
Automatic hardware generation for the Molen
reconfigurable architecture: a G721 case study

Dimitris Theodoropoulos Yana Yankova Georgi Kuzmanov Koen Bertels
Computer Engineering Lab, Delft University of Technology,

P.O. Box 5031, 2600 GA Delft,The Netherlands
email: D.Theodoropoulos@tudelft.nl

Abstract— The advantages of the reconfigurable technol-
ogy in terms of performance have been widely recognized.
However, programming reconfigurable systems and design-
ing hardware accelerators for them is not a trivial task. The
Molen paradigm provides an easy to use approach to couple
a General Purpose Processor (GPP) with custom designed
reconfigurable accelerators both at program level and at
hardware design level. In this case study, we illustrate the
entire design flow to demonstrate how one can use the Delft-
Workbench Automated Reconfigurable VHDL Generator
(DWARV) tool, the Molen compiler and the Molen recon-
figurable co-processor to accelerate a C application code in
hardware. As a case study application, the G721 audio en-
coder is used. The implementation platform is a Xilinx Vir-
texII Pro XC2VP30-7 FPGA, which integrates two PowerPC
405 processors. The experimental results obtained after em-
ploying the described design flow suggest an overall applica-
tion speedup of 2.7 times over a pure software implementa-
tion.

Keywords— Reconfigurable processors, FPGA, Molen
paradigm, Automatic HDL generation

I. INTRODUCTION

Over the last decade, Field Programmable Gate Arrays
(FPGAs) became very popular, due to their capability
of combining software flexibility with hardware perfor-
mance. In addition, although today’s microprocessor chips
are becoming faster and integrate more than one CPU
cores, still there are application areas (signal processing,
multimedia) that can benefit from hardware accelerators.
However, designing these accelerators and exploiting the
FPGA advantages, requires the developer to understand in
detail the software and hardware design concept. There-
fore, tools and workbenches that assist the designers in the
non-trivial development process are necessary.

One such tool chain is the Delft Workbench [2]. It is a
semi-automatic tool platform targeting the Molen poly-
morphic organization [8], [6] and supporting the Molen
programming paradigm [7]. The main idea is to automate
as much as possible the design exploration and the final
development process. More specifically the Delft Work-
bench research emphasizes on:

• Code profiling and cost modeling
• High level application graph transformation
• Re-targetable compilation
• VHDL generation

In this case study, we demonstrate how an application can
be mapped to a polymorphic processor, using the tools in
the Delft Workbench chain. More specifically, the G721
audio encoder application is first profiled and then acceler-
ated, by mapping its most computational parts in hardware.
An overall application speedup of 2.7 times over software
execution is observed. Moreover, the designs providing
this speedup were generated within seconds.

The remainder of the paper is organized as follows:
Section II briefly describes the Molen organization, the
DWARV toolset [9] and the Molen Compiler [5]. Sec-
tion III depicts in detail the entire process of how one can
use this framework to accelerate a software application in
hardware, using as a case study the G721 audio encoder.
The obtained results are also presented in Section III. Sec-
tion IV concludes the paper.

II. BACKGROUND

In this section, we briefly describe the Molen organization
and the tools that are used during the design process.

A. The Molen organization

The Molen paradigm is used to speedup an application’s
execution by implementing its most critical functions as
hardware accelerators, referred to as Custom Computing
Units (CCUs). The MOLEN organization is depicted in
Fig. 1. The main parts are the core processor (PowerPC in
this case study), the reconfigurable co-processor (RP) and
the Arbiter. The GPP’s Instruction Set Architecture (ISA)
is extended, in order to control the hardware accelerators
(Reconfigurable Instructions - RI). The Arbiter fetches the
application’s instructions from the main memory. It par-
tially decodes each one of them and checks whether it be-
longs to the standard or to the extended ISA and arbitrates
them to the corresponding processor.

Fig. 1. The Molen organization.

#pragma call_fpga ArrayCopy
int CCU_ArrayCopy(int* A, int* B)
{

}

int main()
{
 int X[16], Y[16];

 res = CCU_ArrayCopy(X,Y);

}

XREG
register file

CCU

... ...

... ...

X

Y

res

32 bits

data memory

... ...

... ...

X[0] X[1]

X[2] X[3]

X[15]X[14]

Y[0] Y[1]

64bits (2x32bits)

... ...

... ...

