
Matrix Multiplication Implementation in the MOLEN
Polymorphic Processor

Wouter M. van Oijen Georgi K. Kuzmanov
Computer Engineering, EEMCS, TU Delft, The Netherlands, http://ce.et.tudelft.nl

Email: {w.m.vanoijen, g.k.kuzmanov}@tudelft.nl

Abstract— Floating-point matrix multiplication is ar-
guably the most important kernel routine in many scien-
tific applications. Therefore, its efficient implementation is
crucial for the overall performance of any computer system
targeting scientific computations. In this paper, we pro-
pose a holistic solution to accelerate matrix multiplication
on reconfigurable hardware using the MOLEN polymor-
phic processor. The MOLEN polymorphic processor con-
sists of a general purpose processor (GPP) tightly coupled
with a reconfigurable coprocessor. The latter can be used
to implement arbitrary functions in hardware using custom
computing units (CCUs). We implemented matrix multi-
plication as a CCU for the MOLEN processor and realized
it on real reconfigurable hardware. The software interface
is defined by the MOLEN programming paradigm, which
enables trivial integration of the hardware accelerator at
the application level. A matrix multiplication is initiated
on the CCU by a MOLEN execute instruction and the re-
quired operation parameters are transferred through ex-
change registers. For our experiments, we employ Xilinx
Virtex-II Pro technology. An XC2VP30 device proved to
be large enough to contain the MOLEN processor infras-
tructure and a CCU consisting of 9 processing elements,
running at 100 MHz. A benchmark application on this
system closely approaches the theoretically maximum at-
tainable performance of 1.8 GFLOPS/s. Furthermore, we
analyzed the performance with different design parameters
and problem sizes. The proposal is clearly scalable and due
to its polymorphic nature, it allows optimal configurations
in different application contexts and for various chip sizes.

Keywords—Field Programmable Gate Arrays, Floating
point arithmetic, Matrix multiplication, Reconfigurable
architectures.

I. Introduction

FL oating point matrix multiplication is an impor-
tant kernel in many scientific applications. For

example, one very popular scientific problem, which
extensively relies on matrix multiplications is solv-
ing systems of linear equations. In this work, we
consider a version of the Basic Linear Algebra Sub-
programs (BLAS) [1], where most of the algorithms
are rewritten to employ predominantly the GEneral
Matrix Multiply (GEMM) routine [2]. Apparently, a

faster implementation of this routine can improve the
overall performance of the BLAS and thus it could
potentially speedup many scientific applications that
make use of it. In this paper, we address a recon-
figurable coprocessor extension of a general purpose
processor (GPP) to accelerate general matrix mul-
tiplication. A common shortcoming of many exist-
ing reconfigurable hardware proposals, however, is the
complex programming interface. To overcome this
shortcoming, we consider the MOLEN programming
paradigm, which provides a clear hardware/software
interface and enables software applications to utilize
the hardware matrix multiplication accelerator in a
simple and efficient way. Therefore, we have imple-
mented our matrix multiplier as a custom computing
unit (CCU) for the MOLEN processor, and tested the
performance on a real hardware prototype. Our de-
sign is based on the multiplier, proposed in [3] with
the main difference that we consider a tightly coupled
organization, contrary to [3], where a message pass-
ing approach was adopted. The main contributions
of this paper are the implementation and experimen-
tation details provided in addition to the main pro-
posal of [4]. We implemented the MOLEN polymor-
phic processor running at 300 MHz, with the matrix
multiplier custom computing unit running at 100 MHz
on an XC2VP30–6 FPGA. For this chip, the CCU
could incorporate 9 processing elements. We provide
experimental results on the MOLEN processor proto-
type, and measured the sustained matrix multiplica-
tion performance (including all software and hardware
overheads, such as communication, synchronization,
calling overhead, etc.). Our experimental results sug-
gest that:
• The sustained performance for this system is up to
1.79 GFLOPS, which is 99.2% of the theoretical peak
performance, calculated to be 1.8 GFLOPS.
• When compared to non-optimized code, e.g. the
reference version of the BLAS, our design outperforms
modern processors such as Pentium 4 or Athlon 64 by
up to 36X for large problem sizes.

