
Performance Improvement of the Smith-Waterman
Algorithm

Laiq Hasan Zaid Al-Ars
Delft University of Technology

Computer Engineering Laboratory
Mekelweg 4, 2628 CD Delft, The Netherlands
Tel: +31 15 27 86172 Fax: +31 15 27 84898

Email: L.Hasan@ewi.tudelft.nl

Abstract: Efficient sequence alignment is one of the
most important and challenging activities in bioinformatics.
Many algorithms have been proposed to perform and ac-
celerate sequence alignment activities. Among them Smith-
Waterman (S-W) is the most sensitive (accurate) algorithm,
however, the fact that it is the most computationally inten-
sive algorithm makes it necessary to implement hardware
acceleration methods to make the algorithm viable for prac-
tical applications. In this paper, we present a novel ap-
proach to improve the performance of the S-W algorithm,
using partially custom hardware. In this approach, cus-
tomized hardware is used to accelerate the computationally
intensive part of the algorithm, rather than implementing
the entire algorithm in hardware. The paper shows the pro-
filing results of a pure software implementation of the S-W
algorithm. The profiling results identify that a specific small
part of the algorithm consumes a disproportionately large
amount of computational time, amounting to 72.33 % of the
total runtime. The paper then shows that implementing this
part in hardware, results in a 35.82 times speedup relative
to its software equivalent.

Keywords: Bioinformatics, Sequence Alignment, Smith-
Waterman Algorithm, Code Profiling, Custom Hardware.

I. I NTRODUCTION

In 1981, Smith and Waterman described a method based
on dynamic programming (DP)[1], commonly known as
theSmith-Waterman (S-W)algorithm [2], for local sequence
alignment (i.e., identifying common regions in sequences
that share local similarity characteristics). When obtaining
the local alignment, a matrixHi,j is used to keep track of
the degree of similarity between the two sequences to be
aligned (Ai andBj). Each element of the matrixHi,j is
calculated according to the following equation:

Hi,j = max





0
Hi−1,j−1 + Si,j

Hi−1,j − d
Hi,j−1 − d

(1)

whereSi,j is the similarity score of comparing sequence
Ai to sequenceBj andd is the penalty for a mismatch.

The whole algorithm is divided into three steps:
1. Initialization step
2. Matrix fill step
3. Trace back step

The matrix is first initialized withH0,j = 0 andHi,0 =
0, for all i andj. This is referred to as theinitialization step.

After the initialization, amatrix fill stepis carried out us-
ing Equation 1, which fills out all entries in the matrix.

The final step is thetrace back step, where the scores in
the matrix are traced back to inspect for optimal local align-
ment. The trace back starts at the cell with the highest score
in the matrix and continues up to the cell, where the score
falls down to a predefined minimum threshold. In order to
start the trace back, the algorithm requires to find the cell
with the maximum value, which is done by traversing the
entire matrix.

As an example, the S-W algorithm, is used to compute
the optimal local alignment of two sequences (i.e.,A = a g
g t a c andB = c a g c g t t g). Assume that

Si,j =
{

+2 if(Ai = Bj)
−1 else

and d = 2.
Table I illustrates the calculation of the DP matrixH and

the trace back path (shown in bold digits). The best score
found in the matrix is 6, and the corresponding optimal local
alignment is

A: a g - g t
B: a g c g t

This paper aims at providing a novel approach to improve
the performance of the S-W algorithm, using partially cus-
tom hardware. Some form of the S-W algorithm is also the
core of FASTA [3] and BLAST [4], making its acceleration
even more useful, as it can later be used for improving the
performance of FASTA and BLAST as well.

TABLE I

THE DP MATRIX AND THE TRACE BACK PATH

c a g c g t t g
0 0 0 0 0 0 0 0 0

a 0 0 2 0 0 0 0 0 0
g 0 0 0 4 2 2 0 0 2
g 0 0 0 2 3 4 2 0 2
t 0 0 0 0 1 2 6 4 2
a 0 0 2 0 0 0 4 5 3
c 0 2 0 1 2 0 2 3 4

The paper is organized as follows: Section II provides
an overview of the related work and also introduces the par-
tially custom hardware approach. Section III shows the pro-
filing results of a software implementation of the S-W algo-
rithm. Section IV shows the hardware description of the
function (fill matrix 2), which consumes 72.33 % of the to-
tal runtime and Section V gives a brief conclusion.

II. RELATED WORK

Figure 1 gives classification of the work related to the
hardware acceleration of the S-W algorithm [5].