Y[14] Y[15]

Fig. 2. Exchanging data between the GGP and the CCU.

The data transfer between the GPP and the RP is per-
formed through exchange registers (XREG), organized in
a register file. Fig. 2 gives an example of data exchange
through the XREGs. The pragma annotation is for the
Molen compiler to recognize which function will be im-
plemented in hardware. During the program compilation,
the memory addresses of X and Y are stored to the XREGs
defined by the user before compilation. The GPP starts
the program execution. When the Arbiter detects an RI
it will send the appropriate reconfigurable microcode (ρµ-
code) address to the ρµ-code unit. The latter contains the
ρ-control store memory for ρµ-code storage. The ρµ-code
unit is responsible for reading the microcode address and
subsequently fetching the respective CCU’s ρµ-code. This
code initiates the execution of the addressed CCU. In the
same time, the arbiter stalls the GPP. The CCU then reads
the XREGs, which point to the address of X and Y in the
data memory. When the CCU completes its computations,
the returned value res is stored back to an XREG defined
by the user prior to the compilation. The Arbiter detects
that the CCU has finished and resumes the GPP. As the
program execution is continued, the returned value is read
and used.

The above example suggests that for every function imple-
mented in hardware, as many input XREGs as the func-
tion’s input parameters are used. If there is also a return
value, an additional output XREG is allocated. As men-
tioned before, the XREGs allocation is specified just prior
to the application compilation.

B. Design Flow

In this case study, the process of mapping an application
to the polymorphic machine organization, described in the
previous section, is divided into seven steps:

1. Profiling
2. Decision Making on HDL Generation
3. VHDL Generation (DWARV)
4. CCU Module Assembling
5. Compilation (MOLEN Compiler)
6. Synthesis and Bitstream Generation
7. Execution

Each of the above steps is described in more details in the
case study context of Section III.

Two tools of the DelftWorkbench, namely the DWARV
tool set and the MOLEN compiler, are used in the mapping
process. The automated hardware generation in Step 3 is
performed by the DWARV tool set, described in more de-
tails in Section II-C. The The MOLEN compiler, presented
in Section II-D, performs the compilation in Step 5.

C. DelftWorkbench Automated Reconfigurable VHDL
Generator (DWARV) Toolset

The DWARV organization is depicted in Fig. 3. The in-
put is C code with pragma annotations that specify the
code parts to be implemented in hardware. The C file goes
through the DFG (Data Flow Graph) Builder, which trans-
lates it to a Hierarchical Data Flow Graph (HDFG). This
graph consists of simple and compound nodes. The first
represent arithmetic and logic operations, plus register and
memory transfers. The latter are for-loops in the input
code. The edges of the graph represent the data dependen-
cies and the precedence operations order. The output of
the DFG Builder is a serialized in a binary format HDFG
for each annotated function in the input code.
In the ”Hardware Description” file, the user can specify
the following:

i. XREG file and data memory word size
ii. XREG file and data memory address size

iii. XREG file and data memory access time in clock
cycles, assuming a 10 ns period

iv. big or little endian format
v. burst mode for both data memory and XREGs

vi. C data type size

vii. The address of the region in the XREG file, allocated
for the I/O parameters of the translated function

The HDFG file is then passed as an input to the VHDL
generator. The latter performs As Soon As Possible
(ASAP) scheduling on the input graph considering the
memory and XREG file latency. The generated VHDL de-
sign is FSM based and utilizes the CCU interface. The
latter allows mapping of the generated designs as Molen
co-processors.

Builder
DFG Hardware

Description*.c

*.dfg

VHDL
Generator

*.vhd

Fig. 3. The DWARV toolset.

D. The Molen Reconfigurable Compiler

Fig. 4 illustrates the Molen compiler interfaces. The in-
put of the compiler is pragma-annotate C code and a hard-
ware configuration file.The pragma annotation identifies
the functions that are selected for hardware implementa-
tion. The configuration file contains the XREG addresses
for the input and output function parameters. In addition,
the SET and EXECUTE ρµ-code addresses for each func-
tion are specified.

*.c

*.elf

Configuration
Hardware

Script
Linker

Compiler

*.s

MOLEN

Linker
Native GPP

Fig. 4. The Molen compiler overview.

The compiler replaces the invocations of the pragma-
annotated functions with the corresponding polymorphic
instructions using the addresses specified in the configu-
ration file. It also generates the necessary instructions for
moving the parameters and the return value to and from
the XREGs.