The remainder of this paper is organized as fol-

242

lows. In section 2, we provide background informa-
tion on the block matrix multiplication algorithm and
the MOLEN polymorphic processor. Section 3 pro-
vides implementation details on our design. In section
4, we discuss our experimental results from the real
hardware implementation. Section 5 provides a com-
parison with related works. Finally, our conclusions
are presented in section 6.

II. Background

A. Block Matrix Multiplication Algorithm

The GEMM routine of the BLAS implements the
matrix operation

C ← αAB + βC (1)

where A, B and C are matrices of dimensions m× k,
k × n and m × n, respectively. The variables α and
β are scaling factors. In this paper, without loss of
generality, we consider the operation C ← AB + C,
i.e. ignoring the scaling factors.

In order to perform a matrix multiplication on the
FPGA, data should be exchanged between the main
external memory and the on-chip memory. Because
of the limited amount of on-chip memory resources,
large matrices can not be loaded completely into the
device. To deal with this problem, a block matrix mul-
tiplication algorithm is employed [3], and it is briefly
explained next.

The result matrix C is computed in blocks of Si×Sj

words. Each block is the product of Si rows of ma-
trix A and Sj columns of matrix B, as depicted in
Fig. 1. Blocks at the boundary may be smaller. The
algorithm in Fig. 2 is used to compute a block C’,
where A’, B’ and C’ are sub matrices of A, B and C,
respectively (the shaded parts in Fig. 1). This algo-
rithm can be efficiently implemented on a linear array
of processing elements, as proposed in [3]. Each value
of A or C is transferred to or from one PE only. Data
from matrix B is sent to all PEs, in order to compute
Si products in parallel using P processing elements.
The data from matrix A is loaded in column-major,
the data from B in row-major order. To improve data
reusability, each sub column of A is stored in a small
buffer. The sub rows of B are processed per element
so they don’t need to be stored in a buffer. Therefore,
the total on-chip memory requirement is Si × Sj + Si

words. Each PE has a buffer of Si/P words to store
values from A, and a buffer of SiSj/P words to store
values from C. The total communication cost for this
algorithm (assuming square matrices of N × N) is

(⌈
N
Si

⌉
+

⌈
N
Sj

⌉
+ 2

)
× N2 words. For more details on

the block-based matrix multiplication algorithm, the
interested reader is referred to [3].�������� ��������A
 B
 C

X
 =

Fig. 1. Example of the block matrix multiplication algo-
rithm, with m = n = k = 16 and Si = Sj = 4.

f o r i in 0 to Si−1
f o r j in 0 to Sj−1

load C’ (i , j)
f o r l in 0 to k−1

f o r i in 0 to Si−1
load A’ (i , k)

f o r j in 0 to Sj−1
load B’ (k , j)
f o r i in 0 to Si−1

C’ (i , j) := C’ (i , j) + A’ (i , l) ∗ B’ (l , j)
f o r i in 0 to Si−1

f o r j in 0 to Sj−1
s t o r e C’ (i , j)

Fig. 2. Pseudo code for the multiplication of one sub block.

B. The MOLEN Polymorphic Processor

Detailed comprehensive explanations of the MOLEN
polymorphic processor are given in [5], [6]. In this
section, we shall only discuss features that are imple-
mented in the MOLEN prototype [7] that we have
used and are relevant to our proposal.

The MOLEN polymorphic processor consists of a
general purpose processor, also called the core proces-
sor, and a reconfigurable coprocessor. An overview of
the organization is depicted in Fig. 3. The reconfig-
urable processor is used to implement arbitrary func-
tions in hardware in order to speedup applications.
A MOLEN reconfigurable operation is split into two
phases — set and execute. Set configures the CCU for
a particular operation, while execute, executes this
operation on the configured hardware. This opera-
tion is achieved through an extension of the instruc-
tion set, called polymorphic ISA. The MOLEN arbiter
performs partial decoding of the instructions. The
standard instructions are issued to the general pur-
pose processor. The polymorphic set and execute
instructions are redirected to the reconfigurable co-
processor. When an execute instruction is issued,

243

the CCU function is performed on the reconfigurable
processor.

