator for the Cell Broad-
band Engine Processor.” [Online]. Available:
http://www.alphaworks.ibm.com/tech/cellsystemsim

J. Lee, S. Moon, and W. Sung, “H.264 Decoder Optimiza-
tion Exploiting SIMD Instructions,” in Clircuits and Sys-
tems, 2004. Proceedings. The 2004 IEEE Asia-Pacific Con-
ference on, vol. 2, 2004.