The output of the compiler is an assembly file that is pro-
cessed by the GPP native linker. As an additional input
the linker accepts a linker script, where the architecture
parameters such as memory allocation for instruction and
data are specified. The output is an *.elf file. This is a bi-
nary data file that contains an executable CPU code image.

III. G721 CASE STUDY

In this section the entire process of mapping an application
to a polymorphic processor is illustrated. While analyzing
each step, it is also described how it is applied to the case
study application. The obtained results after the applica-
tion execution are also reported.

A. Experimental Setup

The G721 audio encoder from the MediaBench bench-
mark suite [4] is selected as a case study application. The
prototyping platform is an offline version of the MOLEN
polymorphic processor prototype. The prototype is im-
plemented on Xilinx Virtex II Pro XUP board, xc2vp30-
7ff896 device. The general purpose processor is Pow-
erPC 405 (PPC), operating at 300MHz. The prototype al-
lows implementation of up to 64 CCUs with operating fre-
quency of 100MHz. The synthesis of the generated CCUs
and the subsequent integration with the MOLEN proto-
type is performed within the Xilinx ISE 8.1 design envi-
ronment. The compilation of the application, the genera-
tion of the CCU designs, and the synthesis and assembling
of the designs are performed under Fedora Core 4 (2.6.14-
1) Linux on AMD Athlon 64 Processor 3200+ with 2GB
RAM.

The evaluation of the DelftWorkbench tool chain is based
on two criteria. The first criterion is the runtime of the
tools in the tool chain. These times are measured with the
Linux time utility and they are reported in seconds. The
second criterion is the achieved performance improvement
of the case study application. This improvement is mea-
sured by executing the pure software and the hybrid soft-
ware/hardware implementation of the case study applica-
tion. The run times of the application for both implemen-
tations are measured using the internal PowerPC timer and
reported in PowerPC cycles. The used timer is a counter
that increments at 300MHz frequency. For each measure-
ment, the timer base register is initialized with 0 and read
at the end of the execution.

B. Design Flow

Fig. 5 depicts the flow of mapping an application to the
polymorphic processor. This process is divided into seven
steps, explained below.

����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

*.c

Assembling as
CCU Module

Available IP

Highly Critical

Manual
Design

Automated
Generation
(DWARV)

Library
IP

Compiler
MOLEN

Execution

*.bit

Synthesis and
Assembling

*.elf

*.vhd

1
2

3

4

5

6

7

Profiling and
Partitioning

yes

no

no

yes

Fig. 5. The entire design flow.

STEP 1. Profiling: At the first step, the C application is
profiled and the most time consuming functions are identi-
fied. In the current experiments, the profiling is performed
at two stages. First, the application is profiled with the
GNU gprof [3] dynamic profiler under Montavista Linux
2.4.20 on Xilinx ML 310 board (PowerPC 405). As a re-
sult of this profiling an ordered list of the execution per-
centage for each function is generated. The second stage
of the profiling is carried on the execution platform. At
this stage, the actual execution time percentage of the top
most kernels is derived. To compute this percentage, the
application and the kernels execution times are measured,
using the PPC timer, in separate runs to avoid skewing of
the results due to timer overhead.

For the considered application, the dynamic profiling iden-
tified two critical functions, namely fmult and update. In
order to measure the execution times of these functions on
the execution platform, a wrapper function for each kernel
was created, as shown in the example below:

/* kernel body moved to a new
function with all global
data passed as parameters */

static
int fmult_in(int an, int srn,

short power2[])
{
...
}

/* original function used as
a wrapper */

int fmult(int an, int srn)
{

int res;
/* timer base register (TBR)

initialization */
init_timer();
res = fmult_in(an, srn, power2);

/* read and print the TBR value*/
read_timer();
return res;

}

The wrapper is created with the original function signa-
ture. The body of the original function is moved to a func-
tion with modified signature. In the wrapper function the
kernel function is called. Prior to the kernel call, a timer
initialization function is invoked (init timer()). Im-
mediately after the kernel call, a routine (read timer)
that reads the timer value and prints it to the standard out-
put is placed.

The wrapping of the kernels serves one more goal.
Namely, in this way the application is made compliant
to the requirement of the tool chain that all data accessed
from the hardware accelerated function have to be passed
as parameters to this function. In other words, no global
data may be accessed from within the accelerated func-
tions. In the example above, the original fmult function
accesses the static global array power2. In the restruc-
tured code, this array is passed as a parameter to the kernel
from the wrapper function.