Instruction

Memory

Data

Memory

Arbiter

Exchange Registers

(XREGs)

Custom

Computing Unit

(CCU)

rm
-code unit

Reconfigurable Processor
Core Processor

General

Purpose

Processor

(GPP)

Fig. 3. Structural overview of the MOLEN polymorphic
processor.

Communication between the GPP and CCU is
done using 32-bit Exchange Registers (XREGs) or the
shared data memory. The exchange registers are used
to pass function parameters and contain returned val-
ues. Larger amounts of data should be stored in and
processed from the shared data memory.

III. Design Description

A. Custom Computing Unit (CCU) Microarchitecture

To allow the integration of a design into the
MOLEN prototype [7], it has to adhere to the CCU
interface defined by the MOLEN architecture. For our
experiments, the CCU is implemented as a wrapper
for the general matrix multiplication core. The in-
terface overhead mainly consists of registers to store
the parameters, depicted in Fig. 4. The CCU con-
trol logic loads all parameters in the internal registers,
then starts the GEMM core unit. When the GEMM
core has completed the operation, the end signal of the
CCU is asserted by the control logic. The GEMM core
itself consists of a GEMM controller and a number of
processing elements. More implementation details on
the GEMM corecan be found in [4].

B. Processing Elements

The GEMM processing elements are the basic
building blocks of the matrix multiplier. Each PE
contains a floating-point multiply-add unit and two
buffers (see Figure 5). A memory switching scheme is
implemented in the buffers to allow overlapped com-
munication and computation. Multiple processing ele-
ments can be put together in a linear array, in order to
perform more floating-point operations concurrently.

Fig. 4. Structural overview of the CCU organization.

Further details on the PE organization can be found
in [3].

Buffer

A

Register B

Buffer

C

Floating-Point

Multiply-Add

Unit

clk

reset

wr_addr

wr_data

rd_addr

data_b

wr_addr

wr_data

rd_addr

rd_data

Fig. 5. Structural overview of a Processing Element.

All processing elements are controlled by the Host
Controller, although only the first PE receives its con-
trol signals directly from the controller. The other
elements get the signal from the preceding PE, with
one clock cycle delay. This allows the signals to be
propagated through the processing element without
reducing the maximum frequency. The advantage of
this linear array structure is that routing resources
scale linearly with the number of processing elements,
and that the length of the wires can be kept short
enough to achieve high frequencies.

When running in a polymorphic environment, the
number of PEs in the CCU can be configured dy-
namically via the set instruction. This capability, to-
gether with the scalability of the design, allows more
efficient utilization of the available reconfigurable re-
sources and their sharing with other accelerators.

244

C. Floating-Point Multiply-Add Units

The core of the matrix multiplier is the multiply-
add unit. This module performs the operation C ←
A × B + C. The operands are represented in the
double-precision (64-bit) IEEE-754 floating-point for-
mat [8]. Since computations with 64-bit floating-point
numbers are quite complex, the data path should be
pipelined to allow high clock frequencies. An overview
of the data path is depicted in Fig. 6. Note, that

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

53 x 53 bit

unsigned

multiplier

(5 stages)

shift

subtract / select max

add

compl.

Count LZ

shift
 subtract

round
 inc

MA
 MB

Significands
 Exponents

add

EA
 EB

EC
MC

compl.

shift

Fig. 6. The pipelined floating-point data path.

the special handling of zero is not shown in the figure.
The operands A and B are provided as input signals
during the first stage. The third operand is an address
for the local memory. This address is used in stage 3
to read operand C. In stage 11, the same address is
used to store the result. So, effectively, the product
A×B is added to the contents of a specified address
in the local memory.

Although this module is sometimes referred to as
“multiply-accumulate” unit, the basic operation it
performs is a multiply-add operation. Depending on
the controller that supplies the input signals, it could
be used for various applications. By repeatedly adding
products to the same address, a multiply-accumulate
operation can be performed. This is the operation
that is implemented as part of the matrix multiplica-
tion.