Hardware Acceleration

of the S-W Algorithm

Fully Custom

Hardware

General Purpose

Hardware

Partially Custom

Hardware

Our approach

Fig. 1. Classification for hardware acceleration of the S-W algorithm

Fully Custom Hardware is the dedicated hardware de-
signed to perform only some specialized tasks. In [6], the
authors show the implementation of a fully custom pro-
cessing unit to realize the execution of the S-W algorithm.
The authors state that for conducting comparisons of multi-
ple sequence pairs, using the same set of processing units,
two approaches can be taken e.g. synchronous and asyn-
chronous. The authors claim that the asynchronous paral-
lel approach is (k-1)*(m-1) time steps faster than the syn-
chronous parallel approach, where k represents the size of
the existing sequences in the database, which grows expo-
nentially. In [7], the design of a small fully custom process-
ing element, calledProclet, is shown. This Proclet is used
for a new VLSI implementation of the S-W algorithm. In
[8], the authors show the runtime improvement of the S-W
algorithm, using FPGA hardware. To quantitatively assess
the runtime improvement, they first wrote the algorithm in

software and then accelerated it, using FPGA custom in-
structions. The results showed that the hardware accelerated
algorithm improved the processing runtime by an average of
287%.

General Purpose Hardwareis more flexible and is de-
signed to perform a wide variety of tasks. In [9], an im-
plementation of the S-W algorithm is described on a gen-
eral purpose fine-grained architecture, the MGAP, where
the authors show that their implementation is about 5 times
faster than the rapid implementation of a genetic sequence
comparator using field programmable logic arrays [10]. In
[11], it has been demonstrated that the streaming architec-
ture of GPUs can be efficiently used for biological sequence
database scanning. To derive an efficient mapping onto this
type of architecture, the authors have reformulated the S-
W algorithm in terms of computer graphics primitives and
claim that the evaluation of their implementation on a high-
end graphics card shows a speedup of almost sixteen, com-
pared to a Pentium IV 3.0 GHz. The platforms in [9] and
[11] are not customized particularly for hardware accelera-
tion of the S-W algorithm and are therefore included in the
general purpose hardware class.

Partially Custom Hardware is neither as flexible as
general purpose hardware nor as fixed as fully custom hard-
ware. We propose a novel approach to accelerate the S-
W algorithm, using partially custom hardware. In this ap-
proach, we design aCustom Computing Unit (CCU)for the
function of interest (identified in the code profile), rather
than the entire application. Figure 2, shows the block di-
agram representation of our approach, where the block in
gray represents the desired function, identified by the code
profile. This is actually the function, for which, we need to
design a CCU.

Application program

(C code)

Identify the desired

function in software

(Code profile)

Application program

(C code)

The desired function in

HDL (CCU)

Fig. 2. Block diagram representation of the partially custom hardware
approach

To our knowledge, no such approach has been presented
in the literature as yet to accelerate the S-W algorithm.

III. PROFILING RESULTS

Figure 3 shows the functional description of a software
implementation of the S-W algorithm. Theinit matrix is
a function used for initializing the scoring matrix. The
fill matrix 1 performs two functions i.e. filling the matrix
and at the same time keeping track of the maximum score
in the matrix. The fillmatrix 2 function finds the corre-
sponding maximum candidate for each cell in the matrix,
according to Equation 1. Thetrace back1 function per-
forms the trace back, while thetrace back2 function keeps
track of the direction of the trace back. We profiled a soft-
ware implementation of the S-W algorithm, using the GNU
profiler, gprof. Table II shows the code profiling results.

The GNU profiler gives information about the number of
times, each function is called and the number ofClock Ticks,
consumed by each function, whereas a

Clock Ticks = Number of Clock Cycles
32

So,Number of Clock Cycles = Clock Ticks ∗ 32

The code is run on the Intel Pentium-IV (3.2 GHz) pro-
cessor, for which the time period of the clock is

= 1
3.2 GHz = 0.312 ns

So, the total time in Table II represents the product (total
number of clock cycles * 0.312ns).

Table II identifies that fillmatrix 2 is the function which
is called the most number of times and consumes 72.33 % of
the total runtime, making it the right candidate to be imple-
mented in hardware. This will improve the computational
processing time of the function. Table II shows the total
time consumed by fillmatrix 2 function as 5.23ms. This
is actually the time when the code is repeated 100 times.
This is due to the fact that in the software implementation,
a code repetition counter is defined and for retrieving some
meaningful profiling results, this counter is set to 100. So
the actual time consumed by fillmatrix 2 function

= 5.23
100 ms

= 0.05232ms

= 52.32µs

The comparison between the processing runtime of the
pure software and the hardware versions will give us the
percentage of runtime improvement, as given in Section IV.

IV. H ARDWARE DESCRIPTION OF THEFUNCTION

(FILL MATRIX 2)

We designed a CCU in VHDL for the function of interest
(fill matrix 2). Figure 4 shows the RTL schematic of the
CCU, generated by the synthesizer (Xilinx ISE 8.1i). It is a
synchronous comparator, which compares four 8 bits num-
bers and finds the maximum in two levels. For this purpose
three similar 8 bit comparators are inferred, each having two
8 bits inputsin1 andin2, a 1 bit reset inputrst compand an
8 bits outputout comp. In Figure 4,a, b, c andd represent
the four candidates for Equation 1. In the 1st level of the
design,a is compared withb andc is compared withd, us-
ing two of the three comparators. Each comparator finds the
maximum of the two numbers and provides the result to the
third comparator in the second level. Thus the third com-
parator finds the maximum of all the four input candidates.
To receive the final 8 bits output (maxout) at the rising edge
of the clock, a D flip flop with a clear input is inferred. The
post place and route simulation, shows the total delay equal
to 0.0146µs, where as the time consumed by it’s software
equivalent was 52.32µs. The % runtime improvement is
calculated using Equation 2.