After the application is restructured, it is compiled and ex-
ecuted on the prototyping platform. The obtained profile
is shown in Table I. The second column of the table shows
how many times the corresponding function was invoked.
The third column reports the computed percentage of the
application execution time spent in the respective function.
As it can be observed from the presented example above,
the recorded execution time includes also the time neces-
sary to pass the function parameters and to read the return
value. The forth column of the table shows the maximum
overall application speedup that can be achieved according
to the Amdahl’s law [1]. The last row of the table reports
the sum of the kernels’ percentage and the theoretical ap-
plication speedup if both kernels are executed in zero cy-
cles.

TABLE I
G721 APPLICATION PROFILE

Function
name

Times called Percentage Speedup
Limit

fmult in 124,080 53.62% 2.16
update in 15,510 27.57% 1.38
combined - 81.19% 5.32

STEP 2. Decision Making on HDL Generation: Af-
ter the most critical kernels are identified, it is decided
how the corresponding hardware implementation will be
derived. Three possible approaches are considered. If the
identified kernel function is available as an IP library core,

it is instantiated from there. Otherwise, the correspond-
ing design is either developed manually or generated by
DWARV. The decision for manual or automated genera-
tion is based on how critical is the selected kernel and on
the current stage of the application design cycle. If the ap-
plication development process is still in the design space
exploration phase, automated generation is preferred as it
is much faster. If the development process is in the fi-
nal (release) stage, manual implementation is considered
if the previous design stages have shown that the particu-
lar kernel is highly critical and the automatically generated
design cannot meet the design requirements.

STEP 3. VHDL Generation: Prior to the automated
VHDL generation, the selected functions for hardware
generation are annotated with #pragma to dfg. In addi-
tion, the allocated for each function XREGs are specified
in the DWARV hardware configuration file.

For the kernels in the case study application, the follow-
ing XREGs allocation is performed: for update in func-
tion the XREGs at address 0x56 to 0x68, and for fmult in
function the XREGs at address 0x69 to 0x6C. This allo-
cation is specified in the config.v configuration file as
shown below:

** fmult_in
xreg_start_address = 069

** update_in
xreg_start_address = 056

It can be observed that only the first address of the allo-
cated registers range is specified. The tools in the Delft-
Workbench tool chain require all function parameters to be
mapped to a continuous section of the XREG file. There-
fore, it is not necessary the addresses of the registers allo-
cated for the rest of the parameters to be specified. Another
observation that should be made, is that there is no explicit
allocation of an XREG for the return value of the fmult in
function. The reason is that DWARV currently maps the
return value to the XREG that immediately follows the in-
put parameters’ XREGs. In the particular case, the return
value will be mapped to address 0x6C in the XREG file.

After the necessary configuration options are specified, the
designs for the annotated functions are generated. The
DWARV execution times are given in the first two rows
of Table II. As both functions are located in one C file,
the corresponding *.dfg files are generated in a single
run of the DFG Builder. The DFG Builder generates
separate *.dfg file for each annotated function, which
are processed in separate runs of the VHDL Generator.
Therefore, the reported VHDL Generator time in the ta-
ble is the sum of the times recorded for the processing of
fmult in.dfg and update in.dfg files.

TABLE II
COMPILATION AND SYNTHESIS TIMES

Tool name Run time, sec
DFG Builder 14.515
VHDL Generator 0.697
XST 263.341
Assembling 869.169

STEP 4. CCU Assembling: After the designs for each
kernel are derived, the corresponding ρµ-code addresses
are determined and stored in the ρµ-code memory. Fig. 6
shows each accelerated function’s CCU connection with
the XREGs, data memory, ρµ-code memory and the Ar-
biter. The ρµ-code memory currently is implemented as
a lookup table that gives the correspondence between the
CCU address encoded in the EXECUTE instruction and the
corresponding CCU code. The encoded address serves as
an index in the ρµ-code memory. The ρµ-code stored at
that address is used to select through the de-multiplexer
the corresponding CCU.

Fig. 6. VHDL design assembly and connection with the Molen
infrastructure.