Since there are eight clock cycles between the read
and write of that memory location, a data hazard can
occur. The host controller prevents this from happen-
ing, by supplying new inputs with the correct timing.
To improve performance by reducing the number of

#pragma c a l l f p g a ccu dgemm
vo id ccu dgemm(l o ng m, l o ng n , l o ng k ,

doub le alpha , doub le ∗a , l o ng lda , doub le ∗b ,
l o ng ldb , doub le beta , doub le ∗c , l o ng l d c)

{
/∗ ac tua l so f tware implementation here , e . g . ∗/
i n t i , j , l ;
doub le sum ;
f o r (i = 0 ; i < m; i++)
{

f o r (j = 0 ; j < n ; j++)
{

sum = 0 . 0 ;
f o r (l = 0 ; l < k ; l++)

sum += a [lda ∗ i+l] ∗ b [ldb ∗ l+j] ;
c [l dc ∗ i+j] = alpha ∗sum + beta ∗c [ldc ∗ i+j] ;

}
}

}

Fig. 7. Example C source code of a (naive) dgemm imple-
mentation.

idle cycles, a reduction scheme such as in [9] could
also be employed.

D. Control Logic

The DGEMM controller is a key element of the ma-
trix multiplier. It realizes the interface between the
processing elements, the MOLEN infrastructure, and
the memory subsystem. The controller organization
is originally described in [4]. We just note that it is
optimized for high efficiency, not for low bandwidth.
Moreover, to save multiplier resources on the FPGA
and to increase the clock frequency of the controller,
all address calculations are done using additions only.

E. Software Interface

In software, the matrix multiplication can be viewed
as a normal function call. Our function prototype
closely resembles the dgemm1 routine of the BLAS.
The function has 11 parameters, with the following
meaning:
• a, b and c are the start addresses of the matrices.
• m, n and k are the matrix dimensions, as defined in
section II.
• alpha and beta are scaling vectors. Currently, our
hardware implementation supports only α ∈ {−1, +1}
and β ∈ {0, 1}.

The source code for a possible software implemen-
tation is given in Fig. 7. The #pragma statement
before the function definition tells the compiler that a
hardware implementation of this routine is available.

When the function is called in the MOLEN envi-
ronment, instead of executing the function specified

1dgemm = double-precision general matrix multiply

245

xreg0 ← m
xreg1 ← n
xreg2 ← k
xreg3 ← alpha (h i)
xreg4 ← alpha (l o)
xreg5 ← a
xreg6 ← lda
xreg7 ← b
xreg8 ← ldb
xreg9 ← beta (h i)
xreg10 ← beta (l o)
xreg11 ← c
xreg12 ← l d c
sync
fpga execute [ccu dgemm]

Fig. 8. MOLEN pseudo code for the dgemm routine.

by the C source code, the processor will execute func-
tionally equivalent code using MOLEN instructions.
This code copies the function parameters to exchange
registers and then executes the hardware operation on
the CCU. Example pseudo code for the same routine
for a MOLEN architecture is listed in Fig. 8.

IV. Experimental Results

We have implemented a test framework including
the proposed matrix multiplier design with multiple
processing elements in an XC2VP30–6 FPGA. This
device contains 13,616 slices and 136 embedded mul-
tipliers. Table I contains the number of processing
elements, the parameters Si and Sj , the resource us-
age (slices) and the frequency after place-and-route.
We specified a frequency of 100 MHz in the user con-
straints file, and the results indicate that this was
achieved for all our configurations. We succeeded
to fit 9 processing elements in this relatively small
FPGA device, resulting in a peak performance of
1.8 GFLOPS at 100 MHz. Synthesis results esti-
mated a maximum possible frequency of 134 MHz
for the largest configuration, which would deliver 2.4
GFLOPS on this device. We did not consider harder
design optimizations to reach higher frequencies, but
rather ran all our configurations at 100 MHz.

By extrapolating the results for a larger device such
as XC2VP125, we can safely predict a performance of
over 10 GFLOPS on a single FPGA obtained by 42
processing elements, running at 120 MHz.

We used a test application to measure the sustained
performance for matrix multiplications of different di-
mensions on a MOLEN processor prototype. Our
measurements include all overheads, such as calling

TABLE I
Implementation results (post place-and-route)

for the CCU with different number of

processing elements, at 100 MHz.