% runtime improvement

=

[
1

CCU time − 1
fill matrix 2 time
1

fill matrix 2 time

]
∗ 100% (2)

=

[
1

0.0146∗10−6 − 1
52.32∗10−6

1
52.32∗10−6

]
∗ 100%

= 3582 %

= 35.82 times.

The device used for the simulation was Xilinx Virtex2P
(XC2VP30) with speed grade -6. The device utilization
summary shows that 29 out of 13696 slices are used, so
the design is very efficient in terms of resource utilization
as well.

It is worth to mention that we expect the actual speedup
achieved by our approach to be a little bit lower than the
speedup we calculated (3582 %), since our profiling method
does not account for the overhead in the computation time.
This overhead is incurred by some inaccuracies in the gprof
tool itself, in addition to the computational overhead in the
operating system.

V. CONCLUSION

In this paper, we provided a novel approach to improve
the performance of the S-W algorithm, using partially cus-

init_matrix trace_back_2fill_matrix_2 trace_back_1fill_matrix_1

input output

Initialization Matrix Fill Trace Back

Fig. 3. Functional description of the software implementation of the S-W algorithm

TABLE II

PROFILING RESULTS FOR THE SOFTWARE IMPLEMENTATION OF THES-W ALGORITHM

Function Name No. of Calls No. of Clock Ticks No. of Clock Cycles Total Time (ms) % Time
init matrix 100 71944 2302208 0.718 9.93

fill matrix 1 100 32392 1036544 0.323 4.47
fill matrix 2 4800 524040 16769280 5.23 72.33
traceback1 100 31232 999424 0.312 4.31
traceback2 500 64944 2078208 0.648 8.96

in1(7:0) out_comp(7:0)

in2(7:0)

rst_comp

in1(7:0) out_comp(7:0)

in2(7:0)

rst_comp

in1(7:0) out_comp(7:0)

in2(7:0)

rst_comp

D Q

C

CLR

a(7:0)

 b(7:0)

 rst_n

 clk_ext

 c(7:0)

d(7:0)

INV

 max_out(7:0)

Fig. 4. RTL schematic of the custom computing unit for the function fillmatrix 2

tom hardware. We provided the functional description and
the profiling results of a software implementation of the S-
W algorithm. The profiling results given in Table II, show
that the fill matrix 2 is the most appropriate function to be
implemented in hardware, as it consumes 72.33 % of the to-
tal execution time. We described the fillmatrix 2 function
in VHDL and the post place and route simulation shows that
the hardware implementation is 35.82 times faster than it’s
equivalent software implementation.

REFERENCES

[1] R. Giegerich. A systematic approach to dynamic programming in
bioinformatics.Bioinformatics, vol. 16:665–677, 2000.

[2] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences.Jounal of Molecular Biology, vol. 147:195–197, 1981.

[3] D.J. Lipman and W.R. Pearson. Rapid and sensitive protein simlarity
searches.Science, 227:1435–1441, 1985.

[4] Gish W. Miller W. Myers E. W. Altschul, S. F. and D. J. Lipman. A
basic local alignment search tool.J. Mol. Biol., 215:403–410, 1990.

[5] L. Hasan, Z. Al-Ars and S. Vassiliadis. Hardware Acceleration of Se-
quence Alignment Algorithms - An Overview, Proceedings of Inter-
national Conference on Design & Technology of Integrated Systems

in Nanoscale Era (DTIS’07): 96–101, September 2 – 5, 2007, Rabat
(Morocco).

[6] H. Y. Liao, M. L. Yin and Y. Cheng. A Parallel Implementation of
the Smith-Waterman Algorithm for Massive Sequences Searching.
In Proc. 26th Annual International Conference of the IEEE EMBS,
San Francisco, CA, USA. September 1 – 5, 2004.

[7] Brian Hang Wai Yang. A parallel implementation of smith-waterman
sequence comparison algorithm. Technical report, Biochemistry de-
partment, Stanford University, December 6, 2002.

[8] J. Chiang, M. Studniberg, J. Shaw, S. Seto and K. Truong. Hardware
Accelerator for Genomic Sequence Alignment. Proceedings of the
28th IEEE EMBS Annual International Conference New York City,
USA, Aug 30 – Sept 3, 2006.

[9] M. Borah R. S. Bajwa S. Hannenhalli M. J. Irwin. A SIMD Solution
to the Sequence Comparison Problem on the MGAP. Proc. Int. Conf.
on Application Specific Array Processors, 1994.

[10] Daniel P. Lopresti. Rapid implementation of a genetic sequence com-
parator using field programmable logic arrays. Conference on Ad-
vanced Research in VLSI: 138–152, 1991.

[11] A Schroder et. al. Bio-Sequence Database Scanning on a GPU.
HICOMB, 2006.