The de-multiplexer is described in a pre-prepared VHDL
design. This design is instantiated for each application and
serves as a top module in the final VHDL design. The in-
stantiation comprises of instantiation of the CCUs designs
and specification of the invocation code in the contained
de-multiplexer template. This is illustrated in the example
below:

architecture Behavioral of CCU is
component FMult
Port(
...);
end component;

component Update
Port(
...);
end component;
...
process
begin
...
if start_op=’1’ then

check_s<=’1’;
end if;

if check_s=’1’ then
--initiate fmult execution
if (MIR(1)=’1’) then

start_op_FMult_s<=’1’;
end if;
if (MIR(0)=’1’) then

start_op_update_s<=’1’;
end if;
check_s<=’0’;

end if;
...
end process;
...
FMult_i: FMult port map (

... ...
start_op => start_op_FMult_s,
... ...);

Update_i: Update port map (
... ...
start_op => start_op_Update_s,
... ...);

...
end Behavioral;

The generated designs for fmult in and update in are in-
stantiated as FMult and Update components. The up-
date in function is mapped to address 1 and the fmult in
function is mapped to address 2. Currently, one-bit posi-
tional encoding of the address is used as a ρµ-code. There-
fore, if the first bit of the MIR word is set to 1, the update
kernel is initiated. If the second bit is set to 1, the fmult
kernel is invoked.

STEP 5. Compilation: Prior to the compilation, the se-
lected for hardware implementation functions are anno-
tated with #pragma call fpga operation name. The allo-
cated XREGs for the function parameters and the defined
ρµ-code execution addresses are specified in the configu-
ration file. The argument of the pragma is a string identifier
that relates the annotated function with the corresponding
entry in the compiler configuration file. An example of the
annotations and the configuration file entries for the case
study application are shown below:

/* annotation */
#pragma call_fpga fmult
static

int fmult_in(int an, int srn,
short power2[])

{
... ...

}

/* configuration file */
Pragma Name fmult
Input XR 69
Output XR 6C
EXEC address 2

As it can be seen from the example, the pragma argument
can differ from the function name. The allocated previ-
ously XREG addresses for the function’s parameters and
return value are specified in the XRin and XRout fields,
respectively. Again, the input parameters mapping is spec-
ified only with the starting address of the allocated sec-
tion in the XREG file. Nevertheless, unlike the DWARV’s
configuration file, the allocated for the return value XREG
address has to be explicitly specified.

After all necessary configuration parameters are set, the
application is compiled. In the current experiments, an on-
line version of the MOLEN compiler was used. Hence, it
was not possible to distinguish between compilation and
network transfer time. Therefore, compilation time results
are not presented.

STEP 6. Synthesis and Bitstream Generation: After
the necessary VHDL designs and the elf file are generated,
they are merged with the MOLEN prototype and the final
bitstream is generated. For that purpose, third-party CAD1

tools are used. In the current experiments, the designs are
synthesized and assembled in Xilinx ISE 8.1 design envi-
ronment.

The assembling is performed at two steps. First, the de-
signs of the de-multiplexer and the CCUs are synthesized.
The synthesis estimation of the necessary resources and
the execution frequency for each kernel, as well as for the
entire CCU design are reported in Table III. It can be ob-
served, that although automatically generated, the designs
occupy only 30% of the available area. This allows their
simultaneous implementation in the hardware. In addi-
tion, the estimated frequency shows that the timing con-
straints (100MHz CCU operating frequency) are not vi-
olated. Hence, it is possible the automatically generated
designs to be used as hardware accelerators.

The time, necessary for the designs to be synthesized is
reported in the third row of Table II. It can be observed
that the time, necessary the designs to be generated is only
a fraction (∼ 6%) of the time, necessary for their synthesis.

1Computer Aided Design

TABLE III
SYNTHESIS ESTIMATES

Kernel Slices Flip Flop LUT MULT18X18 Frequency, MHz
update 2779 (20%) 2939 (10%) 4298 (15%) 0 169.926
fmult 1029 (7%) 835 (3%) 1769 (6%) 2 (1%) 129.659
combined 4142 (30%) 4260 (15%) 6709 (24%) 2 (1%) 126.062
Device Capacity 13696 27392 27392 136 N/A

This shows that the DWARV toolset is able to generate fast
designs that are within the resource and timing limits.