PEs Si Sj Slices Frequency

1 96 64 2844 101.092 MHz
2 96 64 4313 100.301 MHz
3 96 64 5726 100.321 MHz
4 64 64 7317 100.251 MHz
5 80 64 8964 100.271 MHz
6 96 64 10688 100.010 MHz
7 112 64 11843 100.241 MHz
8 64 64 12296 100.251 MHz
9 72 64 13429 100.050 MHz

overhead in software, synchronization between GPP
and CCU, and transferring the parameters to and
from the exchange registers. For square matrix mul-
tiplications, the results are plotted in Fig. 9. Clearly,
the sustained performance approaches peak perfor-
mance for large problems. The problem size for which
the real sustained performance is close enough to the
theoretical peak performance depends on the number
of PEs. For example, our measurements indicate that
with one processing element, 95% of the peak perfor-
mance can be sustained for n = 41. With 9 processing
elements, the same efficiency is achieved for n = 142.

V. Related Work

In the past, a number of matrix multiplication de-
signs for Field-Programmable Gate Arrays (FPGAs)
were proposed or implemented. Most papers only in-
clude simulation results or an evaluation of the theo-
retical peak performance and do not provide reports
of sustained performance on real hardware implemen-
tations. In [3], the authors proposed a matrix multi-
plier design that could potentially achieve up to 15.6
GFLOPS on a Virtex-II Pro XC2VP125 FPGA. How-
ever, as pointed out in [10], this numbers do not in-
clude any control overhead, and the sustained perfor-
mance in real hardware was not measured or precisely
evaluated. Also, the designers assumed that commu-
nication can be overlapped with computations, but
they did not mention the conditions for that, or what
performance can be potentially achieved under non-
optimal conditions. We shall compare our proposal
to the most important contributions according to our
best knowledge. A summary of the related art we
consider is presented below:

246

Fig. 9. Square matrix multiplication performance.

• In [11], a matrix multiplier design was proposed
with a peak2 performance of 8.3 GFLOPS on an
XC2VP125 device with an external bandwidth of 4.1
GB/s. However, that design only handles square ma-
trices of a limited, fixed size. For smaller matrices the
performance is lower because not all processing ele-
ments are used. For larger matrices, a block matrix
algorithm is required, resulting in large software over-
head. It is unclear how non-square matrices are pro-
cessed. The authors also indicate a data hazard, but
do not present a solution for this. Furthermore, their
floating-point units have a deep pipeline: 12 stages for
the multiplier and 21 stages for the adder. These is-
sues have a negative effect on the overall performance.
However, the overall performance, including software
overhead, is not discussed in the paper.
• In [12], the same authors present an improved ver-
sion of their design from [11]. The number of pipeline
stages was reduced to 8 stages for the multiplier and
11 stages for the adder. A new algorithm was pro-
posed that could handle matrix dimensions larger
than the number of PEs. Their design was imple-
mented on a Cray XD1 machine with an XC2VP50
FPGA. The device could incorporate 8 processing el-
ements running at 130 MHz for a peak performance of
2.1 GFLOPS. We estimate a peak performance of 5.0

2The authors of [11] refer to peak as to sustained performance,
but they use different definitions than ours.

GFLOPS for the same design on a XC2VP125 device.
• The authors of [10] proposed an FPGA-based Hi-
erarchical SIMD (H-SIMD) machine. They also em-
ployed a memory switching scheme to overlap com-
putations with communications. To test the effective-
ness of the design, a matrix multiplication was im-
plemented. Using commercial IP-cores from Quixilica
for the floating-point units, they were able to fit 16
processing elements — called nano-processors — in
an XC2V6000 FPGA, running at 148 MHz. They es-
timated that 26 processing elements running at 180
MHz would fit in an XC2VP125 device. This would
deliver a peak performance of 9.36 GFLOPS. Only
square matrix multiplications are considered, and the
matrices should be padded to a multiple of the block
size, which lowers the performance slightly.
• A complete implementation on real hardware is pre-
sented in [13]. The authors only provide performance
results for a 18-bit vector product implementation,
but also include synthesis results of the commercial
IP cores from Celoxica that are employed. Based on
the reported numbers, we estimate that in the most
optimistic case a peak performance of 3.4 GFLOPS
could be achieved on an XC2VP125 device.

Our proposal adopts and improves the process-
ing elements microarchitecture from [3], which is the
fastest design among the presented above. However,
we propose a tightly-coupled processor-coprocessor
architectural paradigm, which is fundamentally dif-

247

ferent from the proposed message passing commu-
nication interface, considered in [3]. We also note
that our design provides some functional and design
improvements of [3]. Last, but not least, our pro-
posal was evaluated on a real hardware prototype,
while the design, reported in [3] was evaluated through
simulations only without taking into account hidden
communication delays and implementation overheads.
Therefore, our experimental results suggest realistic
performance and implementation figures.

We also compared the performance of our design
with the performance of some contemporary general
purpose processors. We measured the performance of
three different platforms for the same problem sizes,
using reference code from the BLAS, translated into
C. Admittedly, this code is not very optimized, so
it suggests typical performance only without system-
dependent optimizations. Fig. 10 depicts a perfor-
mance comparison of our design with 1 to 9 processing
elements, against the following three general purpose
systems:
• AMD Athlon 64 X2 3800+ (“Windsor”) at 2.0 GHz
with 64 kB L1 data cache, 512 KB L2 cache and 1 GB
DDR memory
• Intel Pentium 4 (“Northwood”) at 2.8 GHz with 8
kB L1 data cache, 512 kB L2 cache and 1 GB DDR
memory
• VIA C3 (“Nehemiah”) at 1.0 GHz with 64 kB L1
data cache, 64 kB L2 cache and 256 MB DDR memory

All these systems indicated performance degrada-
tion for large matrix sizes. This is a consequence of
the complex memory hierarchy that modern proces-
sors have, more precisely, due to the limitations of
their caches. Optimized versions of the BLAS, such
as ATLAS [14] or the GotoBLAS [15] use a block ma-
trix algorithm with the block size tuned to match
the caches of the processor. Using such libraries, a
3.0 GHz Pentium 4 could sustain performance of 5.0
GFLOPS. However, using larger FPGAs, we can still
outperform such a highly optimized routine by a fac-
tor of 2. It is also worth noting that the computa-
tional capacity of the FPGAs is expected to increase
faster than that of general purpose processors [16],
[17], which will likely increase the advantage of our
proposal against future GPPs.

VI. Conclusions

In this paper, we proposed a design solution of the
general matrix multiplication problem based on the
MOLEN polymorphic architecture. A previously pro-
posed matrix multiplication design was incorporated

in a custom computing unit (CCU) of the MOLEN
polymorphic processor, and it was implemented on
real hardware. We exploited the tightly coupled
processor-coprocessor MOLEN paradigm in order to
obtain high performance. Moreover, we improved the
design of the processing elements in order to allow
their complete functionality at high clock frequencies
and low resource usage. A benchmark application
on the MOLEN processor was used to measure the
real matrix multiplication performance. Experimen-
tal results prove that our design is able to achieve
near-peak performance for reasonably large problems.
On the relatively small XC2VP30 FPGA, running at
100 MHz, we sustained 1.79 GFLOPS. Using a large
FPGA, sustained performance of over 10 GFLOPS
can be expected, thereby outperforming related art,
including highly optimized applications running on
state-of-the-art general purpose processors. Thanks
to the design scalability and the polymorphic nature
of the considered architecture, our proposal allows effi-
cient implementations in various application contexts
and optimal utilization of any available reconfigurable
resources.

Acknowledgment

We acknowledge Dr. Yong Dou for providing us
the design files of [3], which we utilized as starting
point for our work. This work was partially sup-
ported by the Dutch Technology Foundation STW,
applied science division of NWO; by the Technology
Program of the Dutch Ministry of Economic Affairs
(project DCS.7533); and by the European Commis-
sion in the context of the Scalable computer ARChi-
tectures (SARC) integrated project #27648 (FP6).