After the designs are synthesized, they are merged with the
MOLEN infrastructure. The adopted modular implemen-
tation scheme is depicted in Fig. 7. CCU is the design that
integrates all the accelerators, CLK GEN is the clock gen-
eration module, ρµ-code memory is the memory for stor-
ing the ρµ-code and MOLEN is the pre-synthesized Molen
infrastructure. After the assembling of the separate mod-
ules, the generated *.elf file is stored in the prototype’s
program memory and the final bitstream is generated. The
time, necessary for the modules to be assembled is shown
in the last row of Table II.

CCU CLK_GEN codeρµ−
memory

MOLEN
(synthesized)

*.bit
Final
Design

Assembling

Fig. 7. Modular implementation and final design generation.

STEP 7. Execution: After the bitstream is derived, the
application is executed on the prototyping platform. The
recorded execution times are reported in Table IV. These
times are measured in PowerPC (PPC) cycles in the same
way as described in Step 1. The third row of the table re-
ports the obtained overall application speedup. The last
row shows how close is the achieved speedup to the the-
oretical limit as constituted by the Amdahl’s law (see Ta-
ble I). The obtained speedup is only 50% of the theoretical
maximum. Nevertheless, the hardware kernels that pro-
vided this speedup were generated within seconds. This al-
lows for fast evaluation whether the hardware implementa-
tion of a given function would be beneficial. If the perfor-
mance improvement provided by the generated designs is
not sufficient, manual implementation of the correspond-
ing kernels can be considered.

TABLE IV
APPLICATION PERFORMANCE IMPROVEMENT.

Software Execution, PPC Cycles 387,402,570
Hardware Execution, PPC Cycles 143,084,730
Speedup 2.71
Efficiency 50.93%

IV. CONCLUSIONS

In this paper, the automated mapping of an application
to a polymorphic platform was illustrated. The MOLEN
modular design allowed easy integration of the custom
accelerators. The evaluated tools provided support on
each step in the design cycle. The MOLEN compiler al-
lowed standard compilation flow of the application. The
hardware/software interface code was automatically in-
serted and the details remained invisible for the user. The
DWARV toolset generated designs that were within the re-
source and timing limits. The experimental results sug-
gested that the generated designs provided overall applica-
tion speedup of 2.7 times. The obtained speedup was mod-
est compare to the speedup that could be achieved with
manually crafted designs. Nevertheless, the DWARV de-
signs were generated in a couple of seconds, while several
men months would be necessary for the development of a
highly optimized manual design.

V. ACKNOWLEDGEMENTS

This work was partially sponsored by hArtes, a project
(IST-035143) of the Sixth Framework Programme of the
European Community under the thematic area Embed-
ded Systems; the Dutch Technology Foundation STW, ap-
plied science division of NWO and the Technology Pro-
gram of the Dutch Ministry of Economic Affairs (project
DCS.7533); and the RCOSY project (DES-6392) financed
by the Dutch Science Foundation (STW) and the Associ-
ated Compiler Experts (ACE).

REFERENCES

[1] G. M. Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilities. In Proceedings of AFIPS
1967 Spring Joint Computer Conference, pages 483–485, 1967.

[2] Delft Workbench, Faculty of Computer Engineering, TU Delft.
http://ce.et.tudelft.nl/DWB/.

[3] S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof: a call
graph execution profiler. In SIGPLAN Symposium on Compiler
Construction, pages 120–126, 1982.

[4] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and Commu-
nicatons Systems. In International Symposium on Microarchitec-
ture, pages 330–335, 1997.

[5] E. M. Panainte, K. Bertels, and S. Vassiliadis. The Molen Compiler
for Reconfigurable Processors. ACM Transactions in Embedded
Computing Systems (TECS), 6, Feb. 2007.

[6] S. Vasiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov,
and E. M. Panainte. The Molen Polymorphic Processor. IEEE
Transactions on Computers, 53(11):1363 – 1375, Nov. 2004.

[7] S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, and E. M. Panainte.
The Molen programming paradigm. Systems, Architectures, Mod-
eling, and Simulation, 3133:1 – 10, July 2003.

[8] S. Vassiliadis, S. Wong, and S. D. Cotofana. The Molen ρµ-coded
Processor. Field-Programmable Logic and Applications, 2147:275
– 285, Aug. 2001.

[9] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjiev, J. Lu,
and S. Vassiliadis. DWARV: DelftWorkbench Automated Recon-
figurable VHDL Generator. In Proceedings of the 17th Interna-
tional Conference on Field Programmable Logic and Applications
(FPL07), Aug. 2007.