References

[1] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and
I. S. Duff, “A set of level 3 basic linear algebra subpro-
grams,” ACM Trans. Math. Softw., vol. 16, no. 1, pp.
1–17, 1990.

[2] Bo Kagstrom, Per Ling, and Charles van Loan, “Gemm-
based level 3 blas: high-performance model implemen-
tations and performance evaluation benchmark,” ACM
Trans. Math. Softw., vol. 24, no. 3, pp. 268–302, 1998.

[3] Yong Dou, S. Vassiliadis, G.K. Kuzmanov, and G.N. Gay-
dadjiev, “64-bit floating-point fpga matrix multiplication,”
in FPGA ’05: Proc. 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, New York,
NY, USA, 2005, pp. 86–95, ACM Press.

[4] G. Kuzmanov and W. M. van Oijen, “Floating-point ma-
trix multiplication in a polymorphic processor,” in Proc.
IEEE International Conference on Field-Programmable
Technology (ICFPT’07), December 2007.

[5] S. Vassiliadis, S. Wong, and S.D. Cotofana, “The

248

Fig. 10. Square matrix multiplication performance on MOLEN compared to general purpose processors.

molen ρµ-coded processor,” in in 11th International
Conference on Field-Programmable Logic and Applications
(FPL), Springer-Verlag Lecture Notes in Computer Science
(LNCS) Vol. 2147, August 2001, pp. 275–285.

[6] S. Vassiliadis, S. Wong, G.N. Gaydadjiev, K.L.M. Bertels,
G.K. Kuzmanov, and E. Moscu Panainte, “The molen
polymorphic processor,” IEEE Transactions on Comput-
ers, pp. 1363–1375, November 2004.

[7] Delft University of Technology, “The molen prototype,”
http://ce.et.tudelft.nl/MOLEN/Prototype/index.html.

[8] “IEEE standard for binary floating-point arithmetic.,” .

[9] Michael R. Bodnar, John R. Humphrey, Petersen F. Curt,
James P. Durbano, and Dennis W. Prather, “Floating-
point accumulation circuit for matrix applications,” fccm,
vol. 0, pp. 303–304, 2006.

[10] Xizhen Xu and Sotirios G. Ziavras, “H-simd machine: Con-
figurable parallel computing for matrix multiplication,” in
ICCD ’05: Proc. 2005 International Conference on Com-
puter Design, Washington, DC, USA, 2005, pp. 671–676,
IEEE Computer Society.

[11] Ling Zhuo and Viktor K. Prasanna, “Scalable and mod-
ular algorithms for floating-point matrix multiplication on
fpgas,” ipdps, vol. 01, pp. 92a, 2004.

[12] Ling Zhuo and Viktor K. Prasanna, “Scalable and mod-
ular algorithms for floating-point matrix multiplication on
reconfigurable computing systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 4, pp. 433–
448, 2007.

[13] J. Kadlec and R. Gook, “Floating point controller as a pi-
coblaze network on a single spartan 3 FPGA,” in MAPLD
2005 International Conference Proceedings, R. B. Katz,
Ed., Washington, September 2005, pp. 1–11, NASA Office
of Logic Design.

[14] R. Clint Whaley and Jack Dongarra, “Automatically
Tuned Linear Algebra Software,” Tech. Rep. UT-CS-97-

366, University of Tennessee, December 1997, URL :
http://www.netlib.org/lapack/lawns/lawn131.ps.

[15] Kazushige Goto, ,” http://www.tacc.utexas.edu/resources/
software/#blas.

[16] Keith D. Underwood and K. Scott Hemmert, “Closing
the gap: Cpu and fpga trends in sustainable floating-point
blas performance,” in FCCM ’04: Proc. 12th Annual
IEEE Symposium on Field-Programmable Custom Com-
puting Machines, Washington, DC, USA, 2004, pp. 219–
228, IEEE Computer Society.

[17] Keith Underwood, “Fpgas vs. cpus: trends in peak
floating-point performance,” in FPGA ’04: Proc. 2004
ACM/SIGDA 12th international symposium on Field pro-
grammable gate arrays, New York, NY, USA, 2004, pp.
171–180, ACM Press.

249

